

Logical Calculus and Algorithms

Marco Piastra

Decisions and decidability (automation)

What is a <u>problem</u>?

A problem is an association, i.e. a **relation** between *inputs* and *solutions* $K: I \rightarrow S$ (K is the relation, I is the input space, S is the solution space)

Search problem

Relation *K* associates each input to many solutions (i.e. one-to-many) *Optimization* problems

A search problem plus an objective or cost function

 $c: \mathbf{S} \rightarrow \pmb{R}$ (from \mathbf{S} to \pmb{R} , the set of real number)

In general, the task is finding the solution(s) having maximal or minimal cost

Decision problem

The solution space S coincides with $\{0, 1\}$ and *K* associates each input to a unique solution

Example: $\Gamma \models \varphi$?

The input space I contains all possible combinations of set Γ of wffs with individual wffs arphi

Decisions and decidability (automation)

Decidable problem

A decision problem *K* which there exists an algorithm, more precisely a *Turing machine* (there are other ways of defining an algorithm or an *effective procedure*: they are all equivalent) that *always terminates* and produces the right answer in *finite time*.

Example of an *undecidable* problem: The *Halting Problem*

Given the formal description of a particular Turing machine with a specific input, is it possible to tell if whether it will eventually halt or run forever?

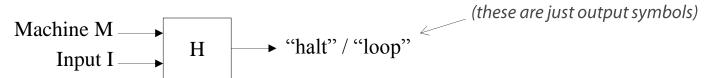
In other words, does it exist a Turing machine that, given in input the description of *another* Turing machine, will always produce the answer desired?

The answer is **no** (such a Turing machine *cannot* exist)

An aside: The Halting Problem

Intuitive ideas behind the proof (i.e. of the undecidability of this problem)

Let's assume there exists a Turing machine H that, given the description of a Turing machine M with input I always terminates producing an output "halt" or "loop" depending on whether M with input I will terminate or not

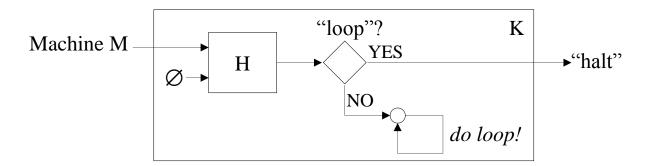


An aside: The Halting Problem

Intuitive ideas behind the proof (i.e. of the undecidability of this problem)

Let's assume there exists a Turing machine H that, given the description of a Turing machine M with input I always terminates producing an output "halt" or "loop" depending on whether M with input I will terminate or not

Assume H existed and consider the subclass of Turing machines having an empty input. We can build another Turing machine K that enters an infinite loop whenever the output of H is "halt" and that terminates, with output "halt", when H outputs "loop"

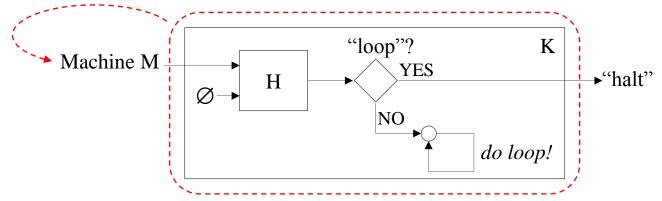


An aside: The Halting Problem

Intuitive ideas behind the proof (i.e. of the undecidability of this problem)

Let's assume there exists a Turing machine H that, given the description of a Turing machine M with input I always terminates producing an output "halt" or "loop" depending on whether M with input I will terminate or not

Assume H existed and consider the subclass of Turing machines having an empty input. We can build another Turing machine K that enters an infinite loop whenever the output of H is "halt" and that terminates, with output "halt", when H outputs "loop"

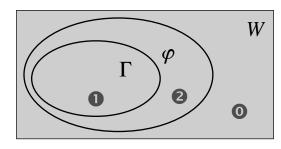


What will be the output of K when given K *itself* as the input? K should *diverge* when K *terminates* and vice-versa: i.e. we have an absurdity

Transforming problems: entailment as satisfiability

• The decision problem " $\Gamma \models \varphi$? " can be transformed into a *satisfiability* problem

In fact, $\Gamma \models \varphi$ iff $\Gamma \cup \{\neg \varphi\}$ is *not* satisfiable

