Artificial Intelligence

Probabilistic reasoning: supervised learning

Marco Piastra

Types of learning problems

Consider a number of observations (input data) made by an agent $\{D_1, D_2, ..., D_n\}$

Supervised learning

Learning form <u>complete</u> observations: together with the input objects $\{D_1, D_2, ..., D_n\}$, the agent knows a set of corresponding expected values $\{Y_1, Y_2, ..., Y_n\}$ The objective is learning a *joint distribution P*

Unsupervised learning

Learning form $\underline{incomplete}$ observations: from a set of incomplete observations $\{D_1, D_2, ..., D_n\}$ the agent wants to learn a complete \pmb{model}

The objective is learning a joint distribution P

Reinforcement learning

The observations $\{D_1, D_2, ..., D_n\}$ are states o situations, at each state X_i the agent must perform an **action** a_i that produces a **result** r_i .

The objective is defining a function $a_i = \pi(D_i)$ that describes a strategy that the agent will follow

The strategy should be optimal, in the sense that it should maximize the expected value of a function $v(< r_1, r_2, ..., r_n >)$ of the sequence of results

Events and observations

Events

An **event** is a subset of *possible worlds*

An event occurs when the actual world is known to belong to the subset

Multiple random variables

A convenient way to define a σ -algebra of events

In the discrete case, each combination of values of the random variables describes an *event*

Observations (data)

Each observation is about one possible world

In each possible world, all the values of random variables are determined

Observations could be either complete or partial

In the sense that not all the relevant values could be actually observed

How do observations (complete or not) connect to probability *P* ?

Observations and Independence

About notation

Each observation could be the outcome of an experiment or a test

The outcome of a particular experiment will be represented by a set of random variables

For example, if the model adopts the random variable $\{X, Y\}$, the n outcomes of the experiments are $D_1 = \{X_1, Y_1\}$, $D_2 = \{X_2, Y_2\}$, ..., $D_n = \{X_n, Y_n\}$

Independent observations, same probability distribution

Independent, Identically Distributed (IID) random variables

Definition

A sequence o or set of random variables $\{X_1, X_2, \dots, X_n\}$ is IID iff:

- 1) $\langle X_i \perp X_j \rangle$, $i \neq j$ (independence)
- 2) $P(X_i) = P(X_i)$, $i \neq j$ (same distribution) The extension to sequences of subsets of random variable is immediate

CAUTION:

Being IID is not an obvious property of observations

Example: different measurements on different patients *may* be IID, but different measurements over time on the same patient are <u>not</u> IID

Maximum Likelihood Estimation (MLE)

A probabilistic model P(X), with parameters θ

 θ is a vector of values that characterizes P(X) completely: once θ is defined, P(X) is also defined.

A set of IID observations $D = \{D_1, D_2, \dots, D_n\}$

Likelihood function

A function, or a conditional probability, derived from the model P(X)

$$L(\theta \mid D) = P(D \mid \theta) = P(D_1, D_2, ..., D_n \mid \theta)$$

where $P(D \mid \theta)$ is the conditional probability that the parameter θ , considered as a random variables, could generate the observations D

When the observations $\{D_1, D_2, ..., D_n\}$ are IID:

$$P(D \mid \theta) = P(D_1 \mid \theta)P(D_2 \mid \theta) \dots P(D_n \mid \theta) = \prod_i P(D_i \mid \theta)$$

Maximum Likelihood Estimation

$$\theta_{ML}^* = \arg\max_{\theta} L(\theta|D)$$

When the observations are IID, the Log-Likelihood could ease computations:

$$\ell(\theta \mid D) = \log L(\theta \mid D) = \log \prod_{i} P(D_{i} \mid \theta) = \sum_{i} \log P(D_{i} \mid \theta)$$

$$\theta_{ML}^{*} = \arg \max_{\theta} \ell(\theta \mid D)$$

Example: coin tossing (Bernoulli Trials)

Test: tossing a coin X, not necessarily fair. (X = 1 head, X = 0 tail)

