Artificial Intelligence

Reinforcement learning

Marco Piastra

Artificial Intelligence 2014-2015 Reinforcement Learning [1]

Multi-Armed Bandit

u BaS|C def|n|t|0ns [image\from Wiipeia]
N arms (i.e. a row of N old-style slot machines)
Each arm 1 yields a (stochastic) reward r with probability distribution P;(r)

Each timetin a sequence, the player (i.e. the agent) selects the arm i(t)
In other words, i(t) is the strategy adopted by the agent

= Problem

Find a strategy i(t) that maximizes the total reward over time
The strategy will include random choices i.e. it will be stochastic

For simplicity, only Bernoulli reward:s (i.e. either O or 1) will be considered here

Artificial Intelligence 2014-2015 Reinforcement Learning [2]

Multi-Armed Bandit: strategies

* Informed (i.e. optimal) strateqgy

At all times, select the arm with higher probability of reward:
i(t) = argmax, P;(r = 1)
Clearly, this strategy is optimal but requires knowing all distributions P;(r)
With enough data (e.g. from other players), these distributions can be learnt

= Random strategy

At all times, select an arm 1 at random, with uniform probability

How does the Random strategy compare with the optimal, informed strategy?

Artificial Intelligence 2014-2015 Reinforcement Learning [3]

Multi-Armed Bandit: evaluating strategies

= Total Expected Regret
How far from optimality a strategy is, considering the total reward over T trials
For one sequence of T trials, the total regret with expected rewards is

R(T) : Z uz(t)

where 7 decision taken at step t

/ expected (i.e. mean) reward of arm k
pr =, Pr(r) p* = maxy
In a more general defmltlon the Total Expected Regret is

k=1

where
Ak — u — 1 number of times arm Kk is selected in T trials (a random variable)

With the optimal, informed strategy, the total expected regret is 0.
Whereas, with the random strategy the total expected regret grows linearly over time:

= — Z Ay ...since, with a random strategy, E[T}(T)] = %

Artificial Intelligence 2014-2015 Reinforcement Learning [4]

Multi-Armed Bandit: Online learning

Adaptive strategy: exploration vs. exploitation
exploration: make trials over the set of N arms to learn about the expected reward u,
exploitation: make use of the current best guess about the expected rewards u,

» Greedy strategy

Initialize all the estimated values u, at random
Repeat:

1) select the arm with the current best estimated reward 7 = argmax; [if

2) and update the current estimate about i as the average reward

L __— reward of arm i at trial t
D Tit

N t=1

Mg = T — _— Total number of times the arm i has been played
i

= e-greedy strategy (0<e<1)
Initialize all the estimated values u, at random
Repeat:

1) with probability (1 — ¢) select the arm with the best estimated reward
else (i.e. with probability €) select one arm at random

2) update the current estimate about i as the average reward (see above)

Artificial Intelligence 2014-2015 Reinforcement Learning [5]

Multi-Armed Bandit: Online learning

» Experimental comparison of different strategies

10 arms bandit with different rewards (10-arms testbed)
Averaged over 2000 runs (i.e. sequences of trials)

e=0. ‘
After a certain period of time, e € =001 199
the greedy strategy stops exploring Average 14 € = 0 (greedy)
and exploits its estimates reward
whereas, the e-greedy strategy
keeps exploring and approaches
optimality 0 20 500 750 1000 Rein
Plays '
100% -

. Bart
The random strategy never improves - o
its performances, as expected)

% 87 € =001
Optimal

€ =0 (greedy)

20% -] N
0 random (qualitative)

m/o]]]] 1
0 250 500 750 1000

Plays ma
Artificial Intelligence 2014-2015 Reinforcement Learning [6]

Multi-Armed Bandit: evaluating strategies

* From a theoretical standpoint

All greedy strategies are biased: they depend on the initial random distribution
Optimistic variant: initially, set all iz := 1

The average total regret always grows linearly, in the long run
In fact:
= on the average, the greedy strategy will get stuck in a suboptimal choice
= the e-greedy strategy will continue to choose an arm at random (with probability ¢)

Can we do any better?

