Artificial Intelligence

Unsupervised Learning

Marco Piastra

Given a set $D = \{x_1, x_2, \dots, x_n\}$ of observations (i.e. points in \mathbb{R}^d) and a set $W = \{w_1, w_2, \dots, w_k\}$ of k landmarks (i.e. points in the same space)

Clustering problem: position the k landmarks and assign each observation to a landmark so that the objective function is minimized:

$$J(D,W) := \sum ||x_i - w(x_i)||^2$$

where $w(x_i)$ is the function that assign each observation to a landmark

Given a set $D = \{x_1, x_2, \dots, x_n\}$ of observations (i.e. points in \mathbf{R}^d) and a set $W = \{w_1, w_2, \dots, w_k\}$ of k landmarks (i.e. points in the same space)

Clustering problem: position the k landmarks and assign each observation to a landmark so that the objective function is minimized:

$$J(D,W) := \sum ||x_i - w(x_i)||^2$$

where $w(x_i)^{i}$ is the function that assign each observation to a landmark

Algorithm:

- 1) Position the k landmarks at random
- 2) Assign each observation to its closest landmark

$$w(x_i) := w_k \mid k = \operatorname{argmin}_j ||x_i - w_j||$$

3) Position each landmark at the centroid (i.e. the geometric mean) of its observations

$$W_{j} := \frac{1}{|\{x_{i} \mid w(x_{i}) = w_{j}\}|} \sum_{\{x_{i} \mid w(x_{i}) = w_{j}\}} x_{i}$$

4) Go back to step 2) until unless no landmark was moved in step 3)

This algorithm converges to a <u>local</u> minimum of J

Why does the algorithm work: alternate optimization (also 'coordinate descent')

Step 2): Assume that the $\,k\,$ landmarks have been positioned The assignment

$$w(x_i) := w_k \mid k = \operatorname{argmin}_j \| x_i - w_j \|$$

minimizes each of the terms in $J(D, W) := \sum_i \| x_i - w(x_i) \|^2$

Step 3) Reposition the k landmarks while keeping the assignment $w(x_i)$ fixed

$$J(D,W) := \sum_{w_{j}} \sum_{\{x_{i} | w(x_{i}) = w_{j}\}} \left\| x_{i} - w_{j} \right\|^{2}$$

$$\frac{\partial}{\partial w_{j}} J(D,W) = \frac{\partial}{\partial w_{j}} \sum_{\{x_{i} | w(x_{i}) = w_{j}\}} \left\| x_{i} - w_{j} \right\|^{2} = \frac{\partial}{\partial w_{j}} \sum_{\{x_{i} | w(x_{i}) = w_{j}\}} (x_{i} - w_{j})^{T} \cdot (x_{i} - w_{j})$$

$$= \frac{\partial}{\partial w_{j}} \sum_{\{x_{i} | w(x_{i}) = w_{j}\}} (x_{i}^{T} \cdot x_{i} + w_{j}^{T} \cdot w_{j} - 2x_{i}^{T} \cdot w_{j}) = 2 \sum_{\{x_{i} | w(x_{i}) = w_{j}\}} (w_{j} - x_{i})$$

then, by imposing
$$\frac{\partial}{\partial w_j}J(D,W)=0$$

$$w_{j} := \frac{1}{|\{x_{i} \mid w(x_{i}) = w_{j}\}|} \sum_{\{x_{i} \mid w(x_{i}) = w_{j}\}} x_{i}$$

An alternative formulation

Given a set $D = \{x_1, x_2, ..., x_n\}$ of observations (i.e. points in \mathbb{R}^d) and a set $W = \{w_1, w_2, ..., w_k\}$ of k landmarks (i.e. points in the same space)

Voronoi cell:

$$\boldsymbol{V}_{i} := \left\{ x \in \boldsymbol{R}^{d} \mid \left\| x - w_{i} \right\| \leq \left\| x - w_{j} \right\|, \forall j \neq i \right\}$$

Voronoi tesselation: the complex of all Voronoi cells of W

- 1) Position the k landmarks at random
- 2) Assign observations in each Voronoi cell forall $x_i \in V_j$, $w(x_i) := w_j$
- 3) Position each landmark at the centroid (i.e. the geometric *mean*) of its observations

$$w_{j} := \frac{1}{|\{x_{i} \mid w(x_{i}) = w_{j}\}|} \sum_{\{x_{i} \mid w(x_{i}) = w_{j}\}} x_{i}$$

4) Go back to step 2) until unless no landmark was moved in step 3)

k-means

An example run of the algorithm

The landmarks (empty circles) become black when they cease to move

Expectation Maximization: a preliminary example

An experiment with two coins

At each step, one coin is selected at random and is tossed ten times

Random variables: X result of coin tosses, Z selected coin (i.e A or B)

Parameters: $\theta = [\theta_A, \theta_B]$ probability of landing on head of A and B, resp.

