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K—~ImEJNS (Generalized Lloyd’s Algorithm - Competitive learning)

Given a set D= {X,X,, ... , X, } of observations (i.e. points in RY)
and a set W= {w,W,, ..., W, } of K landmarks (i.e. points in the same space)

Clustering problem: position the k landmarks and assign each observation
to a landmark so that the objective function is minimized:

J(D,W):= ZHXi —w(x)[’

|
where w(x;) is the function that assign each observation to a landmark
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K—~1T€31S (Generalized Lloyd’s Algorithm - Competitive learning)

Given a set D= {X,X,, ... , X, } of observations (i.e. points in RY)
and a set W= {w,W,, ..., W, } of K landmarks (i.e. points in the same space)

Clustering problem: position the k landmarks and assign each observation
to a landmark so that the objective function is minimized:

J(D,W) = ZHXi —w(x)[’
where w(x;) is the function that assign each observation to a landmark
Algorithm:
1) Position the k landmarks at random
2) Assign each observation to its closest landmark
w(x) :=argmin,, % —w(x)|
3) Position each landmark at the centroid (i.e. the geometric mean) of its observations

W, : L Z X,

[ [ w(X;) =W, } £x;w(x; )=w;}

4) Go back to step 2) until unless no landmark was moved in step 3)

This algorithm converges to a local minimum of J
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K—~ImEJNS (Generalized Lloyd’s Algorithm - Competitive learning)

Why does the algorithm work: alternate optimization (also ‘coordinate descent’)

Step 2): Assume that the k landmarks have been positioned
The assignment

w(x;) :=argmin,, % —w(x)|
minimizes each of the termsin  J(D,W):= > [x — W(xi)H2

Step 3) Reposition the k landmarks while keeping w(x;) fixed

JOW)=> > ‘Xi—WjHZ

wi {xilw(x;)=w;}
0 0 2 0
%J(D,W) =— > % —WjH = D06 —w)" (% —wp)

j j xilw(xi)=w;} j xilw(xi)=w;}

N D X AW W —2x W) = 20 Y (W - X)

a\Nj {xlw(x;)=w;} {xlw(x;)=w;}

then, by imposing iJ(D,W) =0
oW,

w; : 1 Z X.

1% T W) = Wi H oominr=w,}
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K—~1TE3NS (Generslized Lloyd’s Algorithm - Competitive learning)

An alternative formulation

Given a set D= {X,X,, ... , X.} of observations (i.e. points in RY)
and a set W= {w,W,, ..., W, } of K landmarks (i.e. points in the same space)

Voronoi cell.
V. ZZ{XE RY | HX—WiHSHX—WjH,Vj #i }

Voronoi tesselation: the complex of all Voronoi cells of W

Algorithm:
1) Position the k landmarks at random

2) Assign observations in each Voronoi cell
forallx, e V;, w(x)=w,
3) Position each landmark at the centroid (i.e. the geometric mean) of its observations
1
W, = > X
|{Xi | W(Xi) = Wj}l {xilw(x;)=w; }

4) Go back to step 2) until unless no landmark was moved in step 3)
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An example run of the algorithm

The landmarks (empty circles)
become black when
they cease to move

2) 5 Lloyd iterations h) 6 Lloyd iterations i) 7 Lloyd iterations
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Expected value

The expected value of a function f of a set of random variables{X.} is

E[f({XD] = X PAXD- FEX})

{Xi}
\ the sum is over all possible combinations of values of the random variables
Special case:
E[{X}] = Z PEX:H-{X:}
\ {Xi}

the expectation is also an ordered set of values (i.e. some abuse of notation here...)
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Jensen’s inequality

A relationship between probability and geometry
When f is convex function

F(E[{X:}]) <E[T({X;})]

f is convex when for any two points p; and p;
the segment (p; — p;) is not below f

That is, when
M) +@Q-2)F(x;) = f(Ax+L-2)x;) Vie[0]l]
Furthermore, f is strictly convex when
Ax)+A-A)F(x;) > F(Ax+0-2)x;)) V1e(0)])
Corollary: if f is strictly convex, this is true
f(ELX 3D =EL[f {X:}]

if and only if all the variables in {X;} are constant

Dual results also hold for concave functions

f(x) is (strictly) convex
P1=[Xy, f(x1)]
P1+A(Ps — P1)

P2=[X,, f(X5)]
P3=[Xs, f(X

\ 4
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Jensen’s inequality

A relationship between probability and geometry y| 1 f(x)is (strictly) convex
When f is convex function P
f(EI{X D < ELF({X3)]

To see this, consider

P =A1py+ AP, + Agpg + APy
i.e. a linear combination of p; points

This is an affine combination if Zﬂi =1
and it is a convex combination if also A >0, Vi

3
A Xyt AoXy + AgXs + A%,

When the 4; define a probability, then p is a convex combination of p; points

Any convex combination of p; points lies inside their convex hull (see figure)
and therefore above f :

Satx) = f(EAx)

Corollary: the only way to make the convex hull be on f
is to shrink it to a single point (i.e. the Jensen’s corollary)
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Incomplete observations

Example: ‘Hidden Markov’ model

Terminology:
hidden = latent = always unobserved

a e e a missing = unobserved (in a data set)
Typically, Z, nodes are hidden,
i.e. non-observables

P({Xi}'{zj}) = P(Zl) P(Xl | Zl) ﬁ P(Zi |Zi_1) P(Xi |Zi) Joint distribution

= Problem

MLE of parameters 0 starting from partial observations of the {X;} variables only
In other terms, this is the MLE of the likelihood function
L(6|D) = P(D|6) =) P(DAZ;}|6)
{z;}

