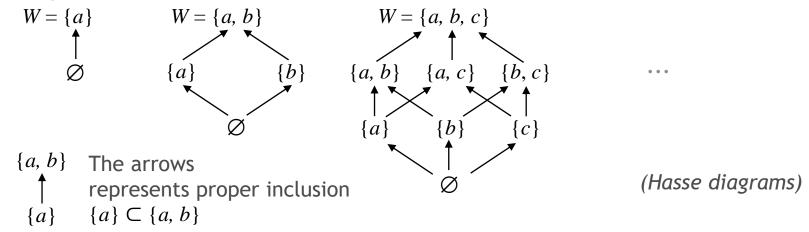
Artificial Intelligence

Propositional Logic

Marco Piastra

Start from a *finite* set of objects W and construct, in a *bottom-up fashion*, the collection Σ of all possible subsets of W

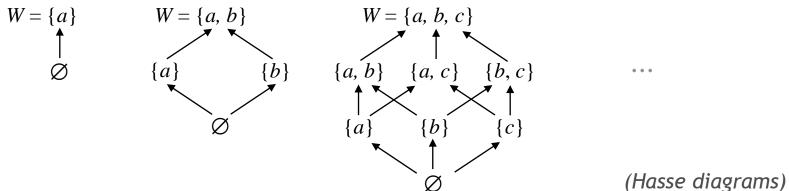
Examples:



Collections like Σ above are also called the **power set** of W (i.e. the collection of all possible subsets of W) which is denoted as 2^W (i.e. $\Sigma = 2^W$)

Start from a *finite* set of objects W and construct, in a *bottom-up fashion*, the collection Σ of all possible subsets of W

Examples:



Boolean algebra (definition)

A non-empty collection of subsets Σ of a set W such that:

1)
$$A, B \in \Sigma \implies A \cup B \in \Sigma$$

2)
$$A \in \Sigma \implies A^c \in \Sigma$$

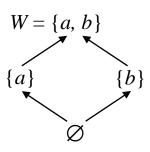
3)
$$arnothing \in \Sigma$$
 $A^c := W - A$ i.e. the complement of A

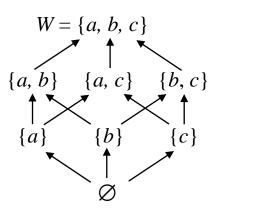
Corollary:

The sets \emptyset e W belong to any Boolean algebra generated on W Σ is also closed under *intersection*

Start from a *finite* set of objects W and construct, in a *bottom-up fashion*, the collection Σ of all possible subsets of W

Examples:





Properties of a Boolean algebra

For the structures above these properties can be verified exhaustively...

$$A \cup A^{c} = W$$

$$A = \{a\}$$

$$A^{c} = \{b, c\}$$

$$A \cup A^{c} = \{a, b, c\}$$

$$A \cap (A \cup B) = A$$

$$A = \{b\}$$

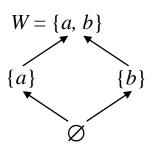
$$B = \{c\}$$

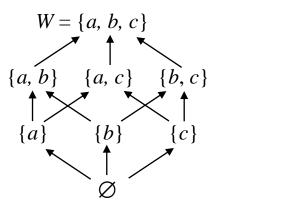
$$A \cup B = \{b, c\}$$

$$A \cap (A \cup B) = \{b\}$$

Start from a *finite* set of objects W and construct, in a *bottom-up fashion*, the collection Σ of all possible subsets of W

Examples:





Properties of a Boolean algebra

De Morgan's laws

For the structures above these properties can be verified exhaustively...

$$A = \{b\}$$

$$A^{c} = \{a, c\}$$

$$B = \{b, c\}$$

$$B^{c} = \{a\}$$

$$A \cup B = \{b, c\}$$

$$(A \cup B)^{c} = \{a\}$$

$$A^{c} \cap B^{c} = \{a\}$$

 $(A \cup B)^c = A^c \cap B^c$

$$(A \cap B)^{c} = A^{c} \cap B^{c}$$

$$A = \{b\}$$

$$A^{c} = \{a, c\}$$

$$B = \{b, c\}$$

$$B^{c} = \{a\}$$

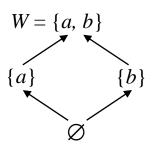
$$A \cap B = \{b\}$$

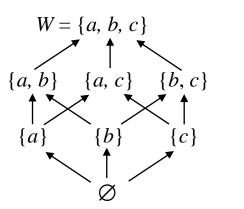
$$(A \cap B)^{c} = \{a, c\}$$

$$A^{c} \cup B^{c} = \{a, c\}$$

Start from a *finite* set of objects W and construct, in a *bottom-up fashion*, the collection Σ of all possible subsets of W

