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K—~ImEJNS (Generalized Lloyd’s Algorithm - Competitive learning)

Given a set D= {X,X,, ... , X, } of observations (i.e. points in RY)
and a set W= {w,W,, ..., W, } of K landmarks (i.e. points in the same space)

Clustering problem: position the k landmarks and assign each observation
to a landmark so that the objective function is minimized:

J(D,W):= ZHXi —w(x)[’

|
where w(x;) is the function that assign each observation to a landmark
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K—~ImEJNS (Generalized Lloyd’s Algorithm - Competitive learning)

Given a set D= {X,X,, ... , X, } of observations (i.e. points in RY)
and a set W= {w,W,, ..., W, } of K landmarks (i.e. points in the same space)

Clustering problem: position the k landmarks and assign each observation
to a landmark so that the objective function is minimized:

J(D,W) = ZHXi —w(x)[’
where w(x;) is the function that assign each observation to a landmark
Algorithm:
1) Position the k landmarks at random
2) Assign each observation to its closest landmark
w(x,) :=w, |k =argmin; |x, — w,|
3) Position each landmark at the centroid (i.e. the geometric mean) of its observations

W, : L Z X,

[ [ w(X;) =W, } £x;w(x; )=w;}

4) Go back to step 2) until unless no landmark was moved in step 3)

This algorithm converges to a local minimum of J
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K—~ImEJNS (Generalized Lloyd’s Algorithm - Competitive learning)

Why does the algorithm work: alternate optimization (also ‘coordinate descent’)

Step 2): Assume that the k landmarks have been positioned
The assignment

w(x,) = w, |k =argmin ;[x, —w|
minimizes each of the termsin  J(D,W):= > [x — W(xi)H2

Step 3) Reposition the k landmarks while keeping the assignment w(x;) fixed

JOW)=> > ‘Xi—WjHZ

wi {xilw(x;)=w;}
0 0 2 0
%J(D,W) =— > % —WjH = D06 —w)" (% —wp)

j j xilw(xi)=w;} j xilw(xi)=w;}

N D X AW W —2x W) = 20 Y (W - X)

a\Nj {xlw(x;)=w;} {xlw(x;)=w;}

then, by imposing aWiJ(D,W) =0

J

w; : 1 Z X.

1% T W) = Wi H oominr=w,}
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K—~ImEJNS (Generalized Lloyd’s Algorithm - Competitive learning)

An alternative formulation

Given a set D= {X,X,, ... , X.} of observations (i.e. points in RY)
and a set W= {w,W,, ..., W, } of K landmarks (i.e. points in the same space)

Voronoi cell:

V. ZZ{XE RY | HX—WiHSHX—WjH,Vj #i }
Voronoi tesselation: the complex of all Voronoi cells of W

Algorithm:
1) Position the k landmarks at random

2) Assign observations in each Voronoi cell
forallx, e V;, w(x)=w,

3) Position each landmark at the centroid (i.e. the geometric mean) of its observations

W, : 1 > X

|{Xi | W(Xi) = Wj}l {xilw(x;)=w; }

4) Go back to step 2) until unless no landmark was moved in step 3)
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An example run of the algorithm

The landmarks (empty circles)
become black when
they cease to move

2) 5 Lloyd iterations h) 6 Lloyd iterations i) 7 Lloyd iterations
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Expectation Maximization: 3 preliminary example

Figure from
d Maximum likelihood http://www.nature.com/nbt/journal/v26/n8/full/nbt1406.htm|
c; HTTTHHTHTH 5H. 5T
. 24
@ HHHHTHHHHH  oHAT 8,=53 45080
" HTHHHHHTHH [8H2T o
by=g 77=0:45
HTHTTTHHTT 4H,6T
o THHHTHHHTH 7H,3T

ff 24H,6T 9H, 11T

5 sets, 10 tosses per set

= An experiment with two coins
At each step, one coin is selected at random and is tossed ten times
Random variables: X result of coin tosses, Z selected coin (i.e A or B)
Parameters: 6=[6,,6,] probability of landing on head of A and B, resp.

When it is known which coin has been used at each step, by MLE:

Ny 0. = Ngy
B

g, -
g NA NB
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Expectation Maximization: 3 preliminary example

= Whatif Z is hidden = latent = unobserved?