Artificial Intelligence 2014-2015 Reinforcement Learning [7]

Multi-Armed Bandit: Optimal online learning

= | ower bound theorem [Lai & Robbins 1985]

Consider a generic, adaptive (i.e. learning) strategy for the multi-armed bandit
problem with Bernoulli reward

lim R(T)> InT
T— 00 ()_ - kl(uk,,u*)

where (1)
* 295 — Mk

Kl(g, = upIn— + (1 — pg) In ———=

(1t 1) ()

AN a special case of the Kullback-Leibler divergence :
in this case, it measures of the difference between two (Bernoulli) distributions

In other words, we can achieve logarithmic growth for the total expected regret, but not better:
any adaptive strategy must play suboptimal arms a minimum number of times
lim E[Tk (T)] >

InT
T— 00 — kl(pg, pu*)

Artificial Intelligence 2014-2015 Reinforcement Learning [8]

Multi-Armed Bandit: UCB strategy

- Upper confidence bound (UCB) strategy [Auer, Cesa-Bianchi and Fisher 2002]

Initialize all the estimates of the expected reward i := 0
PIay each arm once (to avoid zeroes in the formula below)

total number of trials

Repeat: number of times
. 2 ln T the arm k has been played
1) selectthearm 7 = argmax, Mk +

Numerical example of the

2) update the current estimate about | confidence bound term
as the average reward

Theorem
. . 8].n T " l(I]O Z(I)O 3(;0 4(|)0 S(I)O 6(|)0 7(I)0 8(|)0 9(I)0 10I00
With the UCB strategy, lim E[T}(T)] < A2 +c '
T_>OO8 1 k \ i.e.a (small) constant
where it can be shown that — >

A7 = k(g p)

(i.e. there is a reasonably small gap between the two bounds — near optimality)

Artificial Intelligence 2014-2015 Reinforcement Learning [9]

Multi-Armed Bandit: Thompson Sampling

* Thompson Sampling strateqy (also ‘Bayesian Bandit’) [Thompson, 1933]

Initialize all the expected reward (i :~ Beta(1,1)

i.e. assume that this is a random variable

Repeat: with this (prior) distribution

1) sample each of the N distributions to obtain an estimate £ix
2) selectthe arm i = argmax; jiy

3) update the posterior distribution
/JA,Z' e Beta(R@- + 1, Tz' — Rz + 1)
\ h total number of times the arm has been played

total (Bernoulli) reward from this arm (i.e. number of wins)

Theorem [Kaufmann et al., 2012]

The Thompson Sampling strategy has essentially the same theoretical bounds
of the UCB strategy

Artificial Intelligence 2014-2015 Reinforcement Learning [10]

Multi-Armed Bandit: Thompson Sampling

= Thompson Sampling strateqy (also ‘Bayesian Bandit’) [Thompson, 1933]
Example run with 3 arms: trace of the posterior probabilities for each [tk

Posteriors After 1 pull Posteriors After 2 pulls

20 20
1o D 1o B,
10 10
05 05
0.0 i i i . 0.0 i i i N
i L i i i i
M 06 08 10 %o 02 04 06 08 10
1, / H -
true’ means . ! Pusterlmrs After!5 pulls . 0 ! Posterlprs After 2515 pulls .
1) S T TR LTttt SRR 35 [e e
[e O S T .1 k 1 1] o=osseesseosmoafeososssoossnsscodhoosnomooosooseosficossoossaogy . goossass
ig __________ 25 ban
EE—— 20
L e e T o o
QLS ey et e —— 05
2% 0.2 04 0.6 0.8 10 o 0.2 04 06 0.8 10 arm
. Posteriors After 25 pulls ; Posteriors After 50 pulls
L ; ; ; i D IS S LI
L TN
a-
Y VSRRSO ISRV SUVURUU SO . W—
b T RRRRRREEERT SEREEREY - [REEEEEEE
1 |4 =
.0 02 04 06 08 10 %o 02 04 (13 08 10
1 Posteriors After 100 pulls . Posteriors After 200 pulls
: : : H 7 R AR N | I
S LLGIEIIEOIPII PR SUCPCIPRIPSS SRR A | [RTR
e PR O SOV | SO
8- R I
I R |
A :] L . //ca
S SO . SN S
%0 02 04 06 08 10 %o 02 04 13 08 10
- Posteriors After 400 pulls - Posteriors After 1000 pulls : htt\
ol . . O S SN, | S | I
e S SO * B
15 - 10) R SRRGRRreCR T EEEEEECLRE PR EERE CPRRPRELEREEPRTT ERCURPEERERRPECRESEE |- EEEERREES
10 - e S S) |
T e RS PO e P PP EEr PEEREOREOPEEEERT FEPEEPRPRREREOREE B * TERRPRRRN
5F o IS T O Y
%0 02 04 06 08 10 %o 02 04 06 08 10 [m al

