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Turing Machine ca. ruring 1959 moving CPU

* A more precise definition readute device — [
A non-empty and finite set of states S 10|11 0|01
At each instant the machine is in a state s € S memoryfaps

A non-empty and finite alphabet of symbols ()
The alphabet () includes a blank, default symbol b
Each cell in the tape contains a symbol ¢ € ()

A partial transition function

T7:5%xQ — Sx@Q x {Left, None nght}
current state/ / \ \ output symbol

input symbol next state head move
Itis partial in the sense it needs not be defined on any input tuple
A subset of terminal states T' C .S
An initial state sg € S
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Tu Fi I’)g MaCh l NE (A. Turing, 1937)

= A busy beaver example (3 states)

S ={A,B,C,HALT}
so=A T = {HALT}
Q=1{0,1} b=0
T =
< A,0>— < B,1,Right >
<A 1>— <(C,1,Left >
< B,0>— < A, 1, Left >
< B,1 > — < B, 1,Right >
<C,0> — < B,1, Left >
< (C,1>— < HALT, 1, Right >

Assume that the tape is infinite and plenty of blank symbols 0
What does this machine do?

moving CPU

[011]

readiwrite device %H

1011|001

memory tape
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Decisions and decidability (automation)

* What is a problem?

A problem is an association, i.e. a relation between inputs and outputs (i.e. solutions)
K:<l,S>

= Search problem
Typically, K associates one input to many solutions
Optimization problems
A search problem plus an objective or cost function

C:S >R (i.e.from Sto the set of real numbers)
In general, the task is finding the solution(s) having maximal or minimal cost

* Decision problem

The solution space S is {0, 1}
and K associates each input to a unigue solution: K: |1 — {0, 1}

Example: T' ¢ ?
The input space | contains all possible combinations of set I" of wffs with individual wffs ¢
The solution is uniquely defined for any instance of such problemsin |
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Decisions and decidability (automation)

» Decidable problem

A decision problem K for which there exists an algorithm, i.e a Turing machine,
(there are other ways of defining an algorithm or an effective procedure: they are all equivalent)

that always terminates and produces the right answer in finite time.

Example of an undecidable problem: The Halting Problem
Given the formal description of a particular Turing machine and a specific input,
is it possible to tell if whether it will either halt eventually or run forever?

In other words, does it exist a Turing machine that, given in input the description of another
Turing machine, will always produce the answer desired?

The answer is no (such a Turing machine cannot exist)
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An aside: The Halting Problem

= |ntuitive ideas behind the proof (i.e. of the undecidability of this problem)

Let’s assume there exists a Turing machine H that, given the description of a Turing machine M
with input | always terminates producing an output “halt” or “loop” depending on whether M with
input | will terminate or not

(these are just output symbols)

Machine M —,

Input | H —— “halt”/“loop

Artificial Intelligence 2018-2019 Entailment and Algorithms [7]



An aside: The Halting Problem

= |ntuitive ideas behind the proof (i.e. of the undecidability of this problem)

Let’s assume there exists a Turing machine H that, given the description of a Turing machine M
with input | always terminates producing an output “halt” or “loop” depending on whether M with
input | will terminate or not

Machine M —
Input | —»

— “halt” / “loop”

Assume H existed

(these are just output symbols)

We could build another Turing machine K that enters an infinite loop whenever the output of H is
“halt” and that terminates, with output “halt”, when H outputs “loop”

Machine M

Input |

v

v

H —

“loop™?

YES

K

> ‘Chath’

NO

L

do loop!
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An aside: The Halting Problem

= |ntuitive ideas behind the proof (i.e. of the undecidability of this problem)

Let’s assume there exists a Turing machine H that, given the description of a Turing machine M
with input | always terminates producing an output “halt” or “loop” depending on whether M with
input | will terminate or not

(these are output symbols)

Machine M —,

Input | H —— “halt”/“loop

Assume H existed
We could build another Turing machine K that enters an infinite loop whenever the output of H is
“halt” and that terminates, with output “halt”, when H outputs “loop”

——————
- -
- ~-o

o e e e e e e e e e e e e e e e e e e e e

’ ’ \

. _ ! “loop”? K
“» Machine M : > pYES E “halt”
Input I - > H o o
: NO |

\ /

e e e e e = e e e e e e e e e e = e e -

What will be the output of K when given K itself as the input?
K should diverge when K terminates and vice-versa: i.e. we have an absurdity
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Computational complexity,

These notions apply to decidable problems only

It is based on the performances of a (known) Turing machine that gives the answer
with respect to the worst case (i.e. the less favorable input)

= Time complexity

The number of steps that the Turing machine requires for computing the answer,
as a function of some numerical dimension of the input (e.g. the number of atoms in a wff)

