Artificial Intelligence

Online learning and self-organizing systems

Marco Piastra

Moving averages

An aside: following non-stationary phenomena

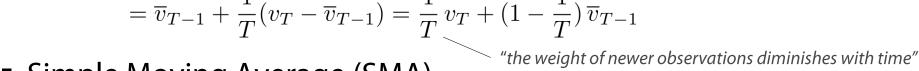
Average

Definition:
$$\overline{v}_T := \frac{1}{T} \sum_{k=1}^{T} v_k$$

Running implementation:

$$\overline{v}_T = \frac{1}{T}(v_T + \sum_{k=1}^{T-1} v_k) = \frac{1}{T}(v_T + (T-1)\overline{v}_{T-1})$$

$$= \overline{v}_{T-1} + \frac{1}{T}(v_T - \overline{v}_{T-1}) = \frac{1}{T}v_T + (1 - \frac{1}{T})\overline{v}_{T-1}$$

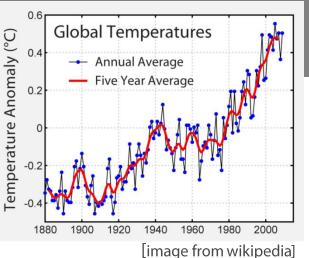


Simple Moving Average (SMA)

$$\overline{v}_{T,n} := \frac{1}{n} \sum_{k=T-n}^{T} v_k$$

Exponential Moving Average (EMA)

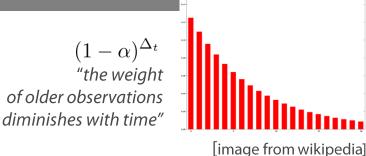
$$\overline{v}_{T,lpha}=lpha\,v_T+(1-lpha)\,\overline{v}_{T-1,lpha},\ \ lpha\in[0,1]$$
 "the weight of newer observations remains constant"



Moving averages

Exponential Moving Average (EMA)

$$\overline{v}_{T,\alpha} = \alpha v_T + (1-\alpha) \overline{v}_{T-1,\alpha}, \ \alpha \in [0,1]$$



Expanding:

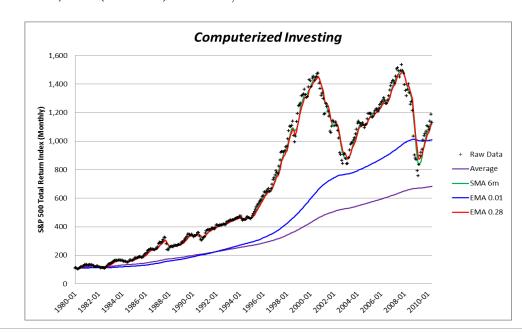
$$\overline{v}_{t,\alpha} = \alpha \, v_t + (1 - \alpha) \, \overline{v}_{t-1,\alpha}
= \alpha \, v_t + (1 - \alpha)(\alpha \, v_{t-1} + (1 - \alpha) \overline{v}_{t-2,\alpha})
= \alpha \, v_t + (1 - \alpha)(\alpha \, v_{t-1} + (1 - \alpha)(\alpha \, v_{t-2} + (1 - \alpha) \overline{v}_{t-3,\alpha}))
= \alpha \, (v_t + (1 - \alpha) \, v_{t-1} + (1 - \alpha)^2 \, v_{t-2}) + (1 - \alpha)^3 \, \overline{v}_{t-3,\alpha}$$

The weight of past contributions decays as

$$(1-\alpha)^{\Delta_t}$$

A SMA with n previous values is approximately equal to an EMA with

$$\alpha = \frac{2}{n+1}$$



Back to K-means

Minimize:
$$J(D,W):=\sum_{w_j}\sum_{\{x_i|w(x_i)=w_j\}}\|x_i-w_j\|^2$$
 where $w(x_i):=w_k\mid k= \mathrm{argmin}_j\{\|x_i-w_j\|\}$

$$\frac{\partial J(D, W)}{\partial w_j} = 2 \sum_{\{x_i | w(x_i) = w_j\}} (w_j - x_i)$$

