Artificial Intelligence

Semi-Decidability of First Order Logic

Marco Piastra

Decidability and automation of L_{FO}

• L_{FO} is <u>not</u> decidable

No Turing machine can tell whether $\Gamma \models \varphi$

Are there any hopes for automating the calculus?

• L_{FO} is semi-decidable (Herbrand, 1930)

A Turing machine can tell (in *finite* time) that

$$\Gamma \models \varphi$$

... but not that

$$\Gamma \not\models \varphi$$

In other words, the above Turing machine, when facing the problem " $\Gamma \models \varphi$?":

- 1) it will terminate with success if $\Gamma \models \varphi$
- 2) it \underline{might} diverge if $\Gamma \not\models \varphi$

Herbrand's System

Given a universal sentence of the form:

$$\forall x_1 \forall x_2 \dots \forall x_n \varphi$$
 (where φ does not contain quantifiers)

the *Herbrand's System* is the set (possibly *infinite*) of *ground* wffs

generated by replacing the variables

$$\varphi[x_1/t_1, x_2/t_2 \dots x_n/t_n]$$

A term (or a wff) is *ground* does not contain variables

with all possible combinations of *ground* terms $\langle t_1, t_2 \dots t_n \rangle$ of the *signature* Σ

Examples:

$$H(\forall x \ P(x) \to Q(x))) = \{P(f(a)) \to Q(f(a)), P(g(a,b)) \to Q(g(a,b)), \dots \}$$

$$H(\forall x \ \forall y \ R(x,y)) = \{R(f(a), f(a)), R(g(a,b), f(a)), R(f(a), g(a,b)), \dots \}$$

Herbrand's System of a theory

Given a theory Φ of universal sentences, the Herbrand's system $H(\Phi)$ is the union of all Herbrand's systems of the sentences in Φ

Example:

$$\Phi = \{\varphi, \psi, \chi\}$$

$$H(\Phi) = H(\psi) \cup H(\varphi) \cup H(\chi)$$

Herbrand's Theorem

Herbrand's Theorem

Given a theory of universal sentences Φ , $H(\Phi)$ has a model iff Φ has a model

... but what is the utility of that? $H(\Phi)$ may well be infinite even when Φ is finite, Furthermore, the theorem applies only to sets of <u>universal</u> sentences...

Prenex normal form (PNF)

Any wff φ can be transformed into an equivalent formula of the form

$$Q_1x_1Q_2x_2 \dots Q_nx_n\psi$$
 (ψ is called the **matrix**)

where Q_i is either \forall or \exists and ψ does not contain quantifiers

Equivalences:

However:

$$\models ((\forall x \, \varphi) \to \psi) \leftrightarrow (\exists x \, (\varphi \to \psi)) \quad \models ((\exists x \, \varphi) \to \psi) \leftrightarrow (\forall x \, (\varphi \to \psi))$$

Caution: variables MUST be renamed, when required, in order to avoid clashes

Examples:
$$\exists y \ (P(y) \to \forall x \ P(x))$$

 $\exists y \forall x \ (P(y) \to P(x))$ (PNF, using $(\varphi \to (\forall x \psi)) \leftrightarrow (\forall x \ (\varphi \to \psi))$)
 $\exists y \ (\forall x \ P(x) \to P(y))$ (PNF, using $((\forall x \varphi) \to \psi) \leftrightarrow (\exists x \ (\varphi \to \psi))$)
 $\forall x \exists y \ (Q(x,y) \to P(y)) \land \neg \forall x \ P(x)$
 $\forall x \exists y \ (Q(x,y) \to P(y)) \land \exists x \ \neg P(x)$ (Using $(\neg \forall x \varphi) \leftrightarrow (\exists x \ \neg \varphi)$)
 $\forall x \exists y \ (Q(x,y) \to P(y)) \land \exists x \ \neg P(z)$ (substitution $[x/z]$)
 $\forall x \exists y \exists z \ ((Q(x,y) \to P(y)) \land \neg P(z))$ (PNF)

Skolemization

In a sentence in PNF, existential quantifiers can be eliminated by extending the *signature* Σ of the *language*

Consider a sentence in PNF $Q_1x_1Q_2x_2 \dots Q_nx_n\psi$ From left to right, for each Q_ix_i of type $\exists x_i$:

- Apply to ψ the substitution $[x_i/k(x_1, ..., x_j)]$ where k is a <u>new</u> function and $x_1, ..., x_j$ are the variables of j the universal quantifiers that come before $\exists x_i$ (k is an individual constant if j = 0)
- $\exists x_i$ is simply removed

Examples:

$$\exists y \ \forall x \ (P(y) \to P(x))$$

$$\forall x \ (P(k) \to P(x))$$
 (k Skolem's constant)
$$\forall x \ \exists y \ \exists z \ ((Q(x,y) \to P(y)) \ \land \ \neg P(z))$$

$$\forall x \ ((Q(x,k(x)) \to P(k(x))) \ \land \ \neg P(m(x)))$$
 (k/1 and m/1 Skolem's functions)

Theorem

For any sentence φ , φ has a model iff $sko(\varphi)$ (i.e. Skolemization of φ) has a model

Semi-decidability of L_{PO}

Corollary of Herbrand's theorem

These three statements are equivalent:

- $\Gamma \models \varphi$
- $\Gamma \cup \{\neg \varphi\}$ is not satisfiable (= it has no model)
- There exists a *finite* subset of $H(sko(\Gamma \cup \{ \neg \varphi \}))$ (= Herbrand's system of the Skolemitazion of $\Gamma \cup \{ \neg \varphi \}$) that is *inconsistent*

Therefore:

When $\Gamma \models \varphi$, a procedure that generates the finite *subsets* of $H(sko(\Gamma \cup \{ \neg \varphi \}))$ will certainly discover a contradiction (*in finite time*)