Examples:





Properties of a Boolean algebra

$$A^{c} \cup B = W$$

$$A = \{a\}$$

$$A^{c} = \{b, c\}$$

$$B = \{b\}$$

$$A^{c} \cup B = \{b, c\}$$

Abstract Boolean Algebras

"This type of algebraic structure captures essential properties of both set operations and logic operations." [Wikipedia]

Properties of a **Boolean algebra** (for any $A, B, C \in \Sigma$):

$$\begin{array}{lll} A\cup A=A\cap A=A & idempotence \\ A\cup B=B\cup A \ , & A\cap B=B\cap A & commutativity \\ A\cup (B\cup C)=(A\cup B)\cup C \ , & A\cap (B\cap C)=(A\cap B)\cap C & associativity \\ A\cup (A\cap B)=A \ , & A\cap (A\cup B)=A & absorption \\ A\cup (B\cap C)=(A\cup B)\cap (A\cup C) \ , & A\cap (B\cup C)=(A\cap B)\cup (A\cap C) & distributivity \\ \varnothing\cup A=A \ , & \varnothing\cap A=\varnothing \ , & W\cup A=W \ , & W\cap A=A & special elements \\ A\cup (A^c)=W \ , & A\cap (A^c)=\varnothing & complement \end{array}$$

Which Boolean algebra for logic?

* Given that all boolean algebras share the same properties (see before) we can adopt the simplest one as reference, namely the one based on $\Sigma = \{W, \emptyset\}$ i.e. a two-valued algebra: {nothing, everything} or {false, true} or { \bot , \top } or {0, 1}

Algebraic structure

$$< \{0,1\}, OR, AND, NOT, 0, 1>$$

Boolean functions and truth tables

Boolean functions: $f: \{0, 1\}^n \rightarrow \{0, 1\}$

AND, OR and NOT are boolean functions, they are defined explicitly via truth tables

A	В	OR
0	0	0
0	1	1
1	0	1
1	1	1

A	В	AND
0	0	0
0	1	0
1	0	0
1	1	1

A	NOT
0	1
1	0

Composite functions

Truth tables can be defined also for composite functions For example, to verify logical laws

These columns are identical

De Morgan's laws

						■
A	В	NOT A	NOT B	A OR B	NOT(A OR B)	NOT A AND NOT B
0	0	1	1	0	1	1
0	1	1	0	1	0	0
1	0	0	1	1	0	0
1	1	0	0	1	0	0

Adequate basis

How many basic boolean functions do we need to define any boolean function?

	A_1	A_2	•••	A_n	$f(A_1, A_2,, A_n)$
I	0	0	•••	0	f_1
rows	0	0	•••	1	f_2
$2^n rc$	•••	•••	•••	•••	•••
(4	•••	•••	•••	•••	•••
\	1	1	•••	1	f_{2^n}

Just OR, AND and NOT: any other function can be expressed as composite function In the generic *truth table* above:

- For each row where f = 1, we compose by AND the n input variables taking either A_i when the i-th value is 1, or $\neg A_i$ when i-th value is 0
- We compose by OR all the A_i expressions when the i-th value is 1

Other adequate basis

Also $\{OR, NOT\}$ o $\{AND, NOT\}$ are adequate bases

An adequate basis can be obtained by just one 'ad hoc' function: NOR or NAND

A	В	A NOR B
0	0	1
0	1	0
1	0	0
1	1	0

A	В	A NAND B
0	0	1
0	1	1
1	0	1
1	1	0

■ Two remarkable functions: *implication* and *equivalence*

Logicians prefer the basis {*IMP*, *NOT*}

A	B	A IMP B
0	0	1
0	1	1
1	0	0
1	1	1

A	В	A EQU B
0	0	1
0	1	0
1	0	0
1	1	1

Identities:

A IMP B = NOT A OR B

A EQU B = (A IMP B) AND (B IMP A)

Propositional logic

i.e. the simplest of 'classical' logics

Propositions

We consider all possible worlds that can be described via atomic propositions

"Today is Friday"
"Turkeys are birds with feathers"
"Man is a featherless biped"