Note that the model (= the probability function) and the (partial) observations are known,
the parameters and the values of some variables are hidden
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Incomplete observations

Likelihood function with hidden random variables
L(@|D) = P(D|6) = []P(D,16)
((@|D) = Y logP(D, 16)= > log> P(D,.{Z}I6,)

m {zi}
Arbitrary probability distributions

P(D..,.{Z}| @
= 2,'092,Qm({zi}) (O 19)
/ Jensen’s inequality: log is concave

m {zZ;} Qm({zl})
P(D, {Z.}| 6 P(D. . {Z}|0
= ;'09 EQm({zi}){ (Q:(Ezj)l )} 2 ;EQm({zi}){log (Qmézj; )}

P(D, Zi}|0)
— 7Z 4] m i
;%Qm({ 1) log 0.0z}
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Expectation- Maximization (EM) Algorithm

Alternate optimization (coordinate ascent)
Log-likelihood function:

10ID) = T30, @plog e 0

This inequality becomes equality ‘ when this term is constant (see Jensen’s corollary)

Keep 6 constant, define Q_({Z,}) so that the right side of the inequality is maximized

 POL{ZIO)  PDL{Z}O)
Z. — m 1 — m |
WD = Son z36 - PO,19)

{Zi}

= P{Z}ID,,0) = pyz,

These numbers can be computed from the
graphical model (i.e. as an inference step)

Then maximize the log-likelihood while keeping Q,,({Z;}) constant

. P(D.{Z}|6
6 =argmax, Z Z Pz 109 (B 42:3]9) This is also called the entropy of Q. ({Z;})
m {Z;} p{Zi} ‘ (i.e. a constant measure of the distribution)
= argmax, Z(Z Pz 109 P(D,, . {Z}|0) - Z Pz 100 Przy
m \{Z} {zZi}

=argmax, ZZ Pz 109 P(D,,,{Z;}|0)
m {Z;}
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Expectation- Maximization (EM) Algorithm

Alternate optimization (coordinate ascent)
Log-likelihood function and its estimator:

(oID) = 3 3Q,UzNlog - ontZI10)

m {Z;} Qm ({Z|})
Algorithm:
1) Assign the 6 at random

2) (E-step) Compute the probabilities
Pzy = Qn{Z:}) = P{Z:}|D,,0)

3) (M-step) Compute a new estimate of 6

H* - arg maxl9 ZZ p{Zi} Iog P(Dm 1{Z|}| 9)
m {Z;}

4) Go back to step 2) until some convergence criterion is met

The algorithm converges to a local maximum of the log-likelihood
The effectiveness of algorithm depends on the form of the distribution (see step3):

P(Dm ’{Zl}l 9)
In particular, when this distribution is exponential...
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EM Algorithm: Hidden Markov Models

Model:

The hidden variable Z has k possible values, the observable variable X is a pointin R4
P(Z =k):=¢,

P(X = X|Z =K) = N(K 1, T, ) = (2)*"* (det £,) 2 exp(—%(x ) (- uk)j
i.e. the condition probabilities are normal distributions

The observations are a set D= {X;,X,, ... , X,.} of points in R4
Algorithm:
1) Foreach valuek, assign ¢, , u, and 2, at random

2) (E-step) Forall the x; in D compute the probabilities
P = P(Z =KX, 0, 4. Z) = B - N(Xy3 14, 2y )
3) (M-step) Compute the new estimates for the parameters

1
¢k = _Z Pk
n4
Z Prk Xim Z P (X = 21 ) (X = 14,)]
/L[ = m Z = m
‘ mek ‘ mek

4) Go back to step 2) until some convergence criterion is met
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EM Algorithm: mixture of Gaussians

Model:
The hidden variable Z has k possible values, the variable X is a pointin R4
P(Z =k) =9,

PX =X|Z =K) = N(X 1., 5,) = (27) *'*(det £,) exp(—i(x—ukfzkl(x—ﬂk)j
i.e. the condition probabilities are normal distributions 2
The observations are a set D= {X;,X,, ... , X,.} of points in R4
Proof (of the M-step):

ZZ pmk IOg P(Xm1z :k|¢k'/’lk'zk)zzz pmk IOg P(Xm |Z :kuuk’zk)P(Z :k|¢k)
m Kk m Kk

=3y pmk(log((zn)‘“Z(detzk)“z)+ (—%(x — 1) T (x —ﬂk)j + I09¢kj
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EM Algorithm: mixture of Gaussians

Model:
The hidden variable Z has k possible values, the variable X is a pointin R4
P(Z =k) =9,

PX =X|Z =K) = N(X 1., 5,) = (27) *'*(det £,) exp(—i(x—ukfzkl(x—ﬂk)j
i.e. the condition probabilities are normal distributions 2
The observations are a set D= {X;,X,, ... , X,.} of points in R4
Proof (of the M-step):

a%.zz pmk(log((Zzz)d’z(detZk)1’2)+(—%(xm — 1) T, —uk)j+ Iogm]

0 1 . 5 1 ) _ _
) a—/h;zk: pmk(_g(xm — 1) T (%, _,Uk)j = a—/ﬁ;Zk: pmk(_E(XrTnzklxm + g S — 2+ X;Zklluk)]

=2 ooy (X2 %)
B; imposing: > Py (X' E - 42 1)=0
2 Py o

o Z Poy

See the link in the web page for the derivations of other parameters ...
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