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Probability: events as subsets of possible worlds

* Boolean algebra
A non-empty collection of subsets 2 of a set W such that:
1) AABeY — AUuBeX
2) Aed¥ = A°eX
3) e

Corollary:
The sets @ e W belong to any Boolean algebra generated on W

2 is also closed under binary intersection
= g-algebra

A non-empty collection of subsets X of a set IV such that:

1) A, e X, Vke NT — ( zo:lAk)EE —

This is a stronger requirement:

; C

2) AeX A e X closeness under countable union

3) oeX Hence a o-algebra is a boolean algebra
Corolla ry: but not vice-versa

The sets @ and W belong to any o- algebra generated on W
2 is also closed under countable intersection
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Probability: events as subsets of possible worlds

= g-algebra (definition)
A non-empty collection of subsets X of a set W such that:
1) A € Y., Vk eENT —= (UzozlAk) e X
2) AeY = A eX
3) o3

= Probability measure over a g-algebra

A function P : ¥ — [0, 1]

i.e. P assigns a measure (i.e. a real number)
to each elements of a 0-algebra X~ of subsets of W

1) VAe X, P(A)>0

2) Ay € X, Vk e NT aredisjoint = P (U,—, Ax) = > 1o P(Ag)
3) P(w)=0

4) P(A°) =1—-P(A) (whichimplies P(W) =1)

= Probability space
A triple (W, %, P)
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Probability: events as subsets of possible worlds

* g-algebra

= Probability measure over a g-algebra

= Probability space
A triple (W, %, P)

Why bothering so much with these (very) technical definitions?

= Rationale (just a few hints)

Closure w.r.t. countable unions of a o-algebras
(as well as countable additivity of P)

is required for dealing with infinite sequences of events and their properties

However, assuming countable union and additivity is also a restriction,

i.e. to ensure measurability
(see the so-called Banach-Tarski paradox for counterexamples)
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Probability: events as subsets of possible worlds

= Probability measure over a g-algebra

= Disjoint events
In general

P(AUuB)=P(A)+ P(B)—P(ANB)

If ANB = theneventsA and B are disjoint
P(AUB) = P(A) + P(B)
(*) Notethat ANB=9 — P(ANB)=0

but not vice-versa: as an event can have zero probability without being empty

(**) Unlike in propositional logic, knowing P(A) and P(B) is not sufficient
for determining P(A U B)
Namely, probability is not truth-functional ...
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Studying basic properties: g finitary setting

It can be useful to adopt, at least for a while, a simpler setting
that allows a simpler definition of fundamental properties

* Finite algebra of events

> is a finite collection of subsets

In this setting, boolean algebra = o-algebra

Events could also be defined via propositional logic
(ala de Finetti, 1937)

= Finitely additive probability measure
Just summations, no integrals
Computability is always guaranteed
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(*) In a finitary setting

Partitions, random variables*

= Partition
A finite collection A, of disjoint subsets (i.e. events) such that

UAi:W

A o-algebra can be generated from a partition
by taking its closure under union and complement

= Random Variable
Is a convenient way to define a o-algebra over W
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(*) In a finitary setting

Partitions, random variables*

= Partition
A finite collection A, of disjoint subsets (i.e. events) such that

UAi:W

= Random Variable
Let X be avariable having a finite set of values {z,, z,, ..., .}
* Ineach possible world, X has a specific value v,
* Thesetofvalues X =2z, X =2, .., X =z, defines a partition of W
* Each constraint X = z; defines an event (i.e. a subset of W)
* Giventhat X=x; e X=g; are disjoint events (i.e.: # j)
PX=z,UX=2x;)=P(X =x;) + P(X =zj)

Random variables having binary values are also said
to be binomial (also Bernoullian)

Random variables with multiple values are also said
to be multinomial
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(*) In a finitary setting

Random variables, joint distribution

= Multiple random variables

In practice, in a probabilistic representation, multiple random variables can coexist

Example:
X, occurrence of a word 7 in the body of an email (binomial)
Y classification of that email as spam (binomial)

Together, a collection of random variable defines

a partition of W

The intersection of two or more o-algebras is a o-algebra

= Joint probability distribution
for a given set of random variables, e.q. X,Y, Z

It is a function that associates a value in [0, 1] to each individual combination of values
PX=xY=y27=2)

Given that X, Ye Z define each a partition of W:

SN PX =2 Y=y, Z2=2)=1
r Yy oz
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(*) In a finitary setting

Random variables: notation

= Random variables, events and o-algebras

(sometimes the notation can be ambiguous)

Examples:
P(X)
This is the probability measure over the g-algebra generated by the random variable X
P(X =x)
This the probability (i.e. a value in [0,1] ) associated to the event X = x
P(X,Y =y)

This is the probability measure over the g-algebra generated by the random variable X
in the subspace of W corresponding to the event Y=y
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(*) In a finitary setting

Marginalization

Removing a random variable from a joint distribution
Given a joint probability distribution
P(X =x,Y =y)

The marginal probability P(X = z) is obtained via summation:

P(X=12) = Y P(X=uaY=y)

A marginal probability can be a joint probability too ...