Formal language

A precise and formal language in which *propositions* are the *atoms* (i.e. no intention to represent the internal structure of *propositions*)

Atoms can be composed in complex formulae via *logical connectives*

Formal semantics

A class of formal structures, each representing a *possible world* **Fundamental**: in each *possible world*, each formula of the language is either *true* or *false*

- Atoms are given a truth value (i.e. false, true)
- Logical connectives are associated to boolean functions: each formula corresponds to a functional composition in which atoms are the arguments (truth-functionality)

The class of propositional, semantic structures

They will define the meaning of the formal language (to be defined)

Each possible world is a structure <{0,1}, P, v>

 $\{0,1\}$ are the *truth values*

 ${\it P}$ is the ${\it signature}$ of the formal language: a set of propositional symbols

v is a function: $P \rightarrow \{0,1\}$ assigning truth values to the symbols in P

Propositional symbols (signature)

Each symbol in *P* stands for an actual *proposition* (in natural language)

In the simple convention, we use the symbols A, B, C, D, ...

Caution: P is not necessarily finite

Possible worlds

The class of structures contains all possible worlds:

$$<\{0,1\}, P, \nu>$$

 $<\{0,1\}, P, \nu'>$
 $<\{0,1\}, P, \nu''>$

• • •

Each class of structure shares P and $\{0,1\}$

The functions v are different: the assignment of truth values varies, depending on the possible world If P is finite, there are only *finitely* many distinct possible worlds (actually $2^{|P|}$)

Propositional language

i.e. how we describe the world, by propositions

• In a propositional language L_P

```
A set P of propositional symbols: P = \{A, B, C, ...\}
Two (primary) logical connectives: \neg, \rightarrow
Three (derived) logical connectives: \land, \lor, \leftrightarrow
Parenthesis: (, ) (there are no precedence rules in this language)
```

Well-formed formulae (wff)

A set of syntactic rules

```
The set of all the wff of L_P is denoted as \operatorname{wff}(L_P)

A \in P \Rightarrow A \in \operatorname{wff}(L_P)

\varphi \in \operatorname{wff}(L_P) \Rightarrow (\neg \varphi) \in \operatorname{wff}(L_P)

\varphi, \psi \in \operatorname{wff}(L_P) \Rightarrow (\varphi \to \psi) \in \operatorname{wff}(L_P)

\varphi, \psi \in \operatorname{wff}(L_P) \Rightarrow (\varphi \lor \psi) \in \operatorname{wff}(L_P), \quad (\varphi \lor \psi) \Leftrightarrow ((\neg \varphi) \to \psi)

\varphi, \psi \in \operatorname{wff}(L_P) \Rightarrow (\varphi \land \psi) \in \operatorname{wff}(L_P), \quad (\varphi \land \psi) \Leftrightarrow (\neg (\varphi \to (\neg \psi)))

\varphi, \psi \in \operatorname{wff}(L_P) \Rightarrow (\varphi \leftrightarrow \psi) \in \operatorname{wff}(L_P), \quad (\varphi \leftrightarrow \psi) \Leftrightarrow ((\varphi \to \psi) \land (\psi \to \varphi))
```

Semantics: interpretations

Composite (i.e. truth-functional) semantics for wff

Given a possible world $<\{0,1\}$, P, v> the function $v: P \to \{0,1\}$ can be extended to assign a value to *every* wff

Each logical connective is associated to a binary (i.e. boolean) function:

```
v(\neg \varphi) = NOT(v(\varphi))
v(\varphi \land \psi) = AND(v(\varphi), v(\psi))
v(\varphi \lor \psi) = OR(v(\varphi), v(\psi))
v(\varphi \to \psi) = OR(NOT(v(\varphi)), v(\psi)) \text{ (also } IMP(v(\varphi), v(\psi)) \text{ )}
v(\varphi \leftrightarrow \psi) = AND(OR(NOT(v(\varphi)), v(\psi)), OR(NOT(v(\psi)), v(\varphi)))
```

Interpretations

Function v (extended as above) assigns a truth value $\underline{to \, each} \, \varphi \in \mathrm{wff}(L_P)$

$$v: \text{wff}(L_P) \rightarrow \{0,1\}$$

Then v is said to be an *interpretation* of L_p

Note that the truth value of any ${\rm wff}\,\varphi$ is univocally determined by the values assigned to each symbol in the *signature* P

