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Possibility (i.e. from logic to probability)

» Objective knowledge and plausible knowledge

Each (rational) agent is supposed to hold some knowledge which is objective (to him/her)

Call T the theory representing such objective knowledge,
to the agent, the set of possible worlds is W ={<U, v>: <U, v> I}

Example: the agent knows I' = {¢ V ¢}
Therefore, only the worlds {<U, v>: <U, v> = {¢ V y}} are possible (to him/her)

Does this mean that the event ¢ V 3 did occur, already?

On the other hand, the agent might not know ¥
Formally:

oVYEY

VYT
To him/her, both y and —y are plausible
(plausible = logically possible)
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Events as subsets of possible worlds

» Subsets of possible worlds
We already know that, given an interpreted logical language L (e.g. of the first order),
every (closed) wff is associated to a subset of possible worlds

Formally, each (closed) ¢ is associated to the set {<U, v>: <U, v> | ¢}
(for simplicity, we keep U fixed here)

Intuition:

An event can be seen as

a subset of possible worlds:
an event is said to occur The real world
when the real world happens to belong to

the corresponding subset of possible worlds

The agent is not supposed to know which world is the real one...

Note:

In ‘classical’ probability theory, the events need not be defined in a logical fashion
(this fact has also some technical implications, to be clarified later on)
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Probability

= Probability is a measure over the subsets of W

In particular over W ={<U, v>:<U,v> T}
i.e. the set of worlds that are deemed possible by an agent who knows I

Technically, P(.) is a function that assigns a measure (i.e. a real number)
to each elements of a 0-algebra Z of subsets of W

o-algebra (definition)
A collection of subsets > of a set W such that:
1) 2 is not empty

2) Ifp € XZthen mp € X
(—¢ isintended as the complement of ¢ in W)

3) For any countable collection of subsets {p;}, ¢, € =, we have U, p. €=

Corollary:
The sets @ e W belong to any o-algebra generated on W

A o-algebra is a boolean algebra
but not vice-versa

Each element of a g-algebra is an event
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Probability

= Probability is a measure over the subsets of W

In particular over W ={<U, v>:<U,v> T}
i.e. the set of worlds that are deemed possible by an agent who knows I

Technically, P(.) is a function that assigns a measure (i.e. a real number)
to each elements of a 0-algebra Z of subsets of W

P(.) is a measure defined over the o-algebra
1) Foreacheventp €%, P(p) =0
2) PW)=1
3) For every countable sequence ¢, of disjoint events
in 2 (disjoint < ¢;N ;=D sei #j):
Plpr Voo V .. Vo) = D P(9)

Corollary:
Foranyeventp € X, 0 <P(p) <1
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(*) When s discrete

Partitions, random variables*

= Partition
A collection ¢; of disjoint events such that

UP(¢i):W

= Random Variable

Let X be a variable having {v;, V,, ..., V. } as its domain.

In each possible world, X has a specific value v,
The set of values v(X) = v, V(X) =V, .., V(X) = v, define a partition of W

= Xis a random variable
= Each constraint v(X) =v; defines an event (i.e. a subset of W)
= Given that X=v; e X=y; are disjoint, P(X=v; V X=v;) = P(X=V;) + P(X=v;) wheneveri # ]

%
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v(X)=v

Random variable having binary values are also said
to be bernoullian

Random variables with vectorial values are also said
to be multinomial




(*) When s discrete

Random variables, joint distribution*

= Many random variables

In practice, in a probabilistic representation, multiple random variables have to
coexist

Example:
X; occurrence of a word | in the body of an email (0/1)
Y classification of that email as spam (0/1)
Together, a collection of r.v.s define a partition of W
Any combination of values of the above r.v.s defines an event

= Joint probability distribution
for a given set of random variables, e.g. X, Y, Z

Itis a function P(X=X; A Y=y; A Z=z,) that associates a real value
to each indivudual combination of values <x;, Yj, 2>
Alternative notiation: P(X=X;, Y=Y;, Z=z,) more frequently, just: P(X, Y, Z)