When it is known which coin has been used at each step, by MLE:

$$\widehat{\theta}_{A} = \frac{N_{A=1}}{N_{A}} \qquad \widehat{\theta}_{B} = \frac{N_{B=1}}{N_{B}}$$

Expectation Maximization: a preliminary example

• What if Z is hidden = latent = unobserved?

The results of each sequence of coin tosses are known, but not the selected coin

Incomplete observations

Example: 'Hidden Markov' model

Terminology:

hidden = latent = always unobserved missing = unobserved (in a data set)

Typically, Z_i nodes are hidden, i.e. non-observables

$$P(\{X_i\}, \{Z_j\}) = P(Z_1) P(X_1 | Z_1) \prod_{i=2}^n P(Z_i | Z_{i-1}) P(X_i | Z_i)$$
 Joint distribution

Problem

MLE of parameters θ starting from partial observations of the $\{X_i\}$ variables <u>only</u>

In other terms, this is the MLE of the likelihood function

$$L(\theta | D) = P(D | \theta) = \sum_{\{Z_i\}} P(D, \{Z_j\} | \theta)$$

Note that the <u>model</u> (= the probability function) and the (partial) <u>observations</u> are known, the <u>parameters</u> and the values of some <u>variables</u> are <u>hidden</u>

Expected value

The **expected value** of a function f of a set of random variables $\{X_i\}$ is

$$E[f(\lbrace X_i \rbrace)] := \sum_{\lbrace X_i \rbrace} P(\lbrace X_i \rbrace) \cdot f(\lbrace X_i \rbrace)$$

the sum is over all possible combinations of values of the random variables

Special case:

$$E[\{X_i\}] := \sum_{\{X_i\}} P(\{X_i\}) \cdot \{X_i\}$$

 $E[\{X_i\}] \coloneqq \sum_{\{X_i\}} P(\{X_i\}) \cdot \{X_i\}$ the expectation is also an ordered set of values (i.e. some abuse of notation here...)

An aside: Jensen's inequality

A relationship between probability and geometry

When f is convex function

$$f(E[{X_i}]) \le E[f({X_i})]$$

f is **convex** when for any two points p_i and p_j the segment $(p_i - p_j)$ is not below f

That is, when

$$\lambda f(x_i) + (1 - \lambda) f(x_j) \ge f(\lambda x_i + (1 - \lambda) x_j) \quad \forall \lambda \in [0,1]$$

Furthermore, f is **strictly convex** when

$$\lambda f(x_i) + (1 - \lambda)f(x_j) > f(\lambda x_i + (1 - \lambda)x_j) \quad \forall \lambda \in (0, 1)$$

Corollary:

when f is *strictly* convex, if and only if all the variables in $\{X_i\}$ are <u>constant</u> it is true that

$$f(E[{X_i}]) = E[f({X_i})]$$

Dual results also hold for *concave* functions

An aside: Jensen's inequality

A relationship between probability and geometry

When f is convex function

$$f(E[{X_i}]) \le E[f({X_i})]$$

To see this, consider

$$\boldsymbol{p} = \lambda_1 \boldsymbol{p}_1 + \lambda_2 \boldsymbol{p}_2 + \lambda_3 \boldsymbol{p}_3 + \lambda_4 \boldsymbol{p}_4$$

i.e. a *linear combination* of p_i points

This is an **affine** combination if $\sum \lambda_i = 1$ and it is a **convex** combination if also $\lambda_i \ge 0$, $\forall i$

When the λ_i define a probability, then p is a convex combination of p_i points

Any convex combination of p_i points lies inside their **convex hull** (see figure) and therefore above f:

$$\sum_{i} \lambda_{i} f(x_{i}) \geq f(\sum_{i} \lambda_{i} x_{i})$$

Corollary: the only way to make the convex hull be <u>on</u> f is to shrink it to a single point (i.e. the Jensen's corollary)