Artificial Intelligence 2014-2015 Reinforcement Learning [11]

Multi-Armed Bandit: Thompson Sampling

* Thompson Sampling strateqy (also ‘Bayesian Bandit’) [Thompson, 1933]

In practical experiments, this strateqgy shows better performances in the long run ban
[Chapelle & Li, 2011]

arm

- Expected Total Regret of Mutlit-armed Bandit strategies
= upper _credible choice : ' '
= payesian_bandit_choice

40 - == uch bayes = 0 ---
E T !
23
aa
[=
xF -
T2
=5
ki
o 20 -
2 ://ca
@
Ed
L

10 - htt

o i i i i

] 2000 4000 G000 8000 10000
Number of pulls .
[ma(_

Actually, Thompson Sampling is a preferred strategy at Google Inc.
(see https.//support.google.com/analytics/answer/28468827hl=en)

Artificial Intelligence 2014-2015 Reinforcement Learning [12]

Adent/Environment Interactions

With multi-armed bandits, the context never changes
in the sense that the optimal choice does not depend on the current state

What if the actions of the agent change the state of its interaction with the environment?

199

—-]
| [Agent | 1
state ;eward action
5 f ay

:* Feer [.

Sz | Environment Rein

I L Bart
Examples:
= a, could be a movein a game, whereby the agent changes the state of the game
= a, could be a movement, whereby the agent changes its position in the environment

[ma

The agent could be wanting to learn an optimal strategy towards a given goal...

Artificial Intelligence 2014-2015 Reinforcement Learning [13]

An example: grigworld

1 2 3 4
1
The state of the agent is the position on the grid:
. e.g. (1 ,1)’ (3’4)’ (2’3)
At each time step, the agent can move one box
in the directions «T{— with probability 0.8

/ the agent will end up here

The effect of each move is somewhat stochastic, however:
for example, a move T has a slight probability of producing
a different (and perhaps unwanted) effect

| .
Entering each state yields the reward shown in each box above\ but with probability 0.2
it might end up here

There are two absorbing states: entering either the green or the red box
means exiting the gridworld and completing the game

= What is the best (i.e. maximally rewarding) movement policy?

Artificial Intelligence 2014-2015 Reinforcement Learning [14]

Markov Decision Process (MDP)

1 2 3 4
1 Formalization and abstraction
of the gridworld example
.

Markov Decision Process: < S, A,r, P,y >
A setof states: S = {s1,S2,...}

Asetofactions: A= {ay,as,...}

A reward function: r:S — R

A transition probability distribution : P(Si11 | St, At)
Markov property: the transition probability depends only the previous state and action

A discountfactor: 0 <~ <1

Artificial Intelligence 2014-2015 Reinforcement Learning [15]

Markov Decision Process (MDP): policies and values

The agent is supposed to adopt a deterministicpolicy: =: 5 — A
In other words, the agent always chooses its action depending on the state alone

Given a policy 7 , the value function for is defined, for each state s as:
V7(s) == E[r(S;) +yr(Se+1) +v°r(Si2) + -+ | m, S = 5]

Note the role of the discount factor: avalue v < 1 means that that future rewards
are weighted less (by the agent) than immediate ones

Note also that all states S; must be described by random variables :
i.e. the policy is deterministic but the state transition is not

In the gridworld example:
= The set of states is finite
= The set of actions is finite

= Forevery policy, each entire story is finite
Sooner or later the agent will fall into one of the absorbing states

Artificial Intelligence 2014-2015 Reinforcement Learning [16]

Bellman equations

By working on the definition of value function:
V7 (s) := E[r(St) + v7(St+1) +v°r(Ses2) + -+ | 7,5 = 5]
= E[r(Se) +v(r(Se41) +17(Se42) +) 7, S = 3]
= 7(s) +YE[r(Si+1) + 17 (Se42) + -+ | 7, 5 = 3]
o =7(8) +EVT(Si1)| 7, 5 = 5]

This step requires the ‘Law of total expectation’ (see wikipedia)

Given that this is a Markov Decision Process, we obtain:

Vi(s) =r(s) +v2s,,, P(Ses1ls, m(s)) - VT (Siq1)
This is true for any state, so there is one such equation for each of those

There are exactly |S| (linear) Bellman equations for |.S| variables:
in general, given w, V™ can be computed in closed form

Artificial Intelligence 2014-2015 Reinforcement Learning [17]