Model:
$$P(X = 1) = \theta$$
, $P(X = 0) = 1 - \theta$

Observations: a sequence $< D_1, D_2, ..., D_n >$

(i.e.
$$D = \{D_1 = \{X_1 = 1\}, D_2 = \{X_2 = 1\}, D_2 = \{X_3 = 0\} \dots\}$$
)

(Log-)Likelihood Function

$$\ell(\theta \mid D) = \log P(D \mid \theta) = \log P(\{X_i\} \mid \theta) = \log \prod_i P(X_i \mid \theta) = \sum_i \log P(X_i \mid \theta)$$

$$Likelihood \ for \ P: \qquad \text{(Algebraic Follies!)}$$

$$P(X \mid \theta) = \theta^{[X=1]} (1-\theta)^{[X=0]} \quad \text{where:} \qquad [X_i = v] = \begin{cases} 1 & \text{se} \quad X_i = v \\ 0 & \text{se} \quad X_i \neq v \end{cases}$$

$$\begin{split} \ell(\theta \,|\, D) &=& \sum_{i} \log \Bigl(\theta^{\,\,[X_i=1]} \,(1-\theta)^{\,\,[X_i=0]} \,\Bigr) = \log \theta \sum_{i} [X_i=1] + \log \,(1-\theta) \sum_{i} [X_i=0] \\ &=& N_{X=1} \log \,\theta + N_{X=0} \log \,(1-\theta) \quad (\text{ where } N_{X=1} \text{ is the number of } X_i=1 \text{ in the sequence } D \,) \end{split}$$

Maximum Likelihood Estimation

$$\frac{\partial \ell}{\partial \theta} = \frac{N_{X=1}}{\theta} - \frac{N_{X=0}}{(1-\theta)} \qquad \frac{\partial \ell}{\partial \theta} = 0 \quad \Rightarrow \quad \theta_{ML}^* = \frac{N_{X=1}}{N_{X=1} + N_{X=0}}$$

Model: the conditional probability tables in the graphical model

$$P(Y=k) = \pi_k, P(X_i = j | Y = k) = \eta_{ijk}$$

Observations: a set of messages, with classification

$$D = \{D_1 = \{Y_1 = 1, X_{11} = 1, X_{12} = 1, ..., X_{1n} = 0\}, D_1 = \{Y_2 = 0, X_{21} = 0, X_{22} = 1, ..., X_{2n} = 1\}, ...\}$$

Likelihood Function

, Sequence of messages

$$L(\{\pi_{k},\eta_{ijk}\}|D) = P(D|\theta) = P(\{D_{m}\}|\{\pi_{k},\eta_{ijk}\}) = \prod_{m} P(D_{m}|\{\pi_{k},\eta_{ijk}\}) \qquad \text{(messages are IID)}$$

$$= \prod_{m} P(\{Y_{m} = y_{m}, X_{mi} = x_{mi}\}|\{\pi_{k},\eta_{ijk}\})$$

$$= \prod_{m} P(Y_{m} = y_{m}|\{\pi_{k},\eta_{ijk}\}) P(\{X_{mi} = x_{mi}\}|Y_{m} = y_{m},\{\pi_{k},\eta_{ijk}\}) \qquad \text{(factorization)}$$

$$= \prod_{m} P(Y_{m} = y_{m}|\{\pi_{k}\}) P(\{X_{mi} = x_{mi}\}|Y_{m} = y_{m},\{\eta_{ijk}\}) \qquad \text{(cond. independence)}$$

$$= \prod_{m} P(Y_{m} = y_{m}|\{\pi_{k}\}) \prod_{i} P(X_{mi} = x_{mi}|Y_{m} = y_{m},\{\eta_{ijk}\}) \qquad \text{($}$)}$$

Log-Likelihood Function

$$\ell(\{\pi_k, \eta_{ijk}\} | D) = \sum_{m} \log P(Y_m = y_m | \{\pi_k\}) + \sum_{m} \sum_{i} \log P(X_{mi} = x_{mi} | Y_m = y_m, \{\eta_{ijk}\})$$