= Memory complexity

The number of tape cells that the Turing machine requires for computing the answer,
as a function of some numerical dimension of the input

= Big-O notation
flz) = 0(g(2))

means that

AM >0, dzg >0 suchthat |f(z)| < M|g(x)|, Vx> xq
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Classes P, NP and NP-complete - The SAT problem

= (Class P

The class of problems for which there is a Turing machine that requires O(P(n)) time
where P() is a polynomial of finite degree and n is the dimension of the (worst-case) input

= (Class NP

The class of all problems:
a) A method for enumerating all possible answers (i.e. recursive enumerability)

b) An algorithm in class P that verifies if a possible answer is also a solution
It includes all problems in class P (that is, P € NP)
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Classes P, NP and NP-complete - The SAT problem

= (Class NP-complete
It is a subclass of NP (NP-complete C NP)
A problem K is NP-complete if every problem in class NP is reducible to K

= Reducibility
For class NP-complete
Consider a problem K for which a decision algorithm M(K) is known
A problem J is reducible to K if there exist a decision algorithm M(J) such that:
a) algorithm M(K) is called just once, as a “subroutine”, at the end of M(J)
b) apart from M(K), M(J) has polynomial complexity

* The problem SAT

Is NP-complete (historically, it is the first one to be known)
Moral: if we had a polynomial decision algorithm for SAT, we would also have that
P=NP

This fact is not known, it is believed that: P # NP
(and a lot will change in the digital world, if this proves to be false)
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Entailment as
3 Decision Problem
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Transforming problems. entailment as satisfiability

= Step 1: the decision problem “T" E ¢ ?”
can be transformed into a satisfiability problem

Infact, I' ¢ iff T' U {—¢}is not satisfiable

(w(I') is the set of possible worlds that satisfy I)

4 ke = WD) Cwife) ©c {0 e}
o W({—p}) = ©
® | WIU{~¢}=wD)Nw({-p})

WU {~¢p})=Q 0No=yY
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Transforming problems: entailment as satisfiability

= Step 1: the decision problem “T" ¢ ?”
can be transformed into a satisfiability problem

Infact, I' ¢ iff T' U {—¢}is not satisfiable

W (w(I') is the set of possible worlds that satisfy I)

4 ke = WD) Cwiip}) 0 C {0 0}
o W({—p}) = ©
® | W U{-p})=wD) N wi—e)

WU {~¢p})=Q 0No=yY

= Step 2: the decision problem “isI' U {—¢} satisfiable?”
can be transformed into a Wff satisfiability problem

Taking this one step further, we can transform I U {—¢} into just one formula:

N (U {=p})
™~

This is the wff obtained by combing all the wffs in T' U {—¢} with A,
it is called the conjunctive closure of the set ' U {—¢}
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Satisfiability and decidability (in Lp)

= |s the decision problem “is the wff ¢ satisfiable?” decidable?

It can be transformed into a search problem

i.e. finding a possible world (in the set of all possible worlds) that satisfies ¢
In the scientific literature, this problem is called “SAT”
Intuition: we can try every possible value assignment for the atoms in ¢

Hint: the problem is NP-complete
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Exhaustive (Tree) Search
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Satisfiability and decidability (in Lp)

Example: is this wff satisfiable?

—“(BADA =(AAQ)
Each branch in this tree @
represents a value assignment

to all propositional symbols /?
170

The tree can be constructed Q
in a depth-first fashion 3/0 1 0 1 0

@@@@@
gg/ 01/010101
¢[00 [0 (00 0]/ 0] (0] B

97@

Each leaf in the tree

is the value of the wff
with the corresponding
value assignments

@

0
0

3%
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Satisfiability and decidability (in Lp)

Example: is this wff satisfiable?

~(BADA —=(A A C))

Each branch in this tree 1 @ 0
represents a value assignment
to all propositional symbols

The tree can be constructed
in a depth-first fashion / 1

@)g/@@@@ 1E0

M

Each leaf in the tree In this case, a depth-first
is the value of the wff algorithm stops here

with the corresponding

value assignments But the algorithm is forced to try all possible assignments

when Y is not satisfiable,
for example with: (B A =D A =A A —C)
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Satisfiability and decidability (in Lp)

Example: is this wff satisfiable?

