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Types of learning problems

Consider a number of observations (input data) made by an agent
{D,,D,, .., D}

= Supervised learning

Learning form complete observations: together with the input objects {D,, D,, ..., D},
the agent knows a set of corresponding expected values {Y,, Y,, ..., Y.}
The objective is learning a joint distribution P

= Unsupervised learning

Learning form incomplete observations: from a set of incomplete observations {D,, D,, ..., D,.}
the agent wants to learn a complete model

The objective is learning a joint distribution P

» Reinforcement learning

The observations {D,, D, ..., D, } are states o situations,
at each state X; the agent must perform an action a; that produces a result r;.

The objective is defining a function a;= w(D;) that describes a strategy that the agent will follow

The strategy should be optimal, in the sense that it should maximize
the expected value of a function V(< ry, 15, ..., I,>) of the sequence of results
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Events and observations

= Fvents

An event is a subset of possible worlds
An event occurs when the actual world is known to belong to the subset

= Multiple random variables

A convenient way to define a o-algebra of events

In the discrete case, each combination of values of — N\ _W
the random variables describes an event B ym
= Observations (data) X
Each observation is about one possible world
In each possible world, all the values of random variables are determined
Observations could be either complete or partial i
+ + W

In the sense that not all the relevant values could be actually
observed

How do observations (complete or not) connect to
probability P ?
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Observations and Independence

About notation
Each observation could be the outcome of an experiment or a test

The outcome of a particular experiment will be represented by a set
of random variables

For example, if the model adopts the random variable {X, Y},
the n outcomes of the experiments are D; ={Xy, Y.}, D, ={X,, Y5}, ..., D, ={X,,, Y.}
* Independent observations, same probability distribution
Independent, Identically Distributed (1ID) random variables
Definition
A sequence o or set of random variables {X, X,, ..., X} is lID iff:
1) <X; L Xi>, | 7] (independence)
2) P(X;) = P(Xi), 1 #] (same distribution)
The extension to sequences of subsets of random variable is immediate

CAUTION:

Being IID is not an obvious property of observations

Example: different measurements on different patients may be IID,
but different measurements over time on the same patient are not IID
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Maximum Likelihood Estimation (MLE)

A probabilistic model P(X), with parameters 6
0 is a vector of values that characterizes P(X) completely: once 0 is defined, P(X) is also defined.

A set of IID observations D = {D,, D,, ..., D}

= | jkelihood function

A function, or a conditional probability, derived from the model P(X)
L(@|D) = P(D|6)=P(D,D,,...,D,|6)

where P(D | 0) is the conditional probability that the parameter 6, considered as a random
variables, could generate the observations D

When the observations {D,, D,, ..., D} are lID:
P(D|9) = P(D,|0)P(D,|0)...P(D,|0) :HP(Di 1 0)

= Maximum Likelihood Estimation
0, = argmax,L(0|D)

When the observations are IID, the Log-Likelihood could ease computations:
((@1D) = logL(6|D) =log [ [P(D;|6)=> log P(D;|6)
6., = argmax,/(@|D) ! |
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Ex3 mple: coin JCOSSir)g ( Bernoulli Trials)

Test: tossing a coin X, not necessarily fair. (X = 1 head, X = 0 tail)
Model: P(X=1)=60, P(X=0)=1-16
Observations: a sequence< Dy, D,, ..., D,>
(i,e. D={D,={X;=1}, D,={X,=1}, D,={X;=0} ...} )
» (Log-)Likelihood Function

(01D) = logP(D|0) = log PLX}0) = log [TP(X,10) = Ylog P(X,10)
Likelihood for P: (Algebraic Follies!) | |

1 se X,=v
P(X|6) = 81— where: X, =v] = !
(X16) 1-0) w [X;=V] 0 se X £v

/(0|D) = Zlog(é?[xi:” (1—49)[Xi:°]):Iog@Z[Xi:1]+Iog(1—<9)Z[Xi:O]

= Ny,log@+N,_,log(1-6) (where Ny, isthe number of X,=1in the sequence D)

= Maximum Likelihood Estimation

% _ |\IX=1_ |\IX=0 % =0 — 0:\;“_ — I\|X=1
00 0 (1-0) 00 N, +N,_
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Anti-spam filter

P(Y,{xi}) = P(Y)H P(Xi 1Y)
i1
Model: the conditional probability tables in the graphical model @ @ @ @
P(YY =k) =z, P(X;=]|Y=k) = T i

Observations: a set of messages, with classification
D={D;={Y,=1,X,;=1, X,=1, .., X,,=0}, D; ={Y,=0,X,,=0, X,,=1, ..., X,,= 1}, ..}

= | jkelihood Function

Sequence of messages

/
L({ﬂ'klnijk}l D) = P(D|9) = P({Dm}l{”k177ijk}) = HP(Dm |{7Tk’77ijk}) (messages are 1ID)

= | |PHYw =Y Xui = Xmi}|{7fk’77ijk};1

= 11 P(Ym = ym |{7Z-k’77ijk}) P({Xm| = Xmi}lYm = ym’{ﬂk’nijk}) (factorization)

=11 P(Ym = Yn |{7Tk}) P({Xmi = Xmi}|Ym = ym’{nijk}) (cond. independence)

- 11 P(Yo = Yn [{7mc3) H P(Xpi =Xpi [ Yn = ym’{nijk}) (<X L X, Y>)
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Anti-spam filter

P {X =P ] P(X; | Y)

VR EO IS
» og-Likelihood Function

({715 3D) = Zlog P, =Y l{m}) + ZZ'OQ P(X i =Xni Yo = Y25k 1)
Alternative form for P:
P(Y =kH{z}) = m = [[="™
k
P(X; =]1Y, :k’{nijk}) =Tk = HHUijk[Xizj][YZK]
ik

({715 3D) = ZZ[Ym =k]log 7, + ZZZZ[Xml = JIIY,, =kl log 7 ;,

(Algebraic Follies!)

