Artificial Intelligence

Propositional Resolution

Marco Piastra

Inference rule: Resolution

$$\varphi \lor \chi, \neg \chi \lor \psi \vdash \varphi \lor \psi$$

 $\varphi \lor \psi$ is also called the *resolvent* of $\varphi \lor \chi$ e $\neg \chi \lor \psi$

The resolution rule is *correct*

In fact
$$\varphi \lor \chi$$
, $\neg \chi \lor \psi \vdash \varphi \lor \psi \Rightarrow \varphi \lor \chi$, $\neg \chi \lor \psi \models \varphi \lor \psi$

φ	ψ	χ	$\varphi \vee \chi$	$\neg \chi \lor \psi$	$\varphi \lor \psi$
0	0	0	0	1	0
0	0	1	1	0	0
0	1	0	0	1	1
0	1	1	1	1	1
1	0	0	1	1	1
1	0	1	1	0	1
1	1	0	1	1	1
1	1	1	1	1	1

Normal forms

= translation of each wff into an equivalent wff having a specific structure

Conjunctive Normal Form (CNF)

A wff with a structure

$$\alpha_1 \wedge \alpha_2 \wedge \dots \wedge \alpha_n$$

where each α_i has a structure

$$(\beta_1 \lor \beta_2 \lor \dots \lor \beta_n)$$

where each β_i is a *literal* (i.e. an atomic symbol or the negation of an atomic symbol)

Examples:

$$(B \lor D) \land (A \lor \neg C) \land C$$

 $(B \lor \neg A \lor \neg C) \land (\neg D \lor \neg A \lor \neg C)$

Disjunctive Normal Form (DNF)

A wff with a structure

$$\beta_1 \vee \beta_2 \vee ... \vee \beta_n$$

where each β_i has a structure

$$(\alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n)$$

where each α_i is a *literal*

Conjunctive Normal Form

Translation into CNF (it can be automated)

Exhaustive application of the following rules:

- 1) Rewrite \rightarrow and \leftrightarrow using \land , \lor , \neg
- 2) Move ¬ inside composite formulae

"De Morgan laws":
$$\neg(\varphi \land \psi) \equiv (\neg \varphi \lor \neg \psi)$$
$$\neg(\varphi \lor \psi) \equiv (\neg \varphi \land \neg \psi)$$

- 3) Eliminate double negations: ¬¬
- 4) Distribute V

$$((\varphi \land \psi) \lor \chi) \equiv ((\varphi \lor \chi) \land (\psi \lor \chi))$$

Examples:

$$(\neg B \to D) \lor \neg (A \land C)$$

$$B \lor D \lor \neg (A \land C)$$

$$B \lor D \lor \neg A \lor \neg C$$
(rewrite \to)
(De Morgan)

$$\neg (B \to D) \lor \neg (A \land C)$$

$$\neg (\neg B \lor D) \lor \neg (A \land C)$$

$$(B \land \neg D) \lor (\neg A \lor \neg C)$$

$$(B \lor \neg A \lor \neg C) \land (\neg D \lor \neg A \lor \neg C)$$
(rewrite \to)
(De Morgan)
(distribute \lor)

Clausal Forms

= each wff is translated into an equivalent set of wffs having a specific structure

Clausal Form (CF)

Starting from a wff in CNF

$$\alpha_1 \wedge \alpha_2 \wedge \dots \wedge \alpha_n$$

the clausal form is simply the set of all clauses

$$\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$$

Examples:

$$(B \lor D) \land (A \lor \neg C) \land C$$

 $\{(B \lor D), (A \lor \neg C), C\}$

Special notation

Each clause is usually written as a set

$$\beta_1 \vee \beta_2 \vee \dots \vee \beta_n$$

$$\{\beta_1, \beta_2, \dots, \beta_n \}$$

Example:

$$\{\{B,D\},\{A,\neg C\},\{C\}\}$$

A set of *literals*: ordering is irrelevant no multiple copies

Algorithm

```
Problem: "\Gamma \models \varphi"? The problem is transformed into: is "\Gamma \cup \{\neg \varphi\}" coherent? If \Gamma \models \varphi then \Gamma \cup \{\neg \varphi\} is incoherent and therefore a contradiction can be derived \Gamma \cup \{\neg \varphi\} is translated into CNF hence in CF
```