The results of each sequence of coin tosses are known, but not the selected coin

10
b Expectation maximization P(Z,=A|X,,0,) « ( 5 j-0.605 -(1-0.60)°
10
E-step P(Z,=B| X,6;) < [ 5j-0.505 -(1-0.50)°
/

5H,5T ATFTRATHITR 0.45 x =22H, 22T =28H,28T
HHHHTHHHHH
gH, 1T HTHHHHHTHH 0.80

HTHTTTHHTT

O os:Q
© = Q
8H,2T THHHTHHHTH u.?3x° n.z?xo ~59H, 15T =21H,05T
O 9
C Q0

=~7.2H,08T =1.8H,02T

4H 6T =14H 21T =26H,39T

7H,3T

=45H 19T =25H,11T

24 H,6T 9H, 11T ‘-=21.3|'TB.6T =11.7H,84T
~5134+86 " 0.71 @
0.58 6,""'~=0.80
Figure from ®_/ Hﬁmmﬂ 52
http://www.nature.com/nbt/journal/v26/n8/full/nbt1406.html
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Incomplete observations

Example: ‘Hidden Markov’ model

Terminology:
hidden = latent = always unobserved

a e e a missing = unobserved (in a data set)
Typically, Z, nodes are hidden,
i.e. non-observables

P({Xi}'{zj}) = P(Zl) P(Xl | Zl) ﬁ P(Zi |Zi_1) P(Xi |Zi) Joint distribution

= Problem

MLE of parameters 0 starting from partial observations of the {X;} variables only
In other terms, this is the MLE of the likelihood function
L(6|D) = P(D|6) =) P(DAZ;}|6)
{z;}

Note that the model (= the probability function) and the (partial) observations are known,
the parameters and the values of some variables are hidden
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Expected value

The expected value of a function f of a set of random variables{X.} is

E[f({XD] = X PAXD- FEX})

{Xi}
\ the sum is over all possible combinations of values of the random variables
Special case:
E[{X}] = Z PEX:H-{X:}
\ {Xi}

the expectation is also an ordered set of values (i.e. some abuse of notation here...)

Artificial Intelligence 2014-2015 Unsupervised Learning [10]



An aside: Jensen’s inequality

A relationship between probability and geometry y

f(x) is (strictly) convex
P1=[Xy, f(x1)]
P1+A(Ps — P1)

When f is convex function
f(E[{X ) <E[f({X D]

f is convex when for any two points p; and p;
the segment (p; — p;) is not below f

P2=[X,, f(X5)]
P3=[Xs, f(X

That is, when f f : |
M) +@A-2)F(x;) = f(Ax+1-2)x;) Vie[ol] X X X3 Xy

Furthermore, f is strictly convex when
Ax)+@-)F(x;) > f(Ax+(1-1)x;) V21e(0]1)

\ 4

Corollary:
when f is strictly convex, if and only if all the variables in {X,} are constant
it is true that

F(ERX3) = ELT({X )]

Dual results also hold for concave functions
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An aside: Jensen’s inequality

A relationship between probability and geometry y

When f is convex function
f(EL{X 3D < E[f ({X:})]

To see this, consider

P =A1py+ AP, + Agpg + APy
i.e. a linear combination of p; points

f(x) is (strictly) convex

P1

This is an affine combination if Zﬂi =1
and it is a convex combination if also A >0, Vi

3
A Xyt AoXy + AgXs + A%,

When the 4; define a probability, then p is a convex combination of p; points

Any convex combination of p; points lies inside their convex hull (see figure)

and therefore above f :

Satx) = f(EAx)

Corollary: the only way to make the convex hull be on f
is to shrink it to a single point (i.e. the Jensen’s corollary)
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Incomplete observations

Likelihood function with hidden random variables
L(@|D) = P(D|6) = []P(D,16)
((@|D) = Y logP(D, 16)= > log> P(D,.{Z}I6,)

m {zi}
Arbitrary probability distributions

P(D..,.{Z}| @
= 2,'092,Qm({zi}) (O 19)
/ Jensen’s inequality: log is concave

m {zZ;} Qm({zl})
P(D, {Z.}| 6 P(D. . {Z}|0
= ;'09 EQm({zi}){ (Q:(Ezj)l )} 2 ;EQm({zi}){log (Qmézj; )}

P(D, Zi}|0)
— 7Z 4] m i
;%Qm({ 1) log 0.0z}
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Expectation- Maximization (EM) Algorithm

Alternate optimization (coordinate ascent)
Log-likelihood function:

10ID) = T30, @plog e 0

This inequality becomes equality ‘ when this term is constant (see Jensen’s corollary)

Keep 6 constant, define Q_({Z,}) so that the right side of the inequality is maximized

 POL{ZIO)  PDL{Z}O)
Z. — m 1 — m |
WD = Son z36 - PO,19)

{Zi}

= P{Z}ID,,0) = pyz,

These numbers can be computed from the
graphical model (i.e. as an inference step)

Then maximize the log-likelihood while keeping Q,,({Z;}) constant

. P(D.{Z}|6
6 =argmax, Z Z Pz 109 (B 42:3]9) This is also called the entropy of Q. ({Z;})
m {Z;} p{Zi} ‘ (i.e. a constant measure of the distribution)
= argmax, Z(Z Pz 109 P(D,, . {Z}|0) - Z Pz 100 Przy
m \{Z} {zZi}

=argmax, ZZ Pz 109 P(D,,,{Z;}|0)
m {Z;}

Artificial Intelligence 2014-2015 Unsupetvised Learning [14]



Expectation- Maximization (EM) Algorithm

Alternate optimization (coordinate ascent)
Log-likelihood function and its estimator:

(oID) = 3 3Q,UzNlog - ontZI10)

m {Z;} Qm ({Z|})
Algorithm:
1) Assign the 6 at random

2) (E-step) Compute the probabilities
Pzy = Qn{Z:}) = P{Z:}|D,,0)

3) (M-step) Compute a new estimate of 6

H* - arg maxl9 ZZ p{Zi} Iog P(Dm 1{Z|}| 9)
m {Z;}

4) Go back to step 2) until some convergence criterion is met

The algorithm converges to a local maximum of the log-likelihood
The effectiveness of algorithm depends on the form of the distribution (see step3):

P(Dm ’{Zl}l 9)

In particular, when this distribution is exponential... (e.g. Gaussian — see next slide)
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EM Algorithm: mixture of Gaussians

Model:

The hidden variable Z has k possible values, the observable variable X is a pointin R4
P(Z =k)=¢, Multivariate normal distribution

P(X = X|Z =K) = N{X 1, 5, ) = (27)*"* (det £,) exp(—%(x ) (- uk)j
i.e. the condition probabilities are normal distributions

The observations are a set D= {X;,X,, ... , X,.} of points in R4
Algorithm:
1) Foreach valuek, assign ¢, , u, and 2, at random

2) (E-step) Forall the x; in D compute the probabilities
P = P(Z =KX, 0, 4. Z) = B - N(Xy3 14, 2y )
3) (M-step) Compute the new estimates for the parameters

1
¢k = _Z Pk
n4
Z Prk Xim Z P (X = 21 ) (X = 14,)]
/L[ = m Z = m
‘ mek ‘ mek

4) Go back to step 2) until some convergence criterion is met

Artificial Intelligence 2014-2015
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EM Algorithm: mixture of Gaussians

Model:
The hidden variable Z has k possible values, the variable X is a pointin R4
P(Z =k) =9,

PX =X|Z =K) = N(X 1., 5,) = (27) *'*(det £,) exp(—i(x—ukfzkl(x—ﬂk)j
i.e. the condition probabilities are normal distributions 2
The observations are a set D= {X;,X,, ... , X,.} of points in R4
Proof (of the M-step):

ZZ pmk IOg P(Xm1z :k|¢k'/’lk'zk)zzz pmk IOg P(Xm |Z :kuuk’zk)P(Z :k|¢k)
m Kk m Kk

=3y pmk(log((zn)‘“Z(detzk)“z)+ (—%(x — 1) T (x —ﬂk)j + I09¢kj
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EM Algorithm: mixture of Gaussians

Model:
The hidden variable Z has k possible values, the variable X is a pointin R4
P(Z =k) =9,

PX =X|Z =K) = N(X 1., 5,) = (27) *'*(det £,) exp(—i(x—ukfzkl(x—ﬂk)j
i.e. the condition probabilities are normal distributions 2
The observations are a set D= {X;,X,, ... , X,.} of points in R4
Proof (of the M-step):

a%.zz pmk(log((Zzz)d’z(detZk)1’2)+(—%(xm — 1) T, —uk)j+ Iogm]

0 1 . 5 1 ) _ _
) a—/h;zk: pmk(_g(xm — 1) T (%, _,Uk)j = a—/ﬁ;Zk: pmk(_E(XrTnzklxm + g S — 2+ X;Zklluk)]

=2 ooy (X2 %)
B; imposing: > Py (X' E - 42 1)=0
2 Py o

o Z Poy

See the link in the web page for the derivations of other parameters ...
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Multinomial distribution

= Bernoulli
Head or Tail?