---- Keeping the assignment w(x) constant

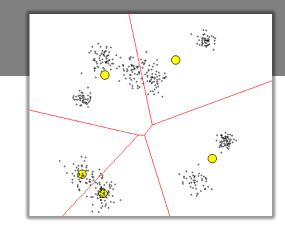
Back to K-means

Minimize:
$$J(D, W) := \sum_{w_j} \sum_{\{x_i | w(x_i) = w_j\}} ||x_i - w_j||^2$$

where $w(x_i) := w_k \mid k = \operatorname{argmin}_j \{ ||x_i - w_j|| \}$

$$\frac{\partial J(D,W)}{\partial w_j}=2\sum_{\{x_i|w(x_i)=w_j\}}(w_j-x_i)$$

Keeping the assignment $w(x)$ constant



Alternate optimization

At each iteration, place each $landmark \ w_i$ at the centroid of its assigned samples

$$w_i = \frac{1}{|\{x_i|w(x_i) = w_j\}|} \sum_{\{x_i|w(x_i) = w_j\}} x_i \quad ---- \quad \text{It is obtained by imposing} \quad \frac{\partial J(D,W)}{\partial w_j} = 0$$

In the case of K-means, the above is equivalent to Newton's optimization method [Bottou & Bengio, 1998], which would require:

$$\Delta w_i = -\left[\frac{\partial^2 J(D, W)}{\partial w_i^2}\right]^{-1} \frac{\partial J(D, W)}{\partial w_i}$$

Back to K-means

Minimize:
$$J(D, W) := \sum_{w_j} \sum_{\{x_i | w(x_i) = w_j\}} ||x_i - w_j||^2$$

where $w(x_i) := w_k \mid k = \operatorname{argmin}_j \{ ||x_i - w_j|| \}$

$$\frac{\partial J(D, W)}{\partial w_j} = 2 \sum_{\{x_i | w(x_i) = w_j\}} (w_j - x_i)$$

————— Keeping the assignment w(x) constant

(Batch) Gradient Descent (GD)

At each iteration, update each $landmark w_i$ as

$$\Delta w_i = -\alpha \frac{\partial J(D, W)}{\partial w_j} = \alpha \sum_{\{x_i | w(x_i) = w_j\}} (x_i - w_j)$$

Back to K-means

Minimize:
$$J(D, W) := \sum_{w_j} \sum_{\{x_i | w(x_i) = w_j\}} ||x_i - w_j||^2$$

where $w(x_i) := w_k \mid k = \operatorname{argmin}_j \{ ||x_i - w_j|| \}$

$$\frac{\partial J(D, W)}{\partial w_j} = 2 \sum_{\{x_i | w(x_i) = w_j\}} (w_j - x_i)$$

---- Keeping the assignment w(x) constant

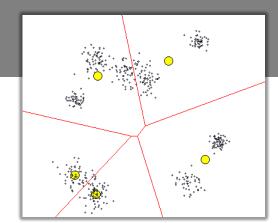
Stochastic Gradient Descent (SGD)

At each iteration, update each landmark w_i as

$$\Delta w_i = -\alpha \frac{\partial J(x_i, W)}{\partial w_i} = \alpha (x_i - w_j), \quad j := \operatorname{argmin}_k ||x_i - w_k||$$

By taking the average of Δw_i over W:

$$\begin{split} \langle \Delta w_i \rangle &= \langle \alpha \left(x_i - w_j \right) \rangle = \alpha \; \frac{1}{|W|} \sum_{\{x_i \mid w(x_i) = w_j\}} \left(x_i - w_j \right) \\ &= -\alpha' \; \frac{\partial J(D,W)}{\partial w_i} \qquad \text{i.e. on average, the SGD step looks like the Batch GD} ... \end{split}$$



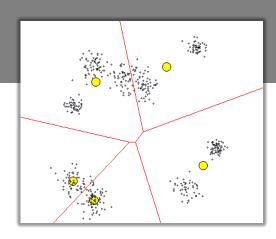
Apropos convergence

Alternate optimization (and Newton's)

