Artificial Intelligence

Decisions and Algorithms

Marco Piastra

Decisions and decidability (automation)

- What is a problem?

A problem is a relation between inputs and solutions
$K: \mathrm{I} \rightarrow \mathrm{S}$ (K is the relation, I is the input space, S is the solution space)

- Search problem

Relation K associates each input to many solutions (i.e. one-to-many)
Optimization problems
A search problem plus an objective or cost function
$c: S \rightarrow \boldsymbol{R}$ (from S to \boldsymbol{R}, the set of real number)
In general, the task is finding the solution(s) having maximal or minimal cost

- Decision problem

The solution space S coincides with $\{0,1\}$ and K associates each input to a unique solution
Example: $\Gamma \vDash \varphi$?
The input space I contains all possible combinations of set Γ of wffs with individual wffs φ

Decisions and decidability (automation)

- Decidable problem

A decision problem K which there exists an algorithm, more precisely a Turing machine (there are other ways of defining an algorithm or an effective procedure: they are all equivalent) that always terminates and produces the right answer in finite time.

Example of an undecidable problem: The Halting Problem

Given the formal description of a particular Turing machine with a specific input, is it possible to tell if whether it will eventually halt or run forever?

In other words, does it exist a Turing machine that, given in input the description of another
Turing machine, will always produce the answer desired?
The answer is no (such a Turing machine cannot exist)

An aside: The Halting Problem

- Intuitive ideas behind the proof (i.e. of undecidability)

There should exist a Turing machine H that, given the description of another Turing machine M and its input I, will always terminate with either "halt" or "loop" as its output depending on whether M will terminate with input I

An aside: The Halting Problem

- Intuitive ideas behind the proof (i.e. of undecidability)

There should exist a Turing machine H that, given the description of another Turing machine M and its input I, will always terminate with either "halt" or "loop" as its output depending on whether M will terminate with input I

If H existed, we could easily build another Turing machine K that enters an infinite loop whenever the output of H is "halt" and that terminates, with output "halt", when H outputs "loop"

An aside: The Halting Problem

- Intuitive ideas behind the proof (i.e. of undecidability)

There should exist a Turing machine H that, given the description of another Turing machine M and its input I, will always terminate with either "halt" or "loop" as its output depending on whether M will terminate with input I

If H existed, we could easily build another Turing machine K that enters an infinite loop whenever the output of H is "halt" and that terminates, with output "halt", when H outputs "loop"

An absurdity is then produced by 'short circuit', using K as the input of itself: K with input I should diverge when K with input I terminates and vice-versa

Transforming problems: entailment as satisfiability

- The decision problem " $\Gamma \vDash \varphi$? "

can be transformed into a satisfiability problem

 In fact, $\Gamma \models \varphi$ iff $\Gamma \cup\{\neg \varphi\}$ is not satisfiable
$(w(\Gamma)$ is the set of possible worlds that satisfy Γ)

$\Gamma \models \varphi \Rightarrow w(\Gamma) \subseteq w(\{\varphi\})$	(1 $\subseteq\{\mathbf{1}, \mathbf{2}\}$
	$w(\{\neg \varphi\})=\mathbf{0}$
$w(\Gamma \cup\{\neg \varphi\})=w(\Gamma) \cap w(\{\neg \varphi\})$	
$w(\Gamma \cup\{\neg \varphi\})=\varnothing$	(1 $\cap \mathbf{0}=\varnothing$

Transforming problems: entailment as satisfiability

- The decision problem " $\Gamma \vDash \varphi$?"
can be transformed into a satisfiability problem In fact, $\Gamma \models \varphi$ iff $\Gamma \cup\{\neg \varphi\}$ is not satisfiable

$(w(\Gamma)$ is the set of possible worlds that satisfy Γ)

$\Gamma \models \varphi \Rightarrow w(\Gamma) \subseteq w(\{\varphi\})$	(1 $\subseteq\{\mathbf{0}, \mathbf{2}\}$
	$w(\{\neg \varphi\})=\mathbf{0}$
$w(\Gamma \cup\{\neg \varphi\})=w(\Gamma) \cap w(\{\neg \varphi\})$	
$w(\Gamma \cup\{\neg \varphi\})=\varnothing$	(1) $\cap \mathbf{0}=\varnothing$

- The decision problem "is $\Gamma \cup\{\neg \varphi\}$ satisfiable?" can be transformed into a wff satisfiability problem

In fact, $\Gamma \cup\{\neg \varphi\}$ is satisfiable iff $\wedge(\Gamma \cup\{\neg \varphi\})$ is satisfiable

> This is the wff obtained by merging all the wffs in $\Gamma \cup\{\neg \varphi\}$ via \wedge, i.e. the conjunctive closure of $\Gamma \cup\{\neg \varphi\}$