Alternative form for P:

$$\begin{split} P(Y = k \, | \, \{\pi_k\}) &= \, \pi_k \, = \, \prod_k \pi_k^{\, [Y = k]} \\ P(X_i = j \, | \, Y_m = k, \{\eta_{i\, jk}\}) &= \, \eta_{i\, jk} \, = \, \prod_j \prod_k \eta_{i\, jk}^{\, [X_i = j][Y = k]} \\ \ell(\{\pi_k, \eta_{i\, jk}\} \, | \, D) &= \, \sum_m \sum_k [Y_m = k] \log \, \pi_k \, + \, \sum_m \sum_i \sum_j \sum_k [X_{m\, i} = j][Y_m = k] \log \, \eta_{i\, jk} \end{split}$$

Maximum Likelihood Estimation

Being both positive and depending on different variables, the two terms above can be optimized separately

 X_n

$$P(Y, \{X_i\}) = P(Y) \prod_{i=1}^{n} P(X_i \mid Y)$$

number of messages in D

Maximum Likelihood Estimation

$$\ell(\{\pi_k, \eta_{ijk}\} \mid D) = \sum_{m} \sum_{k} [Y_m = k] \log \pi_k + \sum_{m} \sum_{i} \sum_{j} \sum_{k} [X_{mi} = j] [Y_m = k] \log \eta_{ijk}$$

First term:

$$\ell^*(\{\pi_k\}|D) = \sum_{m} \sum_{k} [Y_m = k] \log \pi_k + \lambda (1 - \sum_{k} \pi_k)$$

$$\frac{\partial \ell^*}{\partial \pi_k} = \frac{\sum_{m} [Y_m = k]}{\pi_k} - \lambda$$
number of messages in *D* classified as *k*

$$\frac{\partial \ell^*}{\partial \pi_k} = 0 \implies \pi_k = \frac{N_{Y=k}}{\lambda}$$

$$\sum_{k} \pi_{k} = 1 \implies \sum_{k} \frac{N_{Y=k}}{\lambda} = 1 \implies \lambda = \sum_{k} N_{Y=k} = N_{D}$$

$$\pi_k^* = \frac{N_{Y=k}}{N_D}$$
 (Maximum Likelihood Estimator of π_k)

 X_n

$$P(Y, \{X_i\}) = P(Y) \prod_{i=1}^{n} P(X_i \mid Y)$$

Maximum Likelihood Estimation

$$\ell(\{\pi_k, \eta_{ijk}\} | D) = \sum_{m} \sum_{k} [Y_m = k] \log \pi_k + \sum_{m} \sum_{i} \sum_{j} \sum_{k} [X_{mi} = j] [Y_m = k] \log \eta_{ijk}$$

Second term:

$$\ell^*(\{\eta_{ijk}\} | D) = \sum_{m} \sum_{i} \sum_{j} \sum_{k} [X_{mi} = j] [Y_m = k] \log \eta_{ijk} + \sum_{i} \sum_{k} \lambda_{ik} (1 - \sum_{j} \eta_{ijk})$$

$$\frac{\partial \ell^*}{\partial \eta_{ijk}} = \frac{\sum_{m} [X_{mi} = j][Y_m = k]}{\eta_{ijk}} - \lambda_{ik}$$

$$\frac{\partial \ell^*}{\partial \eta_{ijk}} = 0 \implies \eta_{ijk} = \frac{N_{X_i = j, Y = k}}{\lambda_{ik}}$$

$$\sum_{j} \eta_{ijk} = 1 \quad \Rightarrow \quad \sum_{j} \frac{N_{X_i = j, Y = k}}{\lambda_{ik}} = 1 \quad \Rightarrow \quad \lambda = \sum_{j} N_{X_i = j, Y = k} = N_{Y = k}$$

$$\eta_{ijk}^* = rac{N_{X_i=j,Y=k}}{N_{Y-k}}$$
 (Maximum Likelihood Estimator of η_{ijk})

Learning CPTs for a graphical model

As Maximum Likelihood Estimation

Model: the graphical model of the *fire alarm* example, with CPTs as parameters Observations: sequence of sets di values, from <u>completely observed</u> situations

Bayesian learning

Maximum a Posteriori Estimation (MAP)

Instead of a likelihood function, the a posteriori probability is maximized

$$P(\theta \mid D) = \frac{P(D \mid \theta)P(\theta)}{P(D)} = \frac{P(D \mid \theta)P(\theta)}{\sum_{\theta} P(D \mid \theta)P(\theta)}$$

Which is equivalent to optimize, w.r.t. θ :

$$P(D|\theta)P(\theta)$$

Advantages:

- lacktriangle Regularization: not all possible combinations of values might be present in D
- A formula for incremental learning:
 a priori terms could represent what was known before observations D

Problem:

• Which *prior* distribution $P(\theta)$?