Under safety conditions

$$\hat{W}_n \to W^*$$
 when $n \to \infty$

where W^* is a <u>local</u> minimum of J(D, W)



(Batch) Gradient Descent (GD)

Under safety conditions and if α *is progressively reduced over time*

$$\hat{W}_n \to W^*$$
 when $n \to \infty$

Stochastic Gradient Descent (SGD)

Under safety conditions and if α *is progressively reduced over time*

$$\mathrm{SMA}_N[\hat{W}_n] \to W^* \quad \text{when } n \to \infty$$

i.e. it converges in the simple moving average, for a suitable N

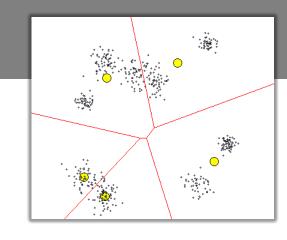
Apropos the <u>speed</u> of convergence

Accuracy ρ is attained when either

$$|\hat{W} - W^*| \le \rho$$

or

$$|\mathrm{SMA}_N[\hat{W}_n] - W^*| \le \rho$$

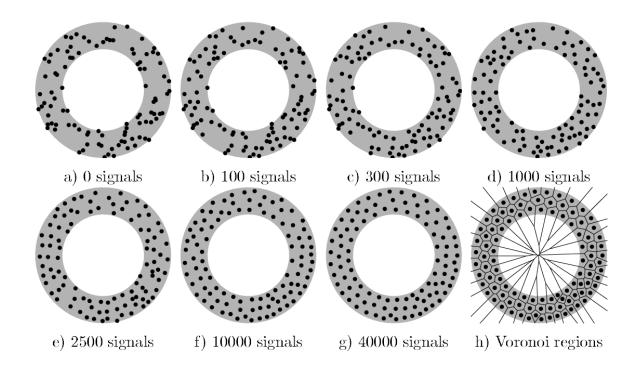


 $\neq d$ is the dimension of the data space

Algorithm	Cost per iteration	Iterations to reach accuracy $ ho$	Time to reach accuracy $ ho$
Alternate optimization (AO)	$\mathcal{O}(nd)$	$\mathcal{O}\left(\log\log\frac{1}{ ho}\right)$	$\mathcal{O}\left(nd\log\log\frac{1}{\rho}\right)$
Gradient descent (GD)	$\mathcal{O}(nd)$	$\mathcal{O}\left(\log \frac{1}{ ho}\right)$	$\mathcal{O}\left(nd\log\frac{1}{\rho}\right)$
Stochastic gradient descent (SGD)	$\mathcal{O}(d)$	$\mathcal{O}\left(\frac{1}{\rho}\right)$	$\mathcal{O}\left(d\frac{1}{\rho}\right)$

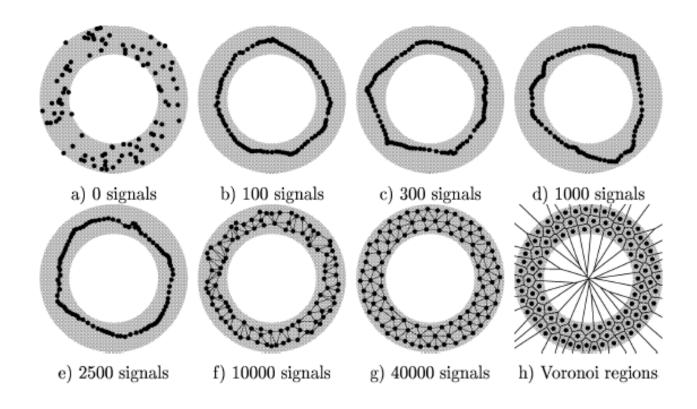
[from Bottou & Bousquet, 2007]

Hard Competitive Learning



Neural Gas (Martinetz e Schulten, 1991)

An online algorithm that is less vulnerable to local minima



Neural Gas

Algorithm

A set $\mathbf{W} = \{ u_1, u_2, ..., u_n \}$ of units, each associated to a vector $w_i \in \mathbf{R}^d$ An input data stream $x \in \mathbf{R}^d$, with probability distribution P(x)