Optimal policy — Optimal value function

= Basic definitions
7*(s) := argmax_V7"(s), Vs € S

V*(s) :=maxV7"(s), Vs € S

Property: for every MDP, there exists such an optimal deterministic policy (possibly non-unique)

With Bellman Equations:
maXg VW(S) = T(S) + 7y maxy (Zst—|—1 P(St-l-l

V*(s) = r(s) + vymax, (Zstﬂ P(Siiq

= r(s) + ymax, (ZStH P(S41
Therefore:

7*(s) = argmax, (Zst—l—l P(S;11|S¢,a

Si,7(S0)) - V7 (Sin)
St (1)) - V*(Sea)
Si.a)- V*(Si11))

WV (Sti1))

Computing V™ directly from these equations is unfeasible, however

There arein fact |S||4! possible strategies

However, once V' * has been determined, ™ can be determined as well

Artificial Intelligence 2014-2015

Reinforcement Learning [18]

Optimal value function: value iteration

= Value iteration algorithm

Initialize: V' (s) :=0, Vs € S Note that there is no policy:
Repeat: all actions must be explored

1) Forevery state, update: V(s) := r(s) —I—’ymaXZP(S' | s,a)V(s")
a

Theorem: for every fair way (i.e. giving an equal chance) of visiting the states in S,
this algorithm converges to VV'*

Artificial Intelligence 2014-2015 Reinforcement Learning [19]

Value iteration and optimal policy

Initialize states
(e.g. using rewards as initial values)

Define the optlmal policy as:

m*(s) = argmaxa(zs " P(St+1|s, a) - V*(Sit1))

Artificial Intelligence 2014-2015 Reinforcement Learning [20]

Optimal policy: policy iteration

= Policy iteration algorithm

Initialize 7™ atrandom This step is computationally expensive:
Repeat: either solve the equations or use value iteration
' ,— (with fixed policy)

1) Foreach state, compute: V(s) := V7 (s)
2) Foreach state, define: 7(s) := argmax,, Z P(s' | s,a)V(s)

S
Theorem: for every fair way (i.e. giving an equal chance) of visiting the states in .5,
this algorithm converges to 7"

As with the value iteration algorithm, this algorithm uses partial estimates to compute new

estimates.
Itis also greedy, in the sense that it exploits its current estimate V'™ (s)

Policy iteration converges with very few number of iterations,
but every iteration takes much longer time than that of value iteration

The tradeoff with value iteration is the action space:
when action space is large and state space is small, policy iteration could be better

Artificial Intelligence 2014-2015 Reinforcement Learning [21]

Offlinevs. Online learning

» Value iteration and policy iteration are offline algorithms
The model, i.e. the Markov Decision Process is known
What needs to be learn is the optimal policy 7*

In the algorithms, visiting states just means considering: there is no agent
actually playing the game.

= Different conditions: learn by doing
Suppose the model (i.e. the MDP) is NOT known, or perhaps known only in part
Then the agent must learn by doing...

Artificial Intelligence 2014-2015 Reinforcement Learning [22]

Q-Learning

An analogous of the value function V'™

Given a policy m, the action-value function is defined, for each pair < s,a > as:
QW(S, a) c— ZSt+1 P(St—|—1 |S, a) . Vﬁ(st—l—l) i.e. choose @t in S and then follow 7T afterwards
Following a similar line of reasoning as before, the optimal action-value function is

Q*(S7 G,) = Zsﬂ_l P(St_|_1|8, CI,) . [T(St_|_1) + vy maxg: Q*(St+17 a’)]

= Q-learning algorithm

Initialize ()(s,a) atrandom, put the agent is in a random state s
Repeat:

A

1) Select the action argmax, (s, a) with probability (1—¢)
otherwise, select a at random

2) Theagentis now in state s’ and has received the reward 7
3) Update Q(s, a) by

AQ(s,a) = ar +ymaxy Q(s',a’) — Q(s,a))

Artificial Intelligence 2014-2015 Reinforcement Learning [23]

Q-Learning

» Q-learning algorithm

Theorem (Watkins, 1989): in the limit of that each action is played infinitely often and each
state is visited infinitely often and a — 0 as experience progresses, then

Q(s,a) = Q*(s,a)

with probability 1

The Q-learning algorithm bypasses the MDP entirely,
in the sense that the optimal strategy is learnt without learning the model

Artificial Intelligence 2014-2015 Reinforcement Learning [24]