Sometimes we will use just v instead of $<\{0,1\}, P, v>$

Satisfaction, models

Possible worlds and truth tables

Examples: $\varphi = (A \lor B) \land C$

Different rows different worlds

Caution: in each possible world every $\varphi \in \text{wff}(L_p)$ has a truth value

A	В	C	$A \vee B$	$(A \lor B) \land C$
0	0	0	0	0
0	0	1	0	0
0	1	0	1	0
0	1	1	1	1
1	0	0	1	0
1	0	1	1	1
1	1	0	1	0
1	1	1	1	1

A possible world **satisfies** a wff φ iff $v(\varphi) = 1$

We also write $\langle \{0,1\}, P, v \rangle \models \varphi$

In the truth table above, the rows that satisfy φ are in gray

Such possible world w is also said to be a **model** of φ

By extension, a possible world *satisfies* (i.e. is *model* of) a <u>set</u> of wff $\Gamma = \{\varphi_1, \varphi_2, ..., \varphi_n\}$ iff w satisfies (i.e. is model of) each of its wff $\varphi_1, \varphi_2, ..., \varphi_n$

Tautologies, contradictions

A tautology

Is a (propositional) wff that is always satisfied

It is also said to be valid

Any wff of the type $\, \varphi \, \lor \, \neg \varphi \,$ is a tautology

A contradiction

Is a (propositional) wff, that cannot be satisfied

Any wff of the type $\varphi \land \neg \varphi$ is a contradiction

A	$A \wedge \neg A$	$A \lor \neg A$
0	0	1
1	0	1

A	В	$(\neg A \lor B) \lor (\neg B \lor A)$
0	0	1
0	1	1
1	0	1
1	1	1

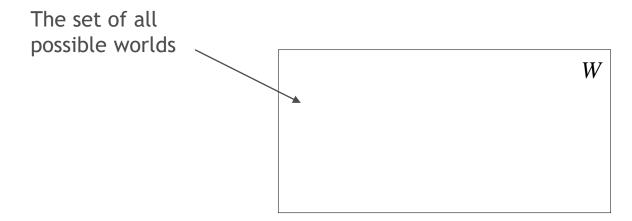
A	В	$\neg((\neg A \lor B) \lor (\neg B \lor A))$
0	0	0
0	1	0
1	0	0
1	1	0

Note:

- Not all wff are either tautologies or contradictions
- If φ is a tautology then $\neg \varphi$ is a contradiction and vice-versa

Consider the set W of all possible worlds

Each wff φ of L_P corresponds to a **subset** of W i.e. the subset of all possible worlds that *satisfy* it in other words φ corresponds to $\{w:w\models\varphi\}$ The corresponding subset may be empty (i.e. if φ is a contradiction) or it may coincide with W (i.e if φ is a tautology)



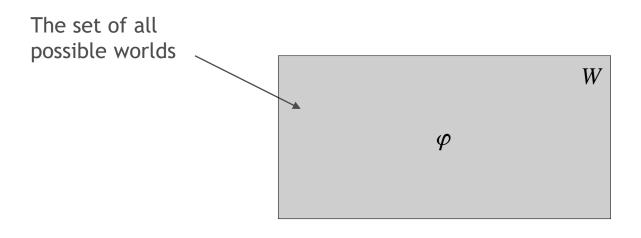
Consider the set W of all possible worlds

Each wff φ of L_P corresponds to a **subset** of W

i.e. the subset of all possible worlds that satisfy it

in other words φ corresponds to $\{w : w \models \varphi\}$

The corresponding subset may be empty (i.e. if φ is a contradiction) or it may coincide with W (i.e if φ is a tautology)



" φ is a tautology"

"any possible world in W is a model of φ "

" φ is (logically) *valid*"

Furthermore:

" φ is satisfiable"

" φ is <u>not</u> falsifiable"

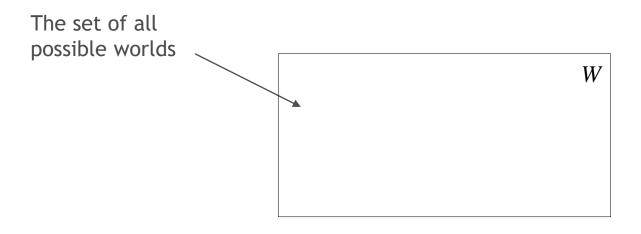
Consider the set W of all possible worlds