Beta distribution

Gamma function (n integer > 0)

$$\Gamma(n) := (n-1)!$$

Beta function (α and β integers > 0)

$$B(\alpha, \beta) := \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)} = \frac{(\alpha - 1)!(\beta - 1)!}{(\alpha + \beta - 1)!}$$

The definition is more complex when α and β are not integers (see Wikipedia)

■ Beta probability density function (pdf) (α and β integers > 0)

Beta
$$(x; \alpha, \beta) := \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha, \beta)}$$

The maximum occurs at: $x = \frac{\alpha - 1}{\alpha - \beta - 2}$

Conjugate prior distributions

Coin tossing

$$P(D_i | \theta) = \theta^{[X_i=1]} (1-\theta)^{[X_i=0]}$$

(a.k.a. the Bernoulli distribution)

Likelihood (repeated experiments) / α_D and β_D are the result counts (i.e. heads and tails)

$$P(D \mid \theta) = P(\lbrace D_i \rbrace \mid \theta) = \prod P(D_i \mid \theta) = \theta^{\alpha_D} (1 - \theta)^{\beta_D}$$

A posteriori probability with Beta prior
$$P(D \mid \theta) P(\theta) = \theta^{\alpha_D} (1 - \theta)^{\beta_D} \cdot \text{Beta}(\theta; \alpha_P, \beta_P) = \theta^{\alpha_D} (1 - \theta)^{\beta_D} \cdot \frac{\theta^{\alpha_P - 1} (1 - \theta)^{\beta_P - 1}}{B(\alpha_P, \beta_P)}$$

$$= \frac{\theta^{\alpha_D + \alpha_P - 1} (1 - \theta)^{\beta_D + \beta_P - 1}}{B(\alpha_P, \beta_P)} = \frac{B(\alpha_D + \alpha_P, \beta_D + \beta_P)}{B(\alpha_P, \beta_P)} \cdot Beta(\theta; \alpha_D + \alpha_P, \beta_D + \beta_P)$$
this factor is a positive constant (for θ)

Moral:

$$P(D | \theta) P(\theta) \propto \text{Beta}(\theta; \alpha_D + \alpha_P, \beta_D + \beta_P)$$

Therefore

$$\theta_{MAP}^* = \arg\max_{\theta} \operatorname{Beta}(\theta; \alpha_D + \alpha_P, \beta_D + \beta_P) = \frac{\alpha_D + \alpha_P - 1}{\alpha_D + \alpha_P + \beta_D + \beta_P - 2}$$

It is the same result as MLE but with the addition of $\alpha_P + \beta_P - 2$ pseudo-observations

in the above sense Being a *conjugate prior* $P(\theta)$ of a distribution $P(D | \theta)$ means that the posterior $P(D | \theta) P(\theta)$ is in the same family of $P(\theta)$

Maximum a Posteriori (MAP) Estimation

The adapted computations for:

$$\theta_{MAP}^* = \arg\max_{\theta} P(D \mid \theta) \; P(\theta)$$
 yield:

$$\pi_k^* = \frac{\alpha_k + N_{Y=k} - 1}{\alpha_k + \beta_k + N_D - 2} \quad (MAP \, Estimator \, \text{of} \, \pi_k)$$

$$\eta_{ijk}^* = \frac{\alpha_{ijk} + N_{X_i=j,Y=k} - 1}{\alpha_{ijk} + \beta_{ijk} + N_{Y=k} - 2} \quad (MAP \, Estimator \, \text{of} \, \eta_{ijk})$$

where the

$$\alpha_k, \beta_k, \alpha_{ijk}, \beta_{ijk}$$

are the *hyperparameters* of the prior distribution representing the *pseudo-observations* made *before* the arrival of new, actual observations D