- 1) Initialize all vectors w_i at random
- 2) Receive a signal x with probability P(x)
- 3) Adapt \underline{all} vectors w_i to the input signal

$$\Delta w_i = \varepsilon \cdot h_{\lambda}(k_i(x)) (x - w_i)$$

where ε is the *learning rate*, $k_i(x)$ is a function that assign to unit u_i its *ranking* in **W** in terms of distance to v (i.e. the closest unit has ranking 0) and

$$h_{\lambda}(k_i(x)) := e^{\frac{-k_i(x)}{\lambda}}$$

4) Unless some termination criterion is met, go back to step 2)

Note: for $\lambda = 0$ the Neural Gas algorithm reduces to online K-Means

Neural Gas

Neural Gas as stochastic learning

Stochastic gradient descent over the function

$$E_{NG}(\mathbf{W}) = \frac{1}{2C_{\lambda}} \sum_{i=1}^{k} \int_{V} P(v) h_{\lambda}(k_{i}(v)) (v - w_{i})^{2} dv$$

$$C_{\lambda} := \sum_{i=0}^{k-1} h_{\lambda}(i)$$

Mean adaptation of units in Neural Gas

Input data distribution

$$\langle \Delta w_i \rangle \propto \frac{1}{\rho(w_i)^{1+\frac{2}{d}}} \left(\partial_r P(w_i) - \alpha^{-1} P(w_i) \frac{\partial_r \rho(w_i)}{\rho(w_i)} \right)$$
 Spatial density of units

Each unit is subject to two 'forces':

- 1) an attractive force towards the regions where signal density is higher
- 2) a repulsive force among units themselves
 With uniform input probability, units become uniformly distributed as well (maximum entropy)

Self-Organization

(from Wikipedia)

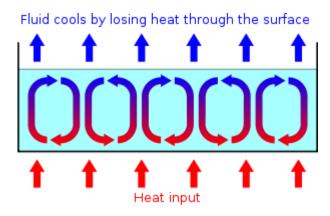
"Self-organization is a process in which the internal organization of a system, normally an open system, increases in complexity without being guided or managed by an outside source."

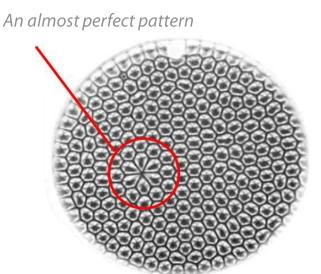
Example: Bénard cells (Self-Organizing System)

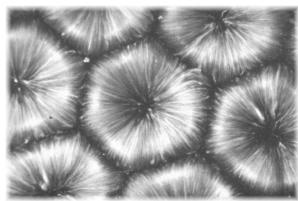
A thin layer of a fluid, heated from below.

As long as the temperature gradient within the layer is small, the fluid remains still and the heat propagates by conduction only.

As the gradient increases, convection flows begin to appear and the flow organizes into cells







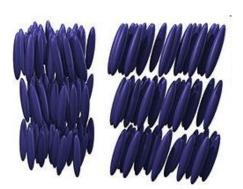
Example: liquid crystals (Self-Organizing System)

Molecules having specific shapes exhibit the tendency to organize spontaneously

The phenomenon may depend on temperature (i.e. termotropic) or on concentration (i.e. liotropic) or both

Nematic phase no positional order prevalent orientation

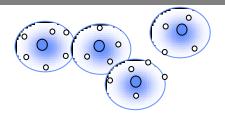
Smectic phase formation of layers prevalent orientation



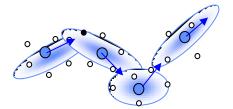
Chiral or cholesteric phase formation of layers prevalent orientation larger scale organization

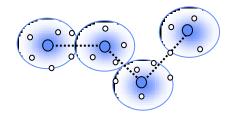
Adapting units or networks? (competing vs cooperation)

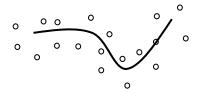
Unit (vector) adaptation (i.e. for clustering)