Each wff φ of L_P corresponds to a **subset** of W

i.e. the subset of all possible worlds that satisfy it

in other words φ corresponds to $\{w : w \models \varphi\}$

The corresponding subset may be empty (i.e. if φ is a contradiction) or it may coincide with W (i.e if φ is a tautology)



" φ is a contradiction"

"none of the possible worlds in W is a *model* of φ "

" φ is <u>not</u> (logically) *valid*"

Furthermore:

" φ is <u>not</u> satisfiable"

" φ is falsifiable"

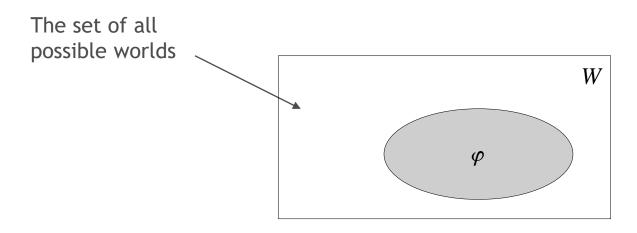
Consider the set W of all possible worlds

Each wff φ of L_P corresponds to a **subset** of W

i.e. the subset of all possible worlds that satisfy it

in other words φ corresponds to $\{w : w \models \varphi\}$

The corresponding subset may be empty (i.e. if φ is a contradiction) or it may coincide with W (i.e if φ is a tautology)



" φ is neither a contradiction nor a tautology"

"some possible worlds in W are model of φ , others are not"

" φ is not (logically) valid"

Furthermore:

" φ is satisfiable"

" φ is falsifiable"

About formulae and their hidden relations

Hypothesis:

$$\varphi_1 = B \lor D \lor \neg (A \land C)$$
"Sally likes Harry" OR "Harry is happy"
OR NOT ("Harry is human" AND "Harry is a featherless biped")

$$arphi_2 = B \ \ \ \ C$$
 "Sally likes Harry" OR "Harry is a featherless biped"

$$\varphi_3 = A \lor D$$
"Harry is human" OR "Harry is happy"

$$arphi_4 =
eg B$$
NOT "Sally likes Harry"

Thesis:

$$\psi = D$$
"Harry is happy"

Is there any logical relation between hypothesis and thesis?

And among the propositions in the hypothesis?

Entailment

The overall truth table for the wff in the example

$$\varphi_{1} = B \lor D \lor \neg(A \land C)$$

$$\varphi_{2} = B \lor C$$

$$\varphi_{3} = A \lor D$$

$$\varphi_{4} = \neg B$$

$$\psi = D$$

Entailment

$$\{\varphi_1, \varphi_2, \varphi_3, \varphi_4\} \models \psi$$

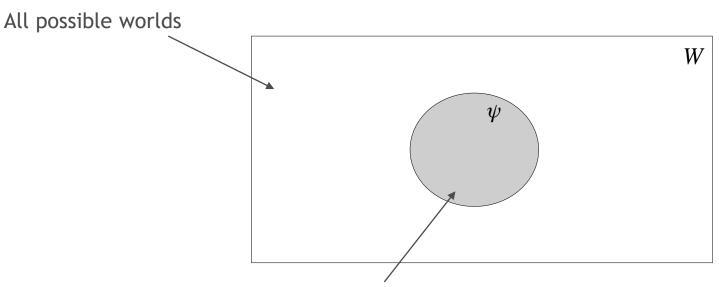
All the possible worlds that satisfy $\{\varphi_1, \varphi_2, \varphi_3, \varphi_4\}$ satisfy ψ as well

Notation!

A	В	C	D	φ_1	$ \varphi_2 $	φ_3	$ arphi_4 $	$\mid \psi \mid$
0	0	0	0	1	0	0	1	0
0	0	0	1	1	0	1	1	1
0	0	1	0	1	1	0	1	0
0	0	1	1	1	1	1	1	1
0	1	0	0	1	1	0	0	0
0	1	0	1	1	1	1	0	1
0	1	1	0	1	1	0	0	0
0	1	1	1	1	1	1	0	1
1	0	0	0	1	0	1	1	0
1	0	0	1	1	0	1	1	1
1	0	1	0	0	1	1	1	0
1	0	1	1	1	1	1	1	1
1	1	0	0	1	1	1	0	0
1	1	0	1	1	1	1	0	1
1	1	1	0	1	1	1	0	0
1	1	1	1	1	1	1	0	1