Incomplete observations

Likelihood function with hidden random variables

$$\begin{split} L(\theta \,|\, D) &= P(D \,|\, \theta) = \prod_{m} P(D_m \,|\, \theta) \\ \ell(\theta \,|\, D) &= \sum_{m} \log P(D_m \,|\, \theta) = \sum_{m} \log \sum_{\{Z_i\}} P(D_m, \{Z_i\} \,|\, \theta_k) \\ &= \sum_{m} \log \sum_{\{Z_i\}} \mathcal{Q}_m(\{Z_i\}) \frac{P(D_m, \{Z_i\} \,|\, \theta)}{\mathcal{Q}_m(\{Z_i\})} \\ &= \sum_{m} \log E_{\mathcal{Q}_m(\{Z_i\})} \bigg[\frac{P(D_m, \{Z_i\} \,|\, \theta)}{\mathcal{Q}_m(\{Z_i\})} \bigg] \quad \geq \quad \sum_{m} E_{\mathcal{Q}_m(\{Z_i\})} \bigg[\log \frac{P(D_m, \{Z_i\} \,|\, \theta)}{\mathcal{Q}_m(\{Z_i\})} \bigg] \\ &= \sum_{m} \sum_{\{Z_i\}} \mathcal{Q}_m(\{Z_i\}) \log \frac{P(D_m, \{Z_i\} \,|\, \theta)}{\mathcal{Q}_m(\{Z_i\})} \end{split}$$

Expectation- Maximization (EM) Algorithm

Alternate optimization (coordinate ascent)

Log-likelihood function:

$$\ell(\theta \,|\, D) \geq \sum_{m} \sum_{\{Z_i\}} Q_m(\{Z_i\}) \log \frac{P(D_m, \{Z_i\} \,|\, \theta)}{Q_m(\{Z_i\})}$$

$$This inequality becomes equality when this term is constant (see Jensen's corollary)$$

Keep θ constant, define $Q_m(\{Z_i\})$ so that the right side of the inequality is maximized

$$Q_{m}(\{Z_{i}\}) := \frac{P(D_{m},\{Z_{i}\} | \theta)}{\sum_{\{Z_{i}\}} P(D_{m},\{Z_{i}\} | \theta)} = \frac{P(D_{m},\{Z_{i}\} | \theta)}{P(D_{m} | \theta)} = P(\{Z_{i}\} | D_{m}, \theta) = p_{\{Z_{i}\}}$$

$$These \underbrace{numbers}_{qraphical \ model \ (i.e. \ as \ an \ inference \ step)}$$

Then maximize the log-likelihood while keeping $Q_m(\{Z_i\})$ constant

$$\theta^* = \arg\max_{\theta} \sum_{m} \sum_{\{Z_i\}} p_{\{Z_i\}} \log \frac{P(D_m, \{Z_i\} | \theta)}{p_{\{Z_i\}}}$$

$$= \arg\max_{\theta} \sum_{m} \left(\sum_{\{Z_i\}} p_{\{Z_i\}} \log P(D_m, \{Z_i\} | \theta) - \sum_{\{Z_i\}} p_{\{Z_i\}} \log p_{\{Z_i\}} \right) \right)$$

$$= \arg\max_{\theta} \sum_{m} \sum_{\{Z_i\}} p_{\{Z_i\}} \log P(D_m, \{Z_i\} | \theta)$$

$$= \arg\max_{\theta} \sum_{m} \sum_{\{Z_i\}} p_{\{Z_i\}} \log P(D_m, \{Z_i\} | \theta)$$

Expectation-Maximization (EM) Algorithm

Alternate optimization (coordinate ascent)

Log-likelihood function and its estimator:

$$\ell(\theta \mid D) \geq \sum_{m} \sum_{\{Z_i\}} Q_m(\{Z_i\}) \log \frac{P(D_m, \{Z_i\} \mid \theta)}{Q_m(\{Z_i\})}$$

Algorithm:

- 1) Assign the θ at random
- 2) (E-step) Compute the probabilities

$$p_{\{Z_i\}} = Q_m(\{Z_i\}) = P(\{Z_i\} | D_m, \theta)$$

3) (*M-step*) Compute a new estimate of θ

$$\theta^* = \arg \max_{\theta} \sum_{m} \sum_{\{Z_i\}} p_{\{Z_i\}} \log P(D_m, \{Z_i\} | \theta)$$