= Maximum Likelihood Estimation

Being both positive and depending on different variables,
the two terms above can be optimized separately
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Anti-spam filter

P {X =P ] P(X; | Y)

= Maximum Likelihood Estimation - @ @ @ @

({7 15k 31 D) = ZZ[Ym =k] log 7, + ZZZZ[XW = JI[Y,, =k]log 7 ;,

First term: B Lagrange multiplier
-
¢ ({~}ID) = ZZ[Ym =k]log 7, +ﬂ’(1_z7z-k)
m Kk k
* Z[Ym = k]

ai - m
o, 7Tk P number of messages in D classified as k
ji =0 = rx = Ny

7 number of messages in D
dr=1= ZM =1 = A=Y N, =N,

Kk < A k

72': — NI\T =K (Maximum Likelihood Estimator of )

D
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Anti-spam filter

P {X =P ] P(X; | Y)

= Maximum Likelihood Estimation - @ @ @ @

{7z} D) = XY [ =k1l0g 7, + D3 S Xy = 10y =K1 10G 775
Second term:

E*({nijk}l D) = ZZZZ[XW = JI[Y,, =k]log 7, + Zz/q‘ik(l_ Znijk)

o XD = il =k

= z
a77ij|< T i«
* N . B
o/ -0 = 77ijk _ Xi=],Y=k
a77ijk i
Ny iy
Znijk =1 = Z% =1 = 1= ZNXi:j,Y:k = Ny
J J ik j
* N ] =
ik = )I(\I—JYK (Maximum Likelihood Estimator of ;)
Y=k
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Learning CPTs for 3 graphical model

As Maximum Likelihood Estimation

Model: the graphical model of the fire alarm example, with CPTs as parameters
Observations: sequence of sets di values, from completely observed situations
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Bayesian learning

» Maximum a Posteriori Estimation (MAP)
Instead of a likelihood function, the a posteriori probability is maximized

P(@| D) P(DIO)PE) _  P(D|O)P(6)
P(D) Y P(D|6)P(O)
Which is equivalent to optimize, w.r.t. 0:
P(D|6) P(0)
Advantages:

= Regularization: not all possible combinations of values might be presentin D
= A formula forincremental learning:
a priori terms could represent what was known before observations D
Problem:
=  Which prior distribution P(8) ?
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Beta distribution

Gamma function (n integer > Q)
I'(n)=(n-1)!
Beta function (o and f integers > Q)

B " I(a)(B) _ (=D -1)! The definition is more complex
(@, B) = C(a+f) B (a+ £ -1)! when a and 8 are not integers (see Wikipedia)

= Beta probability density function (pdf) (@ and B integers > 0)

X 1-x)P _
Beta(x;a, ) = B((a ,3)) The maximum occurs at: X = ale
] o — —_

Beta(x;1,1) Beta(x;2,2) Beta(x;10,10) Beta(x;2,3)
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Conjudate prior distributions

Coin tossing
P(D, |0) = 6" (1)

(a.k.a. the Bernoulli distribution)
Likelihood (repeated experiments) / ap and [y, are the result counts (i.e. heads and tails)

P(D|6) =P{D;}6) = [ [P(D,16) = 6™ (1-6)"

ap and Bp are are the hyperparameters of the prior
Vo % (1- )

B(ap, Bp)

-Beta(@;ap + ap, By + S5)

this factor is a positive constant (for 6)

A posteriori probability with liBeta prior
P(D|6) P(6) = 0% (1-6)" -Beta(0; a,, 5.) = 0% (1- 6

_ eaDmp_l(l_H)ﬂpr_l _ Blap + a5, Bo + Bp)
Moral- B(ap, ) B(ap, ) N

P(D|6) P(6) « Beta(d;ap +ap, S + )

Therefore
ap +oap, -1

ap +0p+ P+ P —2

O, = argmax, Beta(d; ap +ap, By + Bp) =

It is the same result as MLE but with the addition of a, + B, —2 pseudo-observations

Being a conjugate prior P(9) of a distribution P(D|8) in the above sense
means that the posterior P(D|6) P(9) is in the same family of P(9)
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Anti-spam filter

P X =PI T POX, 1 V)

= Maximum a Posteriori (MAP) Estimation | @ @ @ @

The adapted computations for:
O =argmax, P(D|8) P(9)

yield:
T, = o+ Nyoy =1 (MAP Estimator of i)
o, +p, +Ny—2
x i T Ny iy —1
Mijk = ' (MAP Estimator of ;)
N i + Bk + Ny —2 Ik
where the
ak’ﬂk’aijk’ﬂijk

are the hyperparameters of the prior distribution
representing the pseudo-observations
made before the arrival of new, actual observations D
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