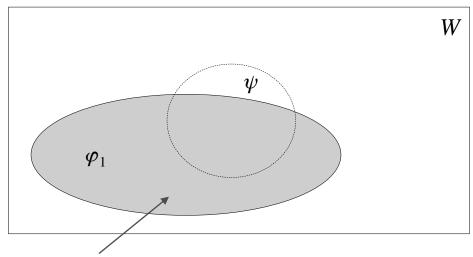
(also logical entailment or entailment)

Consider the set of all possible worlds W



"All possible worlds that are models of ψ "

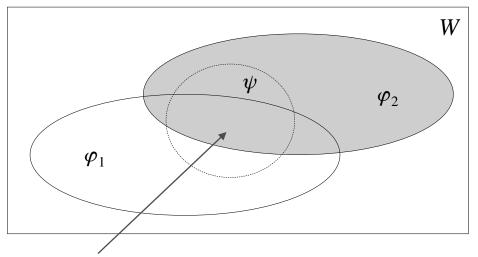
Consider the set of all possible worlds W



"All possible worlds that are *models* of φ_1 "

$$\{\varphi_1\} \not\models \psi$$
 because the set of models for $\{\varphi_1\}$ is not contained in the set of models of ψ

Consider the set of all possible worlds W

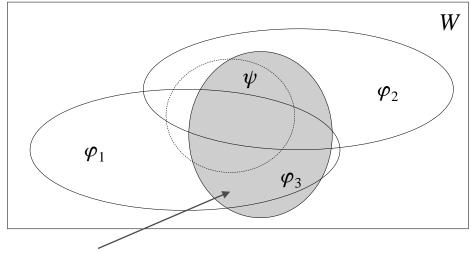


"All possible worlds that are models of φ_2 "

$$\{\varphi_1,\varphi_2\}\not\models\psi$$

because the set of models of $\{\varphi_1,\varphi_2\}$ (i.e. the *intersection* of the two subsets) is <u>not</u> contained in the set of models of ψ

Consider the set of all possible worlds W

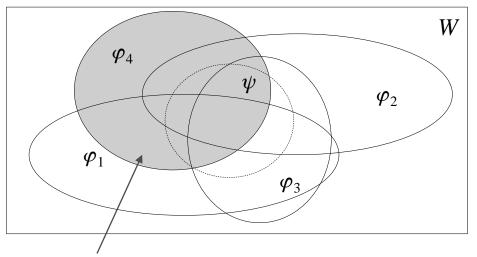


"All possible worlds that are models of φ_3 "

$$\{ \varphi_1, \varphi_2, \varphi_3 \} \not\models \psi$$

because the set of models of $\{ \varphi_1, \varphi_2, \varphi_3 \}$
is not contained in the set of models of ψ

Consider the set of all possible worlds W

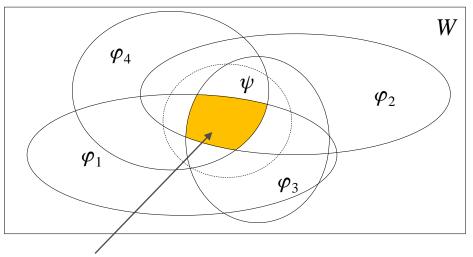


"All possible worlds that are models of $arphi_4$ "

$$\{ \varphi_1, \varphi_2, \varphi_3, \varphi_4 \} \models \psi$$

Because the set of models for $\{ \varphi_1, \varphi_2, \varphi_3, \varphi_4 \}$
is contained in the set of models of ψ

Consider the set of all possible worlds W



"All possible worlds that are models for $\{\varphi_1, \varphi_2, \varphi_3, \varphi_4\}$ "

$$\{\varphi_1, \varphi_2, \varphi_3, \varphi_4\} \models \psi$$

Because the set of models for $\{\varphi_1, \varphi_2, \varphi_3, \varphi_4\}$
is contained in the set of models of ψ

In the case of the example, all the wff $\varphi 1, \varphi 2, \varphi 3, \varphi 4$ are needed for the relation of *entailment* to hold

Symmetric entailment = logical equivalence

Equivalence

Let φ and ψ be wff such that:

$$\varphi \models \psi \in \psi \models \varphi$$

The two wff are also said to be *logically equivalent*

In symbols:
$$\varphi \equiv \psi$$

Substitutability

Two equivalent wff have exactly the same *models*

In terms of entailment, equivalent wff are substitutable

(even as sub-formulae)