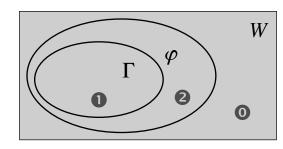


 $(w(\Gamma) \text{ is the set of possible worlds that satisfy } \Gamma)$ $\Gamma \models \varphi \implies w(\Gamma) \subseteq w(\{\varphi\}) \qquad \qquad \mathbf{0} \subseteq \{\mathbf{0}, \mathbf{2}\}$ $w(\{\neg\varphi\}) = \mathbf{0}$ $w(\Gamma \cup \{\neg\varphi\}) = w(\Gamma) \cap w(\{\neg\varphi\})$ $w(\Gamma \cup \{\neg\varphi\}) = \emptyset \qquad \qquad \mathbf{0} \cap \mathbf{0} = \emptyset$

Transforming problems: entailment as satisfiability

• The decision problem " $\Gamma \models \varphi$? " can be transformed into a *satisfiability* problem

In fact, $\Gamma \models \varphi$ iff $\Gamma \cup \{\neg \varphi\}$ is *not* satisfiable



 $(w(\Gamma) \text{ is the set of possible worlds that satisfy } \Gamma)$ $\Gamma \models \varphi \implies w(\Gamma) \subseteq w(\{\varphi\})$ $w(\Gamma \cup \{\neg \varphi\}) = w(\Gamma) \cap w(\{\neg \varphi\})$ $w(\Gamma \cup \{\neg \varphi\}) = \emptyset$ $w(\Gamma \cup \{\neg \varphi\}) = \emptyset$ $0 \cap 0 = \emptyset$

• The decision problem "is $\Gamma \cup \{\neg \varphi\}$ satisfiable?" can be transformed into a wff *satisfiability* problem

Taking this one step further, we can transform $\Gamma \cup \{\neg \varphi\}$ into *just one formula*:

$$\Lambda(\Gamma \cup \{\neg\varphi\})$$

This is the wff obtained by combing all the wffs in $\Gamma \cup \{\neg \varphi\}$ with Λ , it is called the *conjunctive closure* of the set $\Gamma \cup \{\neg \varphi\}$

Satisfiability and decidability (in L_P)

• Is the decision problem "is the wff φ satisfiable?" <u>decidable</u>?

It can be transformed into a *search* problem i.e. finding a possible world (in the set of all possible worlds) that satisfies φ In the scientific literature, this problem is called "SAT" *Intuition*: we can try every possible value assignment for the atoms in φ

Satisfiability and decidability (in L_P)

• Is the decision problem "is the wff φ satisfiable?" <u>decidable</u>?

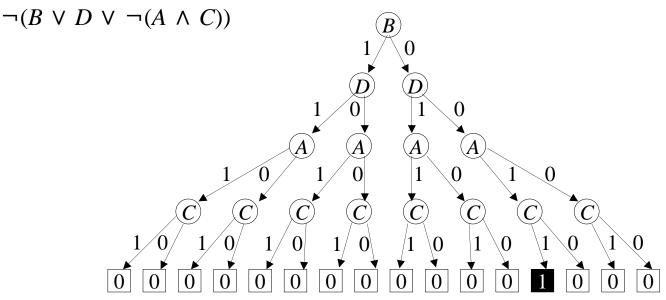
It can be transformed into a search problem

i.e. finding a possible world (in the set of all possible worlds) that satisfies arphi

In the scientific literature, this problem is called "SAT"

Intuition: we can try every possible value assignment for the atoms in φ

Example:



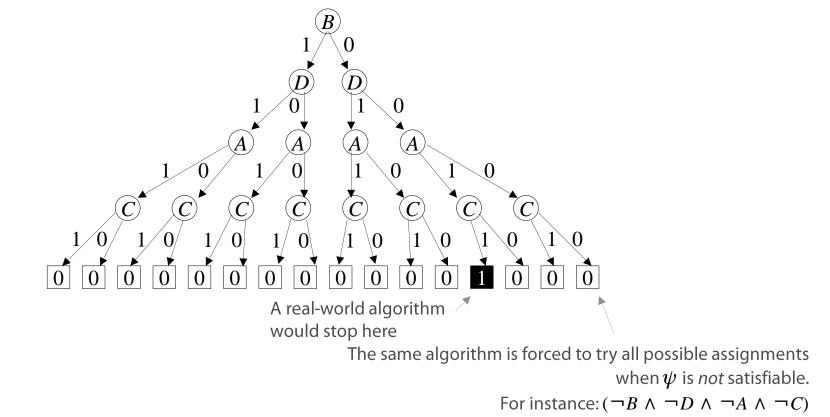
This method $O(2^n)$ time complexity, due to the number of value assignments