~(BADA —=(A A C))

Each branch in this tree 1 @ 0
represents a value assignment
to all propositional symbols

The tree can be constructed
in a depth-first fashion / 1

@)g/@@@@ 1E0

N

Each leaf in the tree In this case, a depth-first
is the value of the wff algorithm stops here

with the corresponding

value assignments But the algorithm is forced to try all possible assignments

when Y is not satisfiable,
for example with: (B A =D A =A A —C)

This method has O(2") time complexity, where n is the number of propositional symbols
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Semantic Tableaux
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Semantic Tableau, alpha and beta rules

= Semantic tableau is a method

which can be implemented as a Turing machine

* |tis a decision algorithm for the problem
“is 2 satisfiable?”

where 2 is a set of wffsin L,

In spite of its name, it is a symbolic method: it works on the structure of wffs only
No explicit assignments of (semantic) values are involved
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Semantic Tableau, alpha and beta rules

= Atableauis aset of wifsin L

The method starts from an initial tableau
(i.e. the set X whose satisfiability is to be determined)

It is based on rules that transform each one wff into two wffs

* Alpha rules (i.e. expansion)

(al) (a2) (a3) (a4)
ﬁ(rso) 7 /I\w ﬂ(solv Y) ﬂ(<p|—>w)
® ¢, Y P, Y ¢, Y

= Beta rules (i.e. bifurcation)

(b1) (b2) (b3) (b4) (b5)
o VY —(p A Y) ®—>Y Q<> Y —(p & Y)
N N N P N

7 Y TP Y T Yo ey o ey, Y

Artificial Intelligence 2018-2019 Entailment and Algorithms [23]



Semantic Tableau - a working example

= Original problem:“T' ¢ ?”
Exampleinput: A—-(B—>C)EB—>(A—>C) ?

= Transformed problem: “isI' U {—¢} satisfiable?”
Hence the initial tableau is I' U {—¢}

A—-(B—C),—-(B—>(A->0Q) (a4)

| @4 ~(p = 1)
A—(B—C),B,—-(A—>C) (<p| v

| (a4) ¢, Y

A—> (B—C),B,A —C
/\ (b3) (b3)
—-A, B, A, —C (B> C),B, A —C
®>Y
(b3) Py
closed -B, B, A, —-C C,B, A —C ' Y
Clo!s‘ea’ c/oled
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Semantic Tableau - a working example

= Original problem:“T' ¢ ?”
Exampleinput: A—-(B—>C)EB—>(A—>C) ?

= Transformed problem: “isI' U {—¢} satisfiable?”
Hence the initial tableau is I' U {—¢}

A—>B->C),-B->A->QC) (a4)
—(p >
B, ~(A— C) (sol ¥)
| ¢, Y
A, —C
(b3)
—A (B—>C) B 5
X -B C ¢ (%
I I
X X

The usual notation in textbooks is even more concise:
only those Wffs that are added to the initial tableau in each branch are shown in the tree
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Semantic Tableau - algorithm recap

Algorithm (informal description — see Lab for the implementation).
Input problem: “T ¢ ?”

The input problem is transformed into “is I' U {—¢} satisfiable?”

Methods of this type are also called ‘by refutation’
For each active tableau (i.e. the leaves in the tree),
There could be two cases:

1) The tableau contains only literals

If the tableau contains a complementary pair of literals
then declare it closed

else declare it open (i.e. failure)

2) The tableau contains one or more composite wff
First try to apply an alpha rule,
otherwise, if this is not possible, try to apply a beta rule.
In either case, two new tableau will be generated

Output: the tree structure of tableau
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Semantic Tableau - (required) algorithm properties

= Termination

The algorithm never diverges (i.e. it never enters an infinite loop)

Each application of either alpha or beta rule simplifies a wff (i.e. it makes it less composite):
so the application of rules cannot continue forever

= Symbolic derivation
As already stated, in spite of its name, this is a symbolic method
We write

[sro
iff the Semantic Tableau method is successful (i.e. all leaves are closed) for I' U {—¢}

Howdoweknowthat T' ;¢ = I' E ¢ ?
(Soundness - also correctness - of the method)
Exercise: prove it
(hint: consider the condition on I' U {—¢} and think about how it relates to each rule)
Howdoweknowthat Tk ¢ = I s ¢ ?
(Completeness of the method)
Proving it is definitely more difficult: see textbook (i.e. Ben-Ari)
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Semantic Tableau - (required) algorithm properties

= Termination

The algorithm never diverges (i.e. it never enters an infinite loop)

Each application of either alpha or beta rule simplifies a wff (i.e. it makes it less composite):
so the application of rules cannot continue forever

= Soundness
Fhsrp = TR

= Completeness
FEe = Tikso

= Termination + Soundness + Completeness = Decision Algorithm
(for propositional logic)
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Which method is faster?