P(X=1)=6, P(X=0)=1-0

= Binomial
n heads out of m coin tosses

P(X =n) = (r:] 6" (1)

= (Categorical

The result of throwing a dice with k faces

P(X =1)=6, P(X=k)=6,, iei =1

* Multinomial
Obtaining an outcome combination X, ..., X, inmthrows of a k—faced dice, with in =m

Hé’x

Xk i=1

P(X, =X, ..., X, =X)=
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Dirichlet distribution

= Beta distribution
What do you think about a coin after obtaining (c:; — 1) heads and (., — 1) tails?

Xal_l X2 4 . same expression as before,
1 2 X 4+ X =1 after renaming the parameters. ..
! 1 2
B(ay, @,)

= Dirichlet distribution

What do you think about a k-faced dice after
obtaining (a; — 1), (@, — 1) ... (o, — 1) outcomes?

Beta(x,, X,; o, @,) =

examples of Dirichlet distributions, fork = 3

is the multivariate Beta function.
The Dirichlet distribution is the conjugate prior of the Multinomial distribution
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Dirichlet distribution

= Symmetric Beta distribution

i.e.when a=J

1 ya-l
Beta(x,, X,; @, ) = m, X + X, =
= Symmetric Dirichlet distribution
ie.when a;= a,=... =a .
[
D(X;y.., X5 x) = B(I;,. )’ 2 x. =1

Note: in both distributions, the parameters can be < 1
(this is true of the non-symmetric versions as well)

PDF

Beta(x,X,;10) - Beta(x;,X,;1)

Beta(x,,X,;0.1)

Artificial Intelligence 2014-2015

Unsupervised Learning [21]




An aside: plate notation

A shorthand notation for graphical models

Y Y

00 - . X,

1 2

|
O
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An example: Probabilistic Topic Models e & 1afrerty, 2009

Classifying a corpus of documents with k (unknown) topics
when the only observable variables is the multiple occurrence of words

A mixture model:
each document belongs to multiple topics, with different probabilities

Per-word

Dirichlet . .
toplc assignment
parameter
Per-document Observed Topic
topic proportions word Topics  hyperparameter

NN
OFO- OO

« O N /6k' 7]
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An example: PY‘ObabiliSﬂC TOPiC MOdC[S (Blei & Lafferty, 2009)

Classifying a corpus of documents with k (unknown) topics
when the only observable variables is the multiple occurrence of words

A mixture model:
each document belongs to multiple topics, with different probabilities

Per-word

Dirichlet . .
toplc assignment
parameter
Per-document Observed Topic
topic proportions word Topics  hyperparameter
\J 1 \J l ] 1
hyperparameter
\ hyperparameter

O+OFO-@— OO0
]

o 04 Zin Wain o7
L " Nbp| Tk

04 € [0, 1] pereach topic  Z,, € {1, ... k} (topics) Wy, € V (lexicon) By € [0, 1] per each word in V (lexicon)
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An example: Probabilistic Topic Models e & 1afrerty, 2009

Classifying a corpus of documents with k (unknown) topics
when the only observable variables is the multiple occurrence of words

A mixture model:
each document belongs to multiple topics, with different probabilities

RS
a b0 | Zan Wan By 7
D K

Hp(ﬁf In) HP(‘% |a) (n P(Za,n| 8a)p(Wa,n| B :K»Zd,n))
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Latent Dirichlet Allocation (LDA)

Classifying a corpus of documents with k (unknown) topics
when the only observable variables is the multiple occurrence of words
Generative model: multinomial + Dirichlet

OO0 @ O O

o 04 Zin Wan N o 7
D K

© Draw each topic g; ~ Dir(y), fori € {1, ..., K}.
® For each document:
© Draw topic proportions 4 ~ Dir(a).
® For each word:
© Draw Zy , ~ Mult(0y).
® Draw Wy n ~ Mult(fz, ).
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LDA: what is this for?