Satisfiability and decidability (in L_P)

Example:

 \neg ($B \land D \land \neg$ ($A \land C$)) which is equivalent to ($\neg B \lor \neg D \lor (A \land C)$)

Each branch in the tree represents a possible assignment:



Logical Calculus and Algorithms [11]

Computational complexity, classes P and NP

These notions apply to *decidable problems* only

It is based on the performances of a (known) Turing machine that gives the answer with respect to the *worst case* (i.e. the less favorable input for the specific problem)

Time complexity

The number of <u>steps</u> that the Turing machine requires for computing the answer, as a function of some numerical dimension of the input (e.g. the number of atoms in a wff)

Memory complexity

The number of *tape cells* that the Turing machine requires for computing the answer, as a function of some numerical dimension of the input

Class P

The class of problems for which there is a Turing machine that requires O(P(n)) time where P() is a polynomial of finite degree and n is the dimension of the (*worst-case*) input

Class NP

The class of all problems:

a) A method for enumerating all possible answers (i.e. *recursive enumerability*)

b) An algorithm in class P that *verifies* if a possible answer is also a *solution*

It includes all problems in class P (that is, $P \subseteq NP$)

Class NP-complete and the SAT problem

Class NP-complete

It is a subclass of NP (NP-complete \subseteq NP) A problem *K* is NP-complete if every problem in class NP is <u>reducible</u> to *K*

Reducibility

For class NP-complete

Consider a problem K for which a decision algorithm M(K) is known

A problem J is <u>reducible</u> to K if there exist a decision algorithm M(J) such that:

- a) algorithm M(K) is called just once, as a "subroutine", at the end of M(J)
- b) apart from M(K), M(J) has polynomial complexity

The problem SAT

Is NP-complete (historically, it is the first one to be known)

Moral: if we had a polynomial decision algorithm for SAT, we would also have that

 $\mathbf{P} = \mathbf{N}\mathbf{P}$

This fact is not known, it is believed that: $P \neq NP$ (and a lot will change in the digital world, if this proves to be false)

Semantic Tableau, alpha and beta rules

Semantic tableau is a method

which can be implemented as a Turing machine

 It is a decision algorithm for the problem "is Σ satisfiable?"

where Σ is a set of wffs in L_P

In spite of its name, it is a *symbolic* method: it works on the structure of wffs only No explicit assignments of (semantic) values are involved

Semantic Tableau, alpha and beta rules

A tableau is a set of wffs in L_P

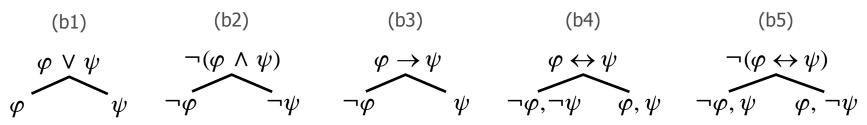
The method starts from an *initial* tableau

(i.e. the set Σ whose satisfiability is to be determined)

It is based on rules that transform each one wff into two wffs

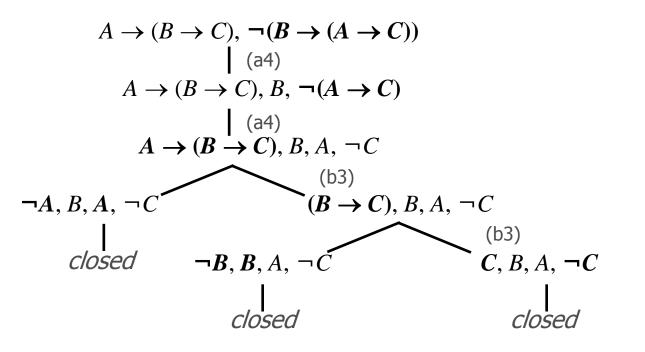
Alpha rules (i.e. expansion)

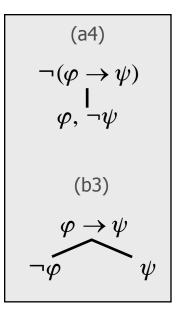
Beta rules (i.e. bifurcation)