4) Go back to step 2) until some convergence criterion is met

The algorithm converges to a local maximum of the log-likelihood

The effectiveness of algorithm depends on the form of the distribution (see step 3):

$$P(D_m, \{Z_i\} | \theta)$$

In particular, when this distribution is <u>exponential</u>... (e.g. Gaussian – see next slide)

EM Algorithm: mixture of Gaussians

Model:

The hidden variable Z has k possible values, the observable variable X is a point in \mathbb{R}^d

$$P(Z=k) := \phi_k$$
 Multivariate normal distribution

$$P(Z=k) := \phi_k \qquad \qquad \text{Multivariate normal distribution}$$

$$P(X=x \mid Z=k) = N(x; \mu_k, \Sigma_k) := (2\pi)^{-d/2} (\det \Sigma_k)^{-1/2} \exp\left(-\frac{1}{2}(x-\mu_k)^T \Sigma_k^{-1}(x-\mu_k)\right)$$
The condition probabilities are normal distributions

i.e. the condition probabilities are normal distributions

The observations are a set $D = \{x_1, x_2, \dots, x_n\}$ of points in \mathbf{R}^d

Algorithm:

- 1) For each value k_i , assign ϕ_k , μ_k and Σ_k at random
- 2) (*E-step*) For all the x_i in D compute the probabilities $p_{mk} = P(Z = k \mid x_m, \phi_k, \mu_k, \Sigma_k) = \phi_k \cdot N(x_m; \mu_k, \Sigma_k)$
- 3) (*M-step*) Compute the new estimates for the parameters

$$\phi_k = \frac{1}{n} \sum_m p_{mk}$$

$$\mu_{k} = \frac{\sum_{m} p_{mk} x_{m}}{\sum_{m} p_{mk}} \quad \Sigma_{k} = \frac{\sum_{m} p_{mk} (x - \mu_{k}) (x - \mu_{k})^{T}}{\sum_{m} p_{mk}}$$

Go back to step 2) until some convergence criterion is met

EM Algorithm: mixture of Gaussians

Model:

The hidden variable Z has k possible values, the variable X is a point in \mathbf{R}^d

$$P(Z=k) := \phi_k$$

$$P(X = x \mid Z = k) = N(x; \mu_k, \Sigma_k) := (2\pi)^{-d/2} (\det \Sigma_k)^{-1/2} \exp \left(-\frac{1}{2} (x - \mu_k)^T \Sigma_k^{-1} (x - \mu_k)\right)$$
i.e. the condition probabilities are normal distributions

The observations are a set $D = \{x_1, x_2, \dots, x_n\}$ of points in \mathbf{R}^d

Proof (of the M-step):

$$\begin{split} \sum_{m} \sum_{k} p_{mk} \log P(X_{m}, Z = k \mid \phi_{k}, \mu_{k}, \Sigma_{k}) &= \sum_{m} \sum_{k} p_{mk} \log P(X_{m} \mid Z = k, \mu_{k}, \Sigma_{k}) P(Z = k \mid \phi_{k}) \\ &= \sum_{m} \sum_{k} p_{mk} \left(\log \left((2\pi)^{-d/2} (\det \Sigma_{k})^{-1/2} \right) + \left(-\frac{1}{2} (x - \mu_{k})^{T} \Sigma_{k}^{-1} (x - \mu_{k}) \right) + \log \phi_{k} \right) \end{split}$$

EM Algorithm: mixture of Gaussians

Model:

The hidden variable Z has k possible values, the variable X is a point in \mathbf{R}^d

$$P(Z=k) := \phi_k$$

$$P(X = x \mid Z = k) = N(x; \mu_k, \Sigma_k) \coloneqq (2\pi)^{-d/2} (\det \Sigma_k)^{-1/2} \exp \left(-\frac{1}{2} (x - \mu_k)^T \Sigma_k^{-1} (x - \mu_k)\right)$$
 i.e. the condition probabilities are normal distributions

The observations are a set $D = \{x_1, x_2, \dots, x_n\}$ of points in \mathbf{R}^d