Network structure







Self-Organizing Maps (SOM) (Kohonen, 1985)

A network with fixed topology

A set $\mathbf{W} = \{ u_1, u_2, ..., u_n \}$ of units, each associated to a vector $w_i \in \mathbf{R}^d$ A set of connections $\mathbf{C} : \mathbf{W} \times \mathbf{W}$ with a predefined topology (typically a *grid*) An input data stream $x \in \mathbf{R}^d$, with probability distribution $P(\xi)$

- 1) Initialize all vectors w_i at random
- 2) Receive a signal x with probability P(x)
- 3) Determine the winning unit

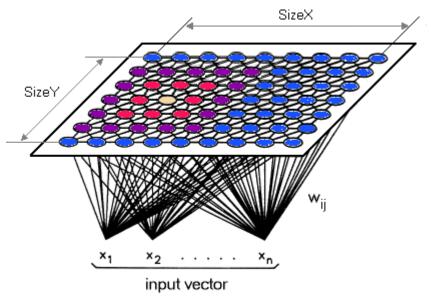
$$b = \operatorname{argmin}_{k} \| x - w_{k} \|$$

4) Adapt \underline{all} vectors w_i to the input signal

$$\Delta w_i = \varepsilon(t) h_{\lambda}(i,b) (x - w_i)$$

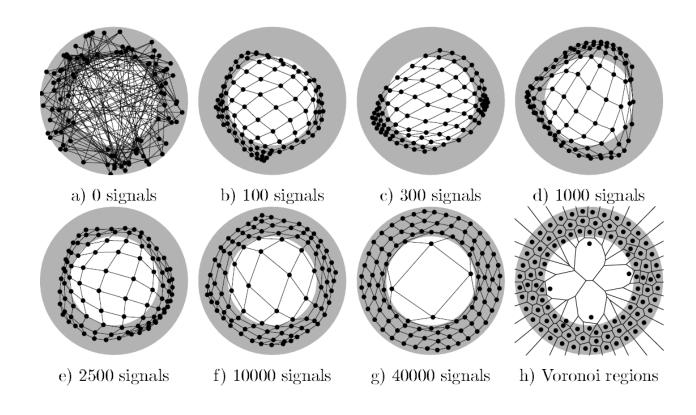
where $\varepsilon(t)$ is a time-varying *learning rate* and h(i,b) is defined as

block distance on the grid C
$$h(i,b) \coloneqq e^{\frac{-d(i,b)}{\lambda(t)}}$$



5) Unless some termination criterion is met, go back to step 2)

Self-Organizing Maps (SOM)



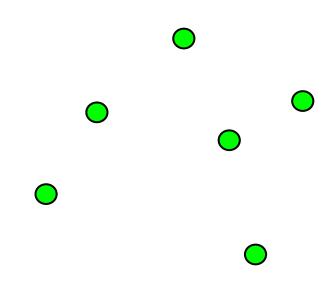
A SOM performs no 'classical' optimization

There is no objective function that a SOM optimizes

[E. Erwin, K. Obermayer, and K. Schulten, 1992]

Voronoi tessellation

Starting from a set of *landmarks*

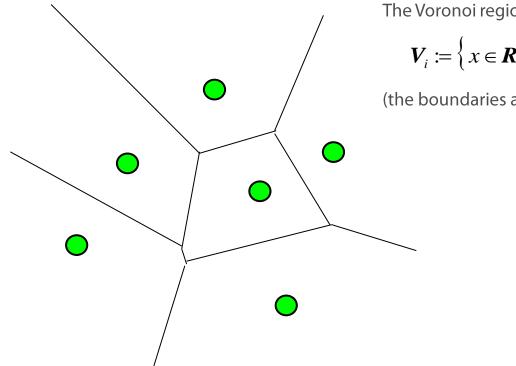


Voronoi tessellation

Starting from a set of *landmarks*

Define the **Voronoi regions** associated to each *landmark*

The **Voronoi tessellation** (in \mathbb{R}^d) is the union of all Voronoi regions