= Time complexity (remember: consider the worst case)
The “brute-force search’ and Semantic Tableau have the same complexity : O(2")

* How well do these method perform in practice?
It depends

Example 1(tryit):
AANBACA—A
The “brute-force search’ requires 23= 8 attempts
The Semantic Tableau method requires applying the same alpha rule 3 times
Example 2 (try it):

(AVB)A(AV =B) A (—AVB) A (—AV —B)
The “brute-force search’ requires 22= 4 attempts

The Semantic Tableau method requires applying the same alpha rule 3 times;
then the same beta rule is applied exhaustively producing a tree with 4 levels,
with each node in a tree with a branching factor 2

At the end, the tree has 24=16 leaves (all closed tableau)
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Resolution
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Inference rule: Resolution

OV AVY e VY

¢ V Y isalso called the resolventof ¢ Vy e =y V¢

The resolution rule is correct
Infact @ Vy,xVyEFeVy = oVy, xVyEeVY

<

¢

=

R R R R o oo oS
R~ ool ool

R O OFr O r olRR
SN S S i el T =) Py
]
2
I—‘HOHI—‘HOH<
<

SN S N Y e Ml o) B
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Normal forms

= translation of each wff into an equivalent wff having a specific structure
= Conjunctive Normal Form (CNF)

A wff with a structure
a, Na, A ... A\ a,
where each «; has a structure

B VPV ... V)

where each §; is a literal (i.e. an atomic symbol or the negation of an atomic symbol)
Examples:
(BVD)A(AV =C)AC
Bv -Av -C)A(—-DV AV =(C)

* Disjunctive Normal Form (DNF)

A wff with a structure

PLV BV ... V[

where each 8; has a structure
@y Nay, A ... ANap)
where each ¢; is a literal
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Conjunctive Normal Form

* Translation into CNF (it can be automated)
Exhaustive application of the following rules:
1) Rewrite —> and <> using A, V, —
2) Move — inside composite formulae
“De Morgan laws": =(p A Q)
~(p VY)
3) Eliminate double negations: = —
4) Distribute Vv

(mp V )
(mp A —Y)

(eAY) VYY) = ((eVX)AN@®VY)

Examples:
(-B—>D)Vv =(AAC
BvDvV —=(AAC (rewrite —)
BvDV —-Av =C (De Morgan)
=(B—>D) Vv =(AAC)
=(=-BvDV-AAC (rewrite —)
(BA-D)vVv(-AvV =0 (De Morgan)

(Bv -AvV =-C)A (—-DvVv —A v =C) (distribute V)
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Clausal Forms

= each wff is translated into an equivalent set of wffs having a specific structure

= Clausal Form (CF)

Starting from a wff in CNF
a,Na, A ... A,
the clausal form is simply the set of all clauses
{a,, ay, ..., a,}
Examples:
BVD)A AV =C)AC
{(BvD),AV —-C),C}

= Special notation

Each clause is usually written as a set

BLVB, V...V
{ﬂl ’1829 HBn}
Example:

{{B, D}, {A, —=C}, {C}} A set of literals:

ordering is irrelevant
no multiple copies
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Resolution by refutation

= Algorithm
Problem: “T" |- ¢”?

The problem is transformed into: is “T" U {—¢}” coherent?
IfI" | ¢ then T U {—¢} is incoherent and therefore a contradiction can be derived
I' U {—¢} is translated into CNF hence in CF

The resolution algorithm is applied to the set of clauses I' U {—¢}
At each step:

a) Select a pair of clauses {C,,C,} containing a pair of complementary literals
making sure that this combination has never been selected before

b) Compute C as the resolvent of{C,,C,} according to the resolution rule.
c) Add C to the set of clauses

Termination:
When C is the empty clause { }
or there are no more combinations to be selected in step a)
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Resolution by refutation

* The same example as before
BvDv-Av-C,BVC AvD, =B} D
Refutation + rewrite in CNF:

BvDv-Av-C,BvC, AvD, =B, —-D
Rewrite in CF:

{B.D, =A, =C}, {B,C}, {A D}, {—B}, {—D}
Applying the resolution rule, one pair of literals at time:

{B, D, —=A, =C} {B, C} {—-B} {A, D} {—-D}
\ {C}
{B, D, —-A}
o O

Refutation graph:
shows relevant resolutions

{1 only
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Resolution by refutation

* The same example as before
BvDv-Av-C,BVC AvD, =B} D
Refutation + rewrite in CNF:

BvDv-Av -C,BvC_C, AvD, =B, —-D
Rewrite in CF;

{B.D, =A, =C}, {B,C}, {A D}, {—B}, {—D}
Applying the resolution rule:

{B,D, —A, ~C} B8Cc

e
e I

{D, ~A, ~C}
{D3 /—"C}//{B,/ ’\_'
{-C}  {B,-C}
\{B}/ Refutation graph: |
| _— Yi- — shows relevant resolutions
{} {} {} only (but there are more)
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Resolution by refutation

= Resolution by refutation for propositional logic
Iscorrect: T = '
Iscomplete:T'Ep = T'|¢

In this sense:if ' ¢ then there exists a refutation graph

= Algorithm

It is a decision procedure for the problem I |= ¢

It has time complexity O(2")
where nis the number of propositional symbolsin T' U {—¢}
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