Proof (of the M-step):

$$\begin{split} &\frac{\partial}{\partial \mu_{j}} \sum_{m} \sum_{k} p_{mk} \bigg(\log \bigg((2\pi)^{-d/2} (\det \Sigma_{k})^{-1/2} \bigg) + \bigg(-\frac{1}{2} (x_{m} - \mu_{k})^{T} \Sigma_{k}^{-1} (x_{m} - \mu_{k}) \bigg) + \log \phi_{k} \bigg) \\ &= \frac{\partial}{\partial \mu_{j}} \sum_{m} \sum_{k} p_{mk} \bigg(-\frac{1}{2} (x_{m} - \mu_{k})^{T} \Sigma_{k}^{-1} (x_{m} - \mu_{k}) \bigg) = \frac{\partial}{\partial \mu_{j}} \sum_{m} \sum_{k} p_{mk} \bigg(-\frac{1}{2} (x_{m}^{T} \Sigma_{k}^{-1} x_{m} + \mu_{k}^{T} \Sigma_{k}^{-1} \mu_{k} - 2 + x_{m}^{T} \Sigma_{k}^{-1} \mu_{k}) \bigg) \\ &= \sum_{m} p_{mj} \bigg(x^{T} \Sigma_{j}^{-1} - \mu_{j}^{T} \Sigma_{j}^{-1} \bigg) \\ &= \sum_{m} p_{mj} \bigg(x^{T} \Sigma_{j}^{-1} - \mu_{j}^{T} \Sigma_{j}^{-1} \bigg) = 0 \end{split}$$

$$\mu_{j} = \frac{\sum_{m} p_{mj} x_{m}}{\sum_{k} p_{mj}}$$

See the link in the web page for the derivations of other parameters ...

Multinomial distribution

Bernoulli

Head or Tail?

$$P(X = 1) = \theta$$
, $P(X = 0) = 1 - \theta$

Binomial

n heads out of m coin tosses

$$P(X = n) = {m \choose n} \theta^{n} (1 - \theta)^{(m-n)}$$

Categorical

The result of throwing a dice with k faces

$$P(X = 1) = \theta_1, \quad P(X = k) = \theta_k, \qquad \sum_{i=1}^{k} \theta_i = 1$$

Multinomial

Obtaining an outcome combination x_1, \dots, x_k in m throws of a k-faced dice, with

$$\sum_{i=1}^{k} x_i = m$$

$$P(X_1 = x_1, ..., X_k = x_k) = \frac{m!}{x_1! ... x_k!} \prod_{i=1}^k \theta_i^{x_i}$$

Dirichlet distribution

Beta distribution

What do you think about a coin after obtaining $(\alpha_1 - 1)$ heads and $(\alpha_2 - 1)$ tails?

Beta
$$(x_1, x_2; \alpha_1, \alpha_2) := \frac{x_1^{\alpha_1 - 1} \cdot x_2^{\alpha_2 - 1}}{B(\alpha_1, \alpha_2)}, \qquad x_1 + x_2 = 1$$

same expression as before, after renaming the parameters...

Dirichlet distribution

What do you think about a k-faced dice after obtaining $(\alpha_1 - 1), (\alpha_2 - 1) \dots (\alpha_k - 1)$ outcomes?

$$D(x_1,...,x_k;\alpha_1,...,\alpha_k) := \frac{\prod_{i=1}^k x_i^{\alpha_i - 1}}{B(\alpha_1,...,\alpha_k)}, \qquad \sum_{i=1}^k x_i = 1$$

$$\sum_{i=1}^{k} x_i = 1$$

where $B(\alpha_1,...,\alpha_k) := \frac{\frac{i=1}{k}}{\Gamma\left(\sum_{i=1}^k \alpha_i\right)}$

examples of Dirichlet distributions, for k = 3

is the *multivariate Beta function*.