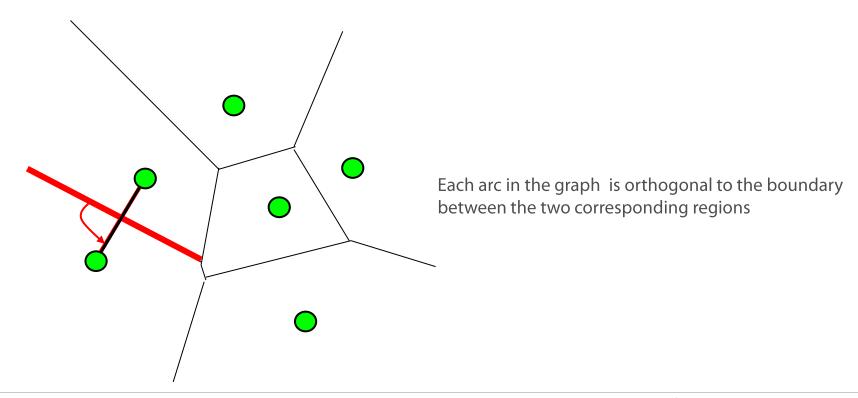
The Voronoi region associated to a landmark w_i

$$\boldsymbol{V}_{i} := \left\{ x \in \boldsymbol{R}^{d} \mid \left\| x - w_{i} \right\| \leq \left\| x - w_{j} \right\|, \forall j \neq i \right\}$$

(the boundaries are *shared* among regions)

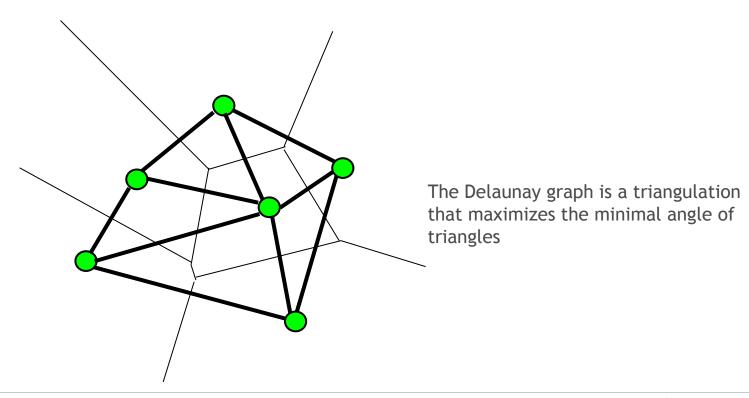
Delaunay graph

Define an arc between each two landmarks whose region have non-empty intersections



Delaunay graph

Define an arc between each two landmarks whose region have non-empty intersections The **Delaunay graph** is the union of all landmarks (*nodes*) and the arcs joining landmarks whose Voronoi regions have non-empty intersections



Hebbian learning and Delaunay graph

Algorithm

A set $\mathbf{W} = \{ u_1, u_2, ..., u_n \}$ of units, each associated to a vector $w_i \in \mathbf{R}^d$ at fixed positions An input data stream $x \in \mathbf{R}^d$, with probability distribution P(x)

- 1) Receive a signal x with probability P(x)
- 2) Find the indexes b and s of the closest and second-closest units to x and add (b, s) to \mathbf{C}
- 3) Unless some termination criterion is met, go back to step 1)

At all times, this algorithm produces a graph which is a subset of the Delaunay graph over the units in \mathbf{W} . In the limit, under some conditions on P(x), it produces the Delaunay graph

[de Silva & Carlsson, 2004]

