A Growing Self-Organizing Network for Manifold Reconstruction

Marco Piastra

Laboratorio di Visione Artificiale Università degli Studi di Pavia

Manifold (a surface embedded in R²)

Point sample (*landmarks*) of the manifold

Voronoi complex of the landmarks

Each cell contains all points of \mathbb{R}^2 being closer to a specific *landmark*

Delaunay graph of the landmarks

An edge connects each two landmarks whose Voronoi cells have a common *boundary*

Restricted Delaunay graph of the landmarks

An edge connects each two landmarks whose Voronoi cells have a common *boundary* which intersects the manifold M

Restricted Delaunay complex of the landmarks

A (n-1)-dimensional *n*-face corresponds to *n* landmarks whose Voronoi cells have a common *boundary* which intersects M

Restricted Delaunay complex of the landmarks

The complex, in general, is *not* <u>homeomorphic</u> to the manifold Here, for instance, the neighborhoods of either \mathbf{p} or \mathbf{q} have no counterparts in M

Manifold (a curve embedded in R²)

A first point sample (*landmarks*) of the manifold

Voronoi complex

Each cell contains all points of \mathbb{R}^2 being closer to a specific *landmark*

Delaunay graph

An edge connects each two landmarks whose Voronoi cells have a common *boundary*

Restricted Delaunay graph

An edge connects each two landmarks whose Voronoi cells have a common *boundary* which intersects M

Restricted Delaunay graph

Once again and in general, the complex is *not* <u>homeomorphic</u> to the manifold Here, for instance, the neighborhoods of either **p** or **q** have no counterparts in M

Want homeomorphism?

Just add more landmarks.

(There exists a *density threshold*)

ε−sample

Medial balls

Maximal balls whose interiors are empty of any points from M

ɛ-sample

Medial axis

The closure of the set of points that are centers of maximal balls

ɛ-sample

Local Feature Size

(at a point **x** on M) It is the distance between **x** and the medial axis

ɛ–sample

■ *ε*-sample

A set of landmarks such that every point x on M is at most $\epsilon \cdot lfs(x)$ away from the closest landmark p

ε -sample

■ *ɛ*-sample and homeomorphism

[Amenta et al., 2000]

If M is compact, closed and *smooth*, there exists a positive ε such that the restricted Delaunay complex for any ε -sample of M is homeomorphic to M

ɛ-sample

• The restricted Delaunay complex of an ε -sample

When M is compact, closed and smooth and ε is sufficiently small

- It is homeomorphic to M
- The Hausdorff distance to M is $O(\varepsilon^2)$
- It allows a reliable estimate of curvatures, normals, lengths or areas of M

Limitations

It works only with manifolds of dimension 1 or 2 Although the dimension of the ambient space could be any
[Oudot, 2008]
For manifolds of dimension greater than 2, no positive value of ε guarantees that an ε-sample has the properties above

A <u>weighted</u> Delaunay complex could bring those properties back (but this is another story)

• How can the restricted Delaunay complex be constructed?

(From a given set of landmarks)

Try sampling the manifold at random

For each sample, add a connection between the two closest landmarks The sampled point is deemed a <u>witness</u> for the corresponding connection

Try sampling the manifold at random

For each sample, add a connection between the two closest landmarks The sampled point is deemed a <u>witness</u> for the corresponding connection

Try sampling the manifold at random

For each sample, add a connection between the two closest landmarks The sampled point is deemed a <u>witness</u> for the corresponding connection

Try sampling the manifold at random

For each sample, add a connection between the two closest landmarks The sampled point is deemed a <u>witness</u> for the corresponding connection

Witness complex

It is the structure obtained by taking the sampling process to the limit i.e. when the whole M has been sampled

Witness complex

It is the structure obtained by taking the sampling process to the limit i.e. when the whole M has been sampled

Will it coincide with the restricted Delaunay complex?

Second-order Voronoi complex

Each cell contains all points of \mathbb{R}^2 being closer to a specific <u>pair</u> of landmarks

Second-order Voronoi complex

Each cell contains all points of \mathbb{R}^2 being closer to a specific <u>pair</u> of landmarks Therefore, each cell intersecting M contains witnesses for one connection

Second-order Voronoi complex and witness complex

Certainly, there are witnesses for the restricted Delaunay complex

Second-order Voronoi complex and witness complex

Certainly, there are witnesses for the restricted Delaunay complex but there will be also witnesses for a few extra connections ...