The Dirichlet distribution is the *conjugate prior* of the Multinomial distribution

Dirichlet distribution

Symmetric Beta distribution

i.e. when
$$\alpha = \beta$$

Beta
$$(x_1, x_2; \alpha, \beta) := \frac{x_1^{\alpha - 1} \cdot x_2^{\alpha - 1}}{B(\alpha, \alpha)}, \quad x_1 + x_2 = 1$$

Symmetric Dirichlet distribution

i.e. when
$$\alpha_1 = \alpha_2 = \dots = \alpha_k$$

$$D(x_1,...,x_k;\alpha) := \frac{\prod_{i=1}^k x_i^{\alpha-1}}{B(\alpha,...,\alpha)}, \qquad \sum_{i=1}^k x_i = 1$$

Note: in both distributions, the parameters can be < 1 (this is true of the non-symmetric versions as well)

An aside: plate notation

A shorthand notation for graphical models

An example: Probabilistic Topic Models (Blei & Lafferty, 2009)

Classifying a corpus of documents with k (unknown) topics when the only observable variables is the multiple occurrence of words

A <u>mixture</u> model:

each document belongs to multiple topics, with different probabilities

An example: Probabilistic Topic Models (Blei & Lafferty, 2009)

Classifying a corpus of documents with k (unknown) topics when the only observable variables is the multiple occurrence of words

A <u>mixture</u> model:

each document belongs to <u>multiple topics</u>, with different probabilities

An example: Probabilistic Topic Models (Blei & Lafferty, 2009)

Classifying a corpus of documents with k (unknown) topics when the only observable variables is the multiple occurrence of words

A <u>mixture</u> model:

each document belongs to <u>multiple topics</u>, with different probabilities

$$\prod_{i=1}^{K} p(\beta_{i} | \eta) \prod_{d=1}^{D} p(\theta_{d} | \alpha) \left(\prod_{n=1}^{N} p(z_{d,n} | \theta_{d}) p(w_{d,n} | \beta_{1:K}, z_{d,n}) \right)$$

Latent Dirichlet Allocation (LDA)

Classifying a corpus of documents with k (unknown) topics when the only observable variables is the multiple occurrence of words

Generative model: multinomial + Dirichlet

- 1 Draw each topic $\beta_i \sim \text{Dir}(\eta)$, for $i \in \{1, ..., K\}$.
- 2 For each document:
 - **1** Draw topic proportions $\theta_d \sim \text{Dir}(\alpha)$.
 - 2 For each word:
 - **1** Draw $Z_{d,n} \sim \text{Mult}(\theta_d)$.
 - 2 Draw $W_{d,n} \sim \operatorname{Mult}(\beta_{Z_{d,n}})$.

LDA: what is this for?

Classifying a (large) corpus of digital documents relying on word counting only

LDA: which results?

Identifying topics: relative frequencies of words that define a class

Each box represents a topic
The size of words in a box
represents its relative proportion

1	2	3	4	5
dna	protein	water	says	mantle
gene sequence	i cell	climate	researchers	high
seduence	cells	atmospheric	new	earth
genes	proteins	temperature	university	pressure
sequences	receptor	global	just	seismic
human	fig	surface	science	crust
genome	binding	ocean	like	temperature
genetic	activity	carbon	work	earths
analysis	activation	atmosphere	first	lower
two	kinase	changes	years	earthquakes
6	7	8	9	10
end	time	materials	dna	disease
article	data	surface	rna	cancer
start	two	high	transcription	patients
science	model	structure	protein	human
readers	fig	temperature	site	gene
service	system	molecules	binding	medical
news	number	chemical	sequence	studies
card	different	molecular	proteins	drug
circle	made.	fig.	specific	nomal
letters	••	university	sequences	drugs
11	12	13	14	15
years	species	protein	cells	space
million	evolution	structure	cell	solar
ago	population	proteins	virus	observations
age	evolutionary	two	hiv	earth
university	university	amino	infection	stars
north	populations	binding	immune	university
early	natural	acid	human	mass
fig	studies	residues	antigen	sun
evidence	genetic	molecular	infected	astronomers
record	biolog/	structural	viral	telescope
16	17	18	19	20
fax	cells	energy	research	neurons
manager	cell	electron	science	brain
science	gene	state	national	cells
aaas	ğenes	light	scientific	activity
advertising	expression	quantum	scientists	fig
sales	development	physics	new	channels
member	mutant	electrons	states	university
recruitment	mice	high	university	cortex
associate	fig	laser	united	neuronal
washington	biology	magnetic	heath	visual

LDA: which results?

Classifying documents: relative assignment proportions

Each topic is represented by a list of most relevant words

LDA: how does it work?

There exist multiple methods

Mean-Field Variational Inference (Blei et al. 2003)

(not discussed here – see links to the literature)

It is a sort of generalization of the EM algorithm

Many software implementations around: e.g. Apache Mahout