The resolution algorithm is applied to the set of *clauses* $\Gamma \cup \{\neg \varphi\}$

At each step:

- a) Select a pair of clauses $\{C_1, C_2\}$ containing a pair of *complementary literals* making sure that this combination has never been selected before
- b) Compute C as the *resolvent* of $\{C_1, C_2\}$ according to the resolution rule.
- c) Add C to the set of clauses

Termination:

```
When C is the empty clause { } or there are no more combinations to be selected in step a)
```

Advantages:

No axioms. Only one operation (i.e. the resolution rule).

The same example as before

$$B \lor D \lor \neg A \lor \neg C, B \lor C, A \lor D, \neg B \vdash D$$

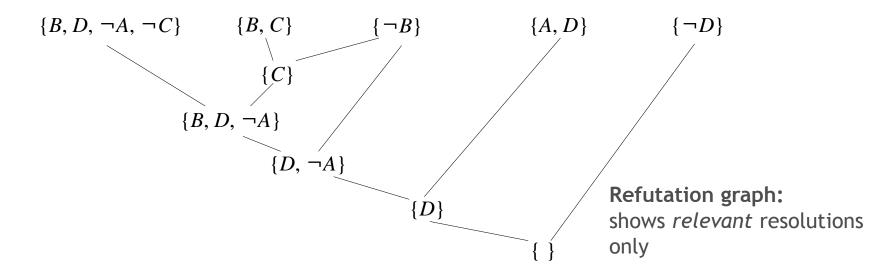
Refutation + rewrite in CNF:

$$B \lor D \lor \neg A \lor \neg C, B \lor C, A \lor D, \neg B, \neg D$$

Rewrite in CF:

$$\{B, D, \neg A, \neg C\}, \{B, C\}, \{A, D\}, \{\neg B\}, \{\neg D\}$$

Applying the resolution rule:



The same example as before

$$B \lor D \lor \neg A \lor \neg C, B \lor C, A \lor D, \neg B \vdash D$$

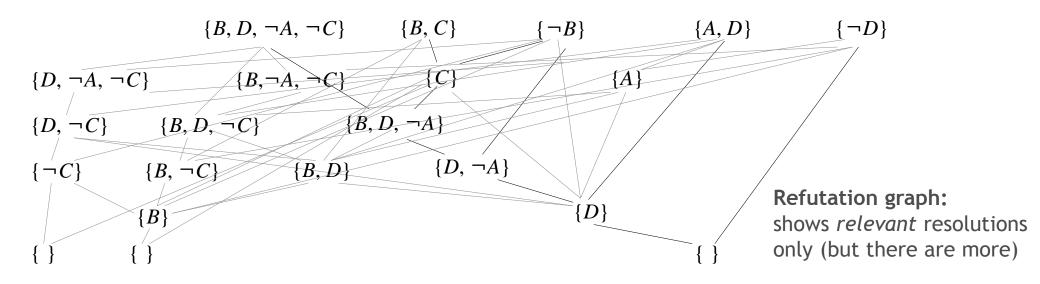
Refutation + rewrite in CNF:

$$B \lor D \lor \neg A \lor \neg C, B \lor C, A \lor D, \neg B, \neg D$$

Rewrite in CF:

$$\{B, D, \neg A, \neg C\}, \{B, C\}, \{A, D\}, \{\neg B\}, \{\neg D\}$$

Applying the resolution rule:



Resolution by refutation for propositional logic

```
Is correct: \Gamma \vdash \varphi \Rightarrow \Gamma \models \varphi
Is complete: \Gamma \models \varphi \Rightarrow \Gamma \vdash \varphi
In this sense: if \Gamma \models \varphi then there exists a refutation graph
```

Algorithm

It is a decision procedure for the problem $\Gamma \models \varphi$

```
It has time complexity O(2^n) where n is the number of propositional symbols in \Gamma \cup \{\neg \varphi\}
```