Witness complex and the restricted Delaunay complex

The solution? Add even more landmarks

A Growing Self-Organizing Network for Manifold Reconstruction - 33

Witness complex and the restricted Delaunay complex

[Attali et al., 2007]

There exists a positive ε such that the restricted Delaunay complex for an ε -sample coincides (in the limit) with the witness complex and both are homeomorphic to M

A Growing Self-Organizing Network for Manifold Reconstruction - 34

Witness complex and the restricted Delaunay complex

[Attali et al., 2007]

There exists a positive ε such that the restricted Delaunay complex for an ε -sample coincides (in the limit) with the witness complex and both are homeomorphic to M

The second-order cells for the "extra" connections tend to aggregate around the medial axis

The algorithm

- A set L of *units* (aka *landmarks*), initially containing two units only. Each unit is associated to a few variables:
 - 1) A position ${f p}$ in the ambient space
 - 2) A *firing counter f*, which decays exponentially with unit activation
 - 3) An activity radius r
 - 4) A *state*, which changes dynamically during the process
- A set of connections C, initially empty
 - Each connection is established between two units and is associated to one variable:
 - 1) An *age*
- A probability distribution $P(\xi)$, having M as its support

The algorithm

- 1. Draw a sample $\boldsymbol{\xi}$ from $P(\boldsymbol{\xi})$
- 2. Determine the two units b and s whose positions are closest and second-closest to ξ
- 3. Add the connection (b, s) with age = 0 to C, if it is not already present. Otherwise, set its age to 0
- Unless unit b is in a stable state (see below) increase by one the age of all connections involving b.
 Remove all connections whose age exceeds a threshold T_{age} Remove all units that became unconneted, due to this

The algorithm

- 5. If unit *b* is at least in the *habituated* state and the distance between the input $\boldsymbol{\xi}$ and its position \mathbf{p}_b exceeds its *activity radius* r_b
 - create a new unit *n*
 - set its position to **x**
 - remove the connection (*b*, *s*)
 - add new connections (b, n) and (n, s)
- 6. Decrease exponentially the *firing counters* of unit *b* and of all units connected to it

$$\Delta f_b = (\alpha_h \cdot (F - f_b) - 1) / \tau_f$$

$$\Delta f_{nb} = (\alpha_h \cdot (F - f_{nb}) - 1) / \tau_{f,n}$$

where F is the initial value and the α 's and τ 's are suitable constants

The algorithm

- 7. Update the state of unit b, according to the value of the *firing counter* f_b and the topology of its *neighborhood* of connected units (see below)
- 8. If unit b is in a singular state, decrease exponentially its activity radius r_b

 $\Delta r_b = (\alpha_r \cdot (R - r_b) - 1) / \tau_{r, hab}$

otherwise, if unit b is in a stable state increase exponentially r_b

$$\Delta r_b = \left(\left(\alpha_r / \tau_{r, \, dis} \right) \cdot \left(R - r_b \right) \right)$$

r_b

A Growing Self-Organizing Network for Manifold Reconstruction - 39

The algorithm

9. Unless unit *b* is in a *stable* state, adapt its position and those of all connected units

$$\Delta \mathbf{p}_b = \eta_b \cdot f_b \cdot (\xi - \mathbf{p}_b)$$

$$\Delta \mathbf{p}_{nb} = \eta_{nb} \cdot f_{nb} \cdot (\xi - \mathbf{p}_{nb})$$

otherwise, if unit b is stable, adapt only the position of b itself

$$\Delta \mathbf{p}_b = \eta_{stable} \cdot f_b \cdot (\xi - \mathbf{p}_b)$$

• Unit states and neighborhood topology

For surface reconstruction

connected the neighboring units are habituated

singular the configuration of connected neighboring units exceeds a disk

half-disk formed by connected neighboring units

disk

formed by *connected* neighboring units

boundary an half-disk formed by regular neighboring units

a disk formed by regular neighboring units

• Unit states and neighborhood topology

For surface reconstruction

connected the neighboring units are habituated

SOAM adaptation process

SOAM adaptation process

How the number of units varies with time (i.e. input signals)

Each line describes the number of units in the corresponding state/color

SOAM adaptation process

Another example, a closed surface with genus 22

The same network interpreted as a mesh

SOAM adaptation process

Either a curve or a surface from the same input

The dimension of the manifold to be reconstructed (i.e. either 1 or 2) is the *main parameter* of the algorithm

SOAM adaptation process

Higher dimensions (i.e. beyond 3D)

In 3D the Klein bottle is not a manifold, as it must self-intersect: the SOAM cannot converge

In 4D (and beyond) the Klein bottle is a manifold and the SOAM converges

Pre-print

See http://arxiv.org/abs/0812.2969