Semantic Tableau - a working example

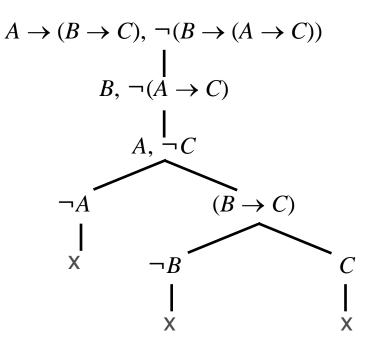
- Original problem: " $\Gamma \models \varphi$?" Example input: $A \rightarrow (B \rightarrow C) \models B \rightarrow (A \rightarrow C)$?
- Transformed problem: "is $\Gamma \cup \{\neg \varphi\}$ satisfiable?" Hence the initial tableau is $\Gamma \cup \{\neg \varphi\}$

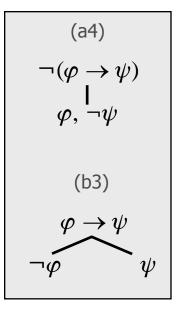




Semantic Tableau - a working example

- Original problem: " $\Gamma \models \varphi$?" Example input: $A \rightarrow (B \rightarrow C) \models B \rightarrow (A \rightarrow C)$?
- Transformed problem: "is $\Gamma \cup \{\neg \varphi\}$ satisfiable?" Hence the initial tableau is $\Gamma \cup \{\neg \varphi\}$





The usual notation in textbooks is even more concise:

only those wffs that are added to the initial tableau in each branch are shown in the tree

Artificial Intelligence 2014-2015

Semantic Tableau - algorithm recap

Algorithm (informal description – see Lab for the implementation):

Input problem: " $\Gamma \models \varphi$?"

The input problem is transformed into "is $\Gamma \cup \{\neg \varphi\}$ satisfiable?"

Methods of this type are also called 'by refutation'

For each active tableau (i.e. the *leaves* in the tree),

There could be two cases:

- The tableau contains only *literals* If the tableau contains a *complementary pair of literals* then declare it *closed* else declare it *open* (i.e. failure)
- The tableau contains one or more *composite* wff
 First try to apply an *alpha* rule,
 otherwise, if this is not possible, try to apply a *beta* rule.
 In either case, two new tableau will be generated

Output: the tree structure of tableau

Semantic Tableau - (required) algorithm properties

Termination

The algorithm never diverges (i.e. it never enters an infinite loop)

Each application of either alpha or beta rule *simplifies* a wff (i.e. it makes it *less* composite): so the application of rules cannot continue forever

Symbolic derivation

As already stated, in spite of its name, this is a symbolic method

We write

 $\Gamma \vdash_{ST} \varphi$

iff the Semantic Tableau method is successful (i.e. all leaves are closed) for $\Gamma \cup \{\neg \varphi\}$

How do we know that $\Gamma \models_{ST} \varphi \implies \Gamma \models \varphi$?

(Soundness - also correctness - of the method)

Exercise: prove it

(*hint*: consider the condition on $\Gamma \cup \{\neg \varphi\}$ and think about how it relates to each *rule*)

How do we know that $\Gamma \models \varphi \implies \Gamma \vdash_{ST} \varphi$?

(Completeness of the method)

Proving it is definitely more difficult: see textbook (i.e. Ben-Ari)

Semantic Tableau - (required) algorithm properties

Termination

The algorithm never diverges (i.e. it never enters an infinite loop)

Each application of either alpha or beta rule *simplifies* a wff (i.e. it makes it *less* composite): so the application of rules cannot continue forever

- Soundness
 - $\Gamma \models_{ST} \varphi \implies \Gamma \models \varphi$
- Completeness
 - $\Gamma \models \varphi \ \Rightarrow \ \Gamma \models_{ST} \varphi$

Termination + Soundness + Completeness = Decision Algorithm (for propositional logic)

(for propositional logic)

Which method is faster?

- Time complexity (remember: consider the *worst case*)
 The `brute-force search' and *Semantic Tableau* have the same complexity : O(2ⁿ)
- How well do these method perform in practice?

It depends

Example 1(try it):

 $A \land B \land C \land \neg A$

The `brute-force search' requires $2^3 = 8$ attempts

The Semantic Tableau method requires applying the same alpha rule 3 times

Example 2 (try it):

 $(A \lor B) \land (A \lor \neg B) \land (\neg A \lor B) \land (\neg A \lor \neg B)$

The `brute-force search' requires $2^2 = 4$ attempts

The Semantic Tableau method requires applying the same alpha rule 3 times; then the same beta rule is applied exhaustively producing a tree with 4 levels, with each node in a tree with a branching factor 2

At the end, the tree has $2^4=16$ leaves (all *closed* tableau)