Artificial Intelligence

Plausible Reasoning

Marco Piastra

Beyond classical logic?

For classical logic it usually intended:

First-order logic L_{FO}

Propositional logic L_P (which is contained in L_{FO})

- A non-classical logic adopts different rules
- What for?

Representing other forms of reasoning

Not just deduction but also abduction and induction (see after)

Specialized reasoning, e.g. about time or other modalities like belief, intentions etc.

For practical applications

Subsets of L_{FO} , that are either more efficient or focused on a specific purpose (e.g. Prolog)

Logics and logical systems

Theoretically, a **logic** includes:

- a) Formal language
- b) Formal semantics of the language
- c) Relations \models (entailment) \in \vdash (derivation)
- In the realm of artificial intelligence

A **logical system** is a *reasoning agent* (not necessarily human)

- It is based on the a **logic** of reference (e.g. L_{FO})
- It makes use of a **computation strategy** (e.g. *SLD depth-first*)
- It may have limited resources (e.g. time or memory or both)

This leads to the idea of derivability in a logical system

Notation: $\Gamma \vdash_{<SysLog>} \varphi$ where <SysLog> describes a particular logica system

SLD strategy (just for Horn clauses) that is also fair

$$\Gamma \vdash_{L_{FO}} \varphi \neq \Gamma \vdash_{SLD fair} \varphi \neq \Gamma \vdash_{SLD} \varphi$$

 \uparrow General derivability in L_{FO}

A generic *SLD* strategy (i.e. not necessarily *fair*)

In the line of principle, the computation strategy of $\langle SysLog \rangle$ can be anything: e.g. $\Gamma \vdash_{NN} \varphi$ might ne a neural network that says whether φ is (NN)-derivable from Γ

Defeasible reasoning

A reasoning process where the **relation** between formulae is <u>rationally plausible</u> yet not necessarily <u>correct</u> (in the classical logical sense)

Notation:

$$\Gamma \models_{} \varphi$$
 says that φ is a **plausible** derivation from Γ in $$

$$\begin{array}{ll} \Gamma \hspace{0.2em} \hspace{$$

Occurs very often in practice:

"The train schedule does not report a train to Milano at 06:55, therefore we assume that such a train does not exist"

Most databases contain positive information only Negative facts are often derived 'by default'

Defeasible reasoning

Inference in defeasible reasoning is

Non-monotonic

$$\Gamma \vdash_{\langle SysLog \rangle} \varphi \Rightarrow \Gamma \cup \Delta \vdash_{\langle SysLog \rangle} \varphi$$

The arrival of new pieces of information may falsify inferences that used to be justified e.g. an extra train to Milano at 06:55 is announced ...

Systemic

In classical logic, the soundness of all inferences schema depend only on the few formulae involved.

e.g.
$$\varphi \to \psi, \varphi \vdash \psi$$

In defeasible reasoning, inferences are justified by an entire theory Γ

One must check the entire database: $\Gamma \not\vdash \varphi \mid_{\sim sysLog>} \neg \varphi$

Closed-World Assumption (CWA)

```
\{\Gamma \not\models \alpha\} \not\models_{CWA} \neg \alpha \qquad (\alpha \text{ is an } atom)
```

Example (a program):

```
\Pi \equiv \{\{Philosopher(socrates)\}, \{Philosopher(plato)\}, \{Cat(felix)\}\}
```

The program Π can be rewritten in L_{FO} as:

```
\forall x ((x = socrates) \rightarrow Philosopher(x))
```

$$\forall x ((x = plato) \rightarrow Philosopher(x))$$

$$\forall x ((x = felix) \rightarrow Cat(x))$$

The Closed-World Assumption (CWA) means completing (i.e. extending) the program Π :

```
\forall x ((x = felix) \leftrightarrow Cat(x))
```

$$\forall x ((x = socrates \lor x = plato) \leftrightarrow Philosopher(x))$$
 Notice the double implication

Then these plausible inferences become sound:

```
\Pi \vdash_{\mathit{CWA}} \neg \mathit{Cat}(\mathit{socrates})
```

$$\Pi \vdash_{\mathit{CWA}} \neg \mathit{Cat}(\mathit{plato})$$

$$\Pi \vdash_{CWA} \neg Philosopher (felix)$$

Inference and reasoning (according to C. S. Peirce, 1870 c.a.)

Different types of reasoning

<u>Deductive</u> inference (sound)

Derive only what is justified in terms of **entailment**

"All beans in this bag are white"

"This handful of beans comes form the bag"

"This is a handful of white beans"

$\frac{\forall x \, \varphi(x) \to \psi(x)}{\varphi(a)}$ $\frac{\varphi(a)}{\psi(a)}$

Inductive inference (plausible)

From repeated occurrences, derive rules

"This handful of beans comes form the bag"

"This is a handful of white beans"

"All beans in this bag are white"

$$\psi(a)$$

 $\varphi(a)$

 $\forall x \varphi(x) \to \psi(x)$

<u>Abductive</u> inference (plausible)

From rules and outcomes, derive premises

"All beans in this bag are white"

"This is a handful of white beans"

"This handful of beans comes form the bag"

$$\frac{\forall x \, \varphi(x) \to \psi(x)}{\psi(a)}$$

$$\frac{\varphi(a)}{\varphi(a)}$$

Abductive inferences: explanatory hypotheses

The basic theory is still that of classical logic
What changes is the way reasoning (and hence calculus) is performed

Abductive reasoning, in general:

A model (or abstract definition of some kind) represented by a logical theory K

A set of specific **observations** represented by a set of wffs Σ

In general: $K \not\models \Sigma$

(specific observations are not *entailed* by the model)

The problem is finding *hypotheses* Δ (i.e sets of wffs) such that

$$K \cup \Delta \models \Sigma$$

Intuitively, a set Δ describes an hypothesis that *explains* the observations Σ

Example: "The car does not start"

Model (K)

```
\kappa_1: dischargedBattery \rightarrow (\neglightsOn \land \negradioOn \land \negselfStarterRuns)

\kappa_2: selfStarterBroken \rightarrow \neg selfStarterRuns

\kappa_3: \negselfStarterRuns \rightarrow \negengineStarts

\kappa_4: voidTank \rightarrow (gasGaugeZero \land \negengineStarts)
```

• Observation (Σ)

```
\sigma_1: \neg engineStarts
```

• Plausible *causes* (Δ)

```
\delta_1: dischargedBattery since: \{\kappa_1, \kappa_3\} \cup \{\delta_1\} \models \sigma_1
\delta_2: selfStarterBroken since: \{\kappa_2, \kappa_3\} \cup \{\delta_2\} \models \sigma_1
\delta_3: voidTank since: \{\kappa_4\} \cup \{\delta_3\} \models \sigma_1
```

Rationality of hypotheses

Plausible

 $K \cup \Delta \cup \Sigma$ must be satisfiable

Minimal

There must not be a subset $\Delta^* \subset \Delta$ such that $K \cup \Delta^* \models \Sigma$

Relevant

 $K \cup \{\neg engineStarts\} \models \neg engineStarts$ is both plausible and minimal but offers no explication (abductive reasoning is about the *causes*, in some sense)