In the example:
$$\{ \varphi_1, \varphi_2, \varphi_3, \varphi_4 \} \models \psi$$

$$\varphi_{1} = B \lor D \lor \neg (A \land C)$$

$$\varphi_{2} = B \lor C$$

$$\varphi_{3} = A \lor D$$

$$\varphi_{4} = \neg B$$

$$\psi = D$$

$$\varphi_{1} = B \lor D \lor (A \rightarrow \neg C)$$

$$\varphi_{2} = B \lor C$$

$$\varphi_{3} = \neg A \rightarrow D$$

$$\varphi_{4} = \neg B$$

$$\psi = D$$

Implication

The wff of the problem can be re-written using equivalent expressions:

(using the basis $\{\rightarrow, \neg\}$)

$$\varphi_{1} = C \rightarrow (\neg B \rightarrow (A \rightarrow D)) \qquad \qquad \varphi_{1} = B \lor D \lor \neg (A \land C)$$

$$\varphi_{2} = \neg B \rightarrow C \qquad \qquad \varphi_{2} = B \lor C$$

$$\varphi_{3} = \neg A \rightarrow D \qquad \qquad \varphi_{3} = A \lor D$$

$$\varphi_{4} = \neg B \qquad \qquad \varphi_{4} = \neg B$$

$$\psi = D \qquad \qquad \psi = D$$

■ Some *inference schemas* are *valid* in terms of *entailment*:

$$\frac{\varphi \to \psi}{\varphi}$$

It can be verified that:

$$\varphi \to \psi, \varphi \models \psi$$

Analogously:

$$\varphi \to \psi, \neg \psi \models \neg \varphi$$

Modern formal logic: fundamentals

Formal language (symbolic)

A set of symbols, not necessarily *finite*Syntactic rules for composite formulae (wff)

Formal semantics

For <u>each</u> formal language, a *class* of structures (i.e. a class of *possible worlds*) In each possible world, <u>every</u> wff in the language is assigned a *value* In classical propositional logic, the set of values is the simplest: $\{1, 0\}$

Satisfaction, entailment

A wff is *satisfied* in a possible world if it is <u>true</u> in that possible world In classical propositional logic, iff the wff has value 1 in that world (Caution: the definition of *satisfaction* will become definitely more complex with *first order logic*)

Entailment is a <u>relation</u> between a set of wff and a wff

This relation holds when all possible worlds satisfying the set also satisfy the wff

Properties of entailment (classical logic)

Compactness

Consider a set of wff Γ (not necessarily *finite*)

$$\Gamma \models \varphi \implies$$
 There exist a finite subset $\Sigma \subseteq \Gamma$ such that $\Sigma \models \varphi$ (See textbook for a proof)

Monotonicity

For any Γ and Δ , if $\Gamma \models \varphi$ then $\Gamma \cup \Delta \models \varphi$ In fact, any entailment relation between φ and Γ remains valid even if Γ grows larger

Transitivity

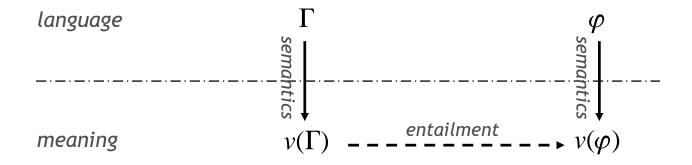
If for any
$$\varphi \in \Sigma$$
 we have $\Gamma \models \varphi$, then if $\Sigma \models \psi$ then $\Gamma \models \psi$ (obvious)

• Ex absurdo ...

$$\{\varphi, \neg \varphi\} \models \psi$$

An inconsistent (i.e. contradictory) set of wff entails anything «Ex absurdo sequitur quodlibet»

What we have seen so far



Subtleties: object language and metalanguage

• The *object language* is L_p

It is the tool that we plan to use

It only contains the items just defined:

P, \neg , \rightarrow , \land , \lor , \leftrightarrow , (,), plus syntactic rules (wff)

Meta-language

Everything else we use to define the properties of the object language

Small greek letters $(\alpha, \beta, \chi, \varphi, \psi)$ will be used to denote a generic <u>formula</u> (wff)

Capital greek letters (Γ, Δ, Σ) will be used to denote a <u>set of formulae</u>

Satisfaction, logical consequence (see after): ⊨

Derivability (see after): ⊢

Symbols for "iff" and "if and only if" (also "iff"): \Rightarrow , \Leftrightarrow