Classifying a (large) corpus of digital documents e 8 Ny
relying on word counting only '

Topic proportions and

Topics Documents assignments

gene 8.084

d 08.082 . . . e
senetic .61 Seeking Life’s Bare (Genetic) Necessities
e COLD SPRING HARBOR, NEW YORK—  “are not all thar far apart,” cepecially in

Hew many ceres does an SEERREM negd to comparison to the 75,000 ¢

J survived Last week at the genome mecting s notes Siv A
.

m the hu-

here, ™ two genome researchers wich radically University in -
=i Vil

different approaches presented complemen
tary views of the basie genes needed for Bigr
e research team, using compurer analy

ses o compare known senomes, concluded  more genomes are o ]
thar today"SORBAEIS can be sostained with sequenced. “It may be a way of organiT
just 250 wenes, and that the earliest lite forms any newly sequenced senome,” explains
required & mere 128 senes, The Arcady Mushegian, a
other researcher mapped genes 7 S lecular biologist ar the Nar
ﬁ i simple pamsite and esti- A far Biotechnology Informatia
) e e ! § §
k miated that for thes organism, [ " génone | in Bethesda, Maryland. Comparing
SO0 genes are plenty to do the |
jorb—bur thar anyrhing short
of 100 weldn'e be enough,
Although the numbers don't
match precisely, these predictions

.-|'.|‘||I:|I||'I'..l. [k

:
i

Fiadundanm and

HWigmen i
* Genome Mapping and Sequenc- — w.d
ing, Celd Spring Harbor, New York, Stripping down. Computar analysis yields an esti- !
May & 1o 12. mate af the minimum modern and ancient ganomes.

SCIENCE & VOL 272 24 MAY 190s

=
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LDA: which results?

|dentifying topics:
relative frequencies
of words that define a class

Each box represents a topic

The size of words in a box
represents its relative proportion

1 2 3 4 5
dana protein water says mantle
ene cell climate researchers high
sefjuence cells atmospheric new earth
genes proteins temperature university pressure
sequences receptor global just seismic
human fig surface science crust
genome binding ocean like temperature
genetic activity carbon work earths
analysis activation atmosphere first lower
two kinase chﬂggs years earthquakes
6 7 8 9 10
end time materials G na disease
article data surface ma cancer
start fwo high transcription patients
science model structure protein human
readers g tempera site gene
service e malecues binding medical
news iy chemical sequence studies
card it molacular proteins drug
circle — g specific nomal
letters - whersiy sequences drugs
11 12 13 14 15
years Species protein cells space
million evolution structure cell solar
ago population proteins virus observations
age evolutionary two hiv earth
university university amino infection stars
north populations binding immune university
early natural acid human mass
fig studies residues antigen sun
evidence genefc molecular infected astronemers
record bioiogy structural wiral telescope
16 17 18 19 20
fax cells energy research neurons
manager cell electron science brain
sclence gene state national cells
aaas genes light scientific activity
advertising expression quantum scientists fig
sales development physics new channels
member mutant electrons stales university
recruitment mice high universty cortex
associate fig laser wbed neuronsl
washington biclogy magnetic neath visual
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LDA: which results?

Classifying documents: relative assignment proportions
Each topic is represented by a list of most relevant words

1 2 3

research.reasoning.grant science. supported —
genetic.search optimization evolutionary function —
belief. model.theory distribution.markov —
models.networks bayesian data hidden -
learning.search.crossover.algorthm.complexity —
design.logic.search.learmning.systems —
learning.networks_neural system.reinforcement -
planning.visual.model. memory.system

network time.networks algorithm.data -

decision learning tree trees_classification -

-. — —
E=N

I u-l

10

topic

research.reasoning.grant science. supported —
genetic.search optimization evolutionary function —
belief. model.theory distribution.markov —
models.networks bayesian data hidden -

learning.search.crossover.algorthm.complexity —

design.logic.search.learmning.systems —
learning.networks_neural system.reinforcement -
planning.visual.model. memory.system
network time.networks algorithm.data -

decision learning tree trees_classification -

proportion

0.0 puyem—

0.4 -
0.6
0.8
1.0 1
0.0
0.2

0.6
0.8
1.0 1

0.4

document

L=l == I = N =

—
=]
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LDA: how does it work!?

There exist multiple methods

Mean-Field Variational Inference (Blei et al. 2003)
(not discussed here — see links to the literature)

It is a sort of generalization of the EM algorithm
Many software implementations around: e.g. Apache Mahout
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