Neural Gas with Hebbian Learning

Algorithm

Differences with the NG algorithm are in red

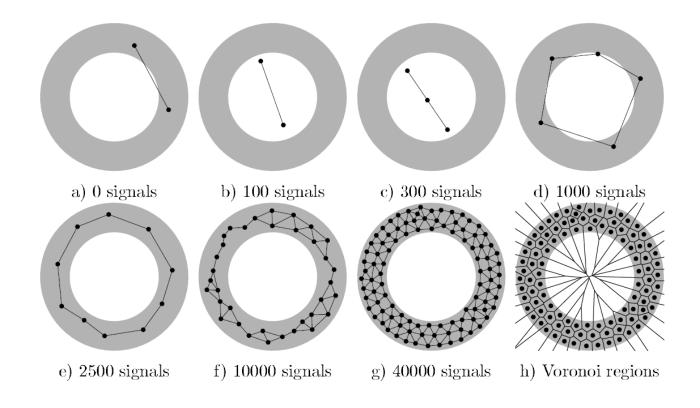
A set $\mathbf{W} = \{ u_1, u_2, ..., u_n \}$ of units, each associated to a vector $w_i \in \mathbf{R}^d$ A set of connections \mathbf{C} , initially empty; each connection has an age value An input data stream $x \in \mathbf{R}^d$, with probability distribution P(x)

- 1) Initialize all vectors \mathbf{p}_i at random
- 2) Receive a signal x with probability P(x)
- 3) Find the indexes b and s of the closest and second-closest units to x and add (b, s) to \mathbf{C} , setting its age to 0
- 4) Adapt <u>all</u> vectors w_i to the input signal (see Neural Gas)

$$\Delta w_i = \varepsilon \cdot h_{\lambda}(k_i(x)) (x - w_i)$$

- 5) Increase the age of all connections in ${\bf C}$ by 1 and remove those beyond a certain threshold T_{age} . Remove units that remain isolated
- 6) Unless some termination criterion is met, go back to step 2)

Growing Neural Gas [Fritzke, 1995]



Growing Neural Gas (GNG)

Algorithm

Differences with the NG + Hebbian Learning algorithm are in red

A set $\mathbf{W} = \{ u_1, u_2, ..., u_n \}$ of units, each associated to a vector $w_i \in \mathbf{R}^d$ A set of connections \mathbf{C} , initially empty; each connection has an age value An input data stream $x \in \mathbf{R}^d$, with probability distribution P(x)

- 1) Initialize all vectors w_i at random
- 2) Receive a signal x with probability P(x)
- 3) Find the indexes b and s of the closest and second-closest units to x and add (b,s) to ${\bf C}$, setting its age to 0
- 4) Adapt the vectors of the closest unit and its immediate neighbors by

$$\Delta w_b = \varepsilon_b \cdot (x - w_b)$$

$$\Delta w_i = \varepsilon_i \cdot (x - w_i) \quad \forall i \mid (b, i) \in \mathbf{C} \quad \varepsilon_i << \varepsilon_b$$

- 5) Every λ iterations, find the unit with the greatest accumulated error and its neighbor with the second-greatest error and create a *new unit* in between
- 6) Increase the age of all connections in ${f C}$ by 1 and remove those beyond a certain threshold T_{age} . Remove units that remain isolated
- 7) Unless some termination criterion is met, go back to step 2)

Grow-when-required networks [Marsland, 2002]

Algorithm

Differences with the GNG algorithm are in red

A set $\mathbf{W} = \{ u_1, u_2, ..., u_n \}$ of units, each associated to a vector $w_i \in \mathbf{R}^d$ A set of connections \mathbf{C} , initially empty; each connection has an age value An input data stream $x \in \mathbf{R}^d$, with probability distribution P(x)

- 1) Initialize all vectors w_i at random
- 2) Receive a signal x with probability P(x)
- 3) Find the indexes b and s of the closest and second-closest units to x and add (b, s) to C, setting its age to 0
- 4) If x is farther away from w_b than a given radius r create a new unit and connect it with both b and sOtherwise, adapt the vectors of the closest unit and its immediate neighbors by

$$\Delta w_b = \varepsilon_b \cdot (x - w_b)$$

$$\Delta w_i = \varepsilon_i \cdot (x - w_i) \quad \forall i \mid (b, i) \in \mathbb{C} \quad \varepsilon_i \ll \varepsilon_b$$

- 5) Increase the age of all connections in ${\bf C}$ by 1 and remove those beyond a certain threshold T_{age} . Remove units that remain isolated
- 6) Unless some termination criterion is met, go back to step 2)

Learning topologies

GNG and GWR networks can adapt their topology to the input data