Given that X, Y e Z define a partition of W: ~ D_ D). > P(X=x,,Y=y,,Z=2,) =1
] K
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Marginalization

Removing a random variable from a joint distribution
Given a joint probability distribution
P(X=x;, Y=y;, Z=1))
The marginal probability P(X=X;, Y=y;) is obtained via summation:

P(X=x.,Y=y;) = D> P(X=x.,Y=Yy,,Z=2)
k

A marginal probability, in general, is still a joint probability
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Conditional probability

= Definition
P(A|B) = Pé?é'?)
* Meaning

It is a form of inference: switching from a set W to a set W “(i.e. a subset of the former)
Therefore, from a probability measure to another one

Consider an agent who thinks that W is the set of possible worlds
P(A) is the probability (to him/her) that event A occurs

Suppose that the agent then learns that event B occurred
The event =B is now impossible (to him/her)

W’ =B isthe new set of possible worlds
P(A | B) is the new probability of A
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Bayes’ Theorem (. Bayes, 1764)

» Definition
A relation between conditional and marginal probabilities
P(B|A) P(A)
P(B)
P(B | A) is also called likelihood L(A | B)
P(A|B) « L(A[B) P(A)

P(A|B) =

The theorem follows from the definition of conditional probability (chain rule)
P(A,B) = P(B|A) P(A
Given the definition of marginalization:
P(B) = > P(A,B) = > P(B|A) P(A)

also follows (Bayes’ theorem alternative formulation):

_ P(B|A)P(A)
PALE) = > P(B|A) P(A)
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Example: information and bets

00
$1.00

= Two envelopes, only one is extracted

One envelope contains two red tokens and two black tokens, it is worth $1.00
One envelope contains one red token and two black tokens, it is valueless

The envelope has been extracted.

Before posing you bet, you are allowed to extract on token from it
a) The token is black. How much do you bet ?

b) The token is red. How much do you bet ?

Purpose: showing that Bayes’ Theorem makes the representation easier
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Independence, conditional independence

* Independence (also marginal independence)

Two events are independent iff their joint probability is equal to the product of the
marginals

<ALB> = P(A B)=P(A)P(B)

* Conditional independence

Two events are conditional independent, given a third event, iff their joint conditional
probability is equal to the product of the conditional marginals

<ALB|C> = P(A,B|C)=P(A|C)P(B|C)

P(AB|C) _ P(A[C)P(BIC) _
P(BIC)  P(BIC)

= P(A|B,C) = P(A|C)

CAUTION: the two forms of independence are distinct!
<A1lB>-<ALB|C> <ALB|C>-<ALlB>
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Independence, conditional independence

These are two examples illustrating conditional independence. Each cell &J
represents a possible outcome. The events R, B and Y are represented by the areas
shaded red, blue and yellow respectively. And the probabilities of these events are
shaded areas with respect to the total area. In both examples R and B are
conditionally independent given ¥ because:
Pr(RNB|Y)=Pr(R|Y)Pr(B|Y)"

but not conditionally independent given not ¥ because:

Pr(RN B |notY) #Pr(R|not Y)Pr(B |not Y).

[from Wikipedia, “Conditional Independence”]
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Probabilistic Inference

» @General setting
The starting point is a fully-specified joint probability distribution
P(Xy, X,y X))
In an inference problem, the set of random variables {X;, X,, ..., X }
is divided into three categories:
1) Observed variables {X.} , i.e. having a definite (and certain) value
2) Irrelevant variables{X,} , i.e. which are not directly part of the answer
3) Relevant variables {X:} , i.e. which are part of the answer we seek for

In general, the problem is finding:

PAX H{X.D = D PAX F{X XD
X}
= “Decidability” (actually “computability”) is not an issue (*in a discrete setting)
Given that the joint probability distribution is completely specified
» Computational efficiency can be a problem
The number of value combinations grows exponentially with the number of random variables

Artificial Intelligence 2014-2015 Probability: representation & inference [14]