Marginal probability of an event (shorthand notation, values of Y omitted):

P(X ZP =z,Y)

Marginal probablllty of a g-algebra (shorthand notation, values of Y omitted):

= Y P(X,Y)
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(*) In a finitary setting

Conditional probability

= Definition B W
puxty =) = L (25

It is a form of inference: from a set W to aset W’
Therefore, from a probability space to another probability space

Example: W is the set of possible worlds, X, Y are binary random variables
and P(X,Y) isthe joint probability distribution

Suppose the agent learns that event Y =1 has occurred:
the event Y= 0 is now impossible (to him/her)
W' := {weW|Y =1} isthe new set of possible worlds

P(X|Y =1) isthe new probability of X

More in general W

PXIY) = T

Denotes the conditional probabilities for the whole
o-algebra of events generated by Y
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Bayes’ Theorem (. Bayes, 1764)

= Definition

A relation between conditional and marginal probabilities

PX|Y) = & (Yg((})f; )

P (Y| X) isalso called likelihood L(X | Y)

The theorem follows from the definition of conditional probability (chain rule)
P(X,)Y)=P(X|Y)P(Y)=PY|X)P(X)

Furthermore, given the definition of marginalization:

PY) = ZP(X’ Y)= ZP(Y|X)P(X) T Alsocalled

‘law of total probability’
it follows an alternative formulation of the Bayes’ theorem:

 PYIX)P(X)
PN = = pvix)p(X)
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Example: information and bets

LN N
$1.00

= Two envelopes, only one is extracted

One envelope contains two red tokens and two black tokens, it is worth $1.00
One envelope contains one red token and two black tokens, it is valueless

The envelope has been extracted.

Before posing you bet, you are allowed to extract on token from it
a) The token is black. How much do you bet ?
b) The token is red. How much do you bet ?

Purpose: showing that Bayes’ Theorem makes the representation easier
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Independence, conditional independence

* Independence (also marginal independence)

Two events are independent
iff their joint probability is equal to the product of the marginals

<XL1lY> = P(X,Y)=P(X)P(Y)

= P(X|Y) = Pgé’f)/) _ P<j§g§j§”> _ P(X)

* Conditional independence

Two events are conditional independent, given a third event,
iff their joint conditional probability is equal to the product of the conditional marginals

<X1lY|Z> = P(X.,Y|Z)=P(X|2)P(Y|Z)

L i) - PV PRRPOD gy

CAUTION: the two forms of independence are distinct!
<XLY> = <XLY|Z> <XL1Y|Z> % <XL1Y>
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Independence, conditional independence

[from Wikipedia, “Conditional Independence”]

These are two examples illustrating conditional independence. Each cell &)
represents a possible outcome. The events R, B and Y are represented by the areas
shaded red, blue and yellow respectively. And the probabilities of these events are )
shaded areas with respect to the total area. In both examples R and B are R,BandY here are subsets, i.e. events,

conditionally independent given ¥ because: / not random variables
Pr(RNB|Y)=Pr(R|Y)Pr(B|Y)"

but not conditionally independent given not ¥ because:

Pr(RNB|notY) #Pr(R|not Y)Pr(B|not Y).

The example above shows that (conditional) independence of two specific events
does NOT imply (conditional) independence of the whole o-algebras
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Probabilistic Inference (no legrning)

* General setting

The starting point is a fully-specified joint probability distribution
P(Xq1,Xo,...,X,)

In an inference problem, the set of random variables { X1, Xo, ..., X, }
is divided into three categories:
1) Observed variables {XO} , i.e. having a definite (and certain) value
2) Irrelevant variables { X; } ,i.e. which are not directly part of the answer
3) Relevant variables {XT} , i.e. which are part of the answer we seek

In general, the problem is finding:

PH{X: tH{Xo}) = Z PHX: 1 AXi X6 })
{X:}

= “Decidability” (actually “computability”) is not an issue (*in a finitary setting)
Given that the joint probability distribution is completely specified
= Computational efficiency can be a problem

The number of value combinations grows exponentially
with the number of random variables
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Continuous random variables chint)

Although conceptually the same, dealing with continuous random variables
is technically difficult

. . ) __——— Acontinuous domain
Consider a continuous random variable X € X e.g. the real interval [0, 1]

X =z does not describe a proper event
Again for technical reasons (i.e. measurability) this must have probability zero

X<a X<b a< X <b

(where a < b) these are subsets are proper events (i.e. they may have non-zero probability)

P(X<b)=P(X<a)+Pla< X <b)
= These two events are

Pla< X <b)=P(X<b)—P(X<a)

disjoint

. dP(X)
Assume that the derivative p(X) := e exists

cumulative distribution function (cdf)

b
P(a<X§b)=/ p(X) dX

a
\ probability density function (pdf)
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Expected value of 3 random variable

(also expectation)

Basic definition
Ex[X]:= ) zP(X =uz)

reX

A linear operator
EX +Y]|=E[X]|+ E[Y]
ElcX] = cE[X]

Conditional expectation

Ex[X]Y =y] =EX]Y =y]:

More concise notation

E[X]:= ) a P(x)

reX

Continuous case

Iterated expectation (see Wikipedia)

Ex[X] =Ey[Ex[X|Y]]
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Variance of a3 random variable

Basic definition
Var(X) := Ex[(X — Ex[X])?] = Ex[(X — ux)?]
where px = Ex[X]

Var(X) = Y P(X =z) (x—p)?

reX
variance is not a linear operator

Conditional variance

Var(X|Y =vy) =Ex[(X —Ex[X|Y =y])? |V =]

Variance lemma
Var(X) = E[(X — pux)?] = E[X?] — 2uxE[X] + p%
= E[X?] - 2u% + p% = E[X°] — pk
E[X?] = px + 0%
where 5, .= Var(X)  standard deviation
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