Satisfiability and decidability (in L_{P})

- Is the decision problem "is ψ satisfiable?" decidable?
- It can be transformed into a search problem
i.e. finding a possible world (in the set of all possible worlds) that satisfies ψ

The input space is the set of all wffs in $\boldsymbol{L}_{\boldsymbol{P}}$
In the scientific literature, this problem is called "SAT"
Intuition: we can try every possible value assignment for the atoms in ψ

Satisfiability and decidability (in L_{P})

- Is the decision problem "is ψ satisfiable?" decidable?
- It can be transformed into a search problem
i.e. finding a possible world (in the set of all possible worlds) that satisfies ψ

The input space is the set of all wffs in $\boldsymbol{L}_{\boldsymbol{P}}$ In the scientific literature, this problem is called "SAT"
Intuition: we can try every possible value assignment for the atoms in ψ
Example:

This method $O\left(2^{n}\right)$ time complexity, due to the number of value assignments

Satisfiability and decidability (in L_{P})

Example:

$$
\begin{aligned}
& \neg(B \wedge D \wedge \neg(A \wedge C)) \text { which is equivalent to } \\
& (\neg B \vee \neg D \vee(A \wedge C))
\end{aligned}
$$

Each branch in the tree represents a possible assignment:

The same algorithm is forced to try all possible assignments
when ψ is not satisfiable.
For instance: $(\neg B \wedge \neg D \wedge \neg A \wedge \neg C)$

Computational complexity, classes P and NP

This concept applies to decidable problems only

It is based on the performances of a (known) Turing machine that gives the answer with respect to the worst case (i.e. the less favorable input for the specific problem)

- Time complexity

The number of steps that the Turing machine requires for computing the answer, as a function of some numerical dimension of the input (e.g. the number of atoms in a wff)

- Memory complexity

The number of tape cells that the Turing machine requires for computing the answer, as a function of some numerical dimension of the input

- Class P

The class of problems for which there is a Turing machine that requires $O(\mathrm{P}(n))$ time where P() is a polynomial of finite degree and n is the dimension of the (worst-case) input

- Class NP

The class of all problems:
a) A method for enumerating all possible answers (i.e. recursive enumerability)
b) An algorithm in class P that verifies if a possible answer is also a solution

It includes all problems in class P (that is, $\mathrm{P} \subseteq \mathrm{NP}$)

Class NP-complete and the SAT problem

- Class NP-complete

It is a subclass of NP (NP-complete $\subseteq \mathrm{NP}$)
A problem K is NP-complete if every problem in class NP is reducible to K

- Reducibility

For class NP-complete
Consider a problem K for which a decision algorithm $M(K)$ is known A problem J is reducible to K if there exist a decision algorithm $M(J)$ such that:
a) algorithm $M(K)$ is called just once, as a "subroutine", at the end of $M(J)$
b) apart from $M(K), M(J)$ has polynomial complexity

- The problem SAT

Is NP-complete (historically, it is the first one to be known)
Moral: if we had a polynomial decision algorithm for SAT, we would also have that

$$
\mathrm{P}=\mathrm{NP}
$$

This fact is not known, it is believed that: $\mathrm{P} \neq \mathrm{NP}$ (and a lot will change in the digital world, if this proves to be false)

Semantic Tableau, alpha and beta rules

- Semantic tableau is a method
which can be implemented as a Turing machine
- It is a decision algorithm for the problem
"is Σ satisfiable?"
where Σ is a set of wffs in $\boldsymbol{L}_{\boldsymbol{P}}$

In spite of its name, it is a symbolic method: it works on the structure of wffs only
No explicit assignments of (semantic) values are involved

Semantic Tableau, alpha and beta rules

- A tableau is a set of wffs in L_{P}

The method starts from an initial tableau

(i.e. the set Σ whose satisfiability is to be determined)

It is based on rules that transform each one wff into two wffs

- Alpha rules (i.e. expansion)

(a1)	(a2)	(a3)	(a4)
$\neg(\neg \varphi)$	$\varphi \wedge \psi$	$\neg(\varphi \vee \psi)$	$\neg(\varphi \rightarrow \psi)$
\|	\|	\|	
φ	φ, ψ	$\neg \varphi, \neg \psi$	$\varphi, \neg \psi$

- Beta rules (i.e. bifurcation)

(b2)

(b3)

(b4)

(b5)

Semantic Tableau - a working example

- Original problem:" $\Gamma \vDash \varphi$?"

Example input: $A \rightarrow(B \rightarrow C) \models B \rightarrow(A \rightarrow C)$?

- Transformed problem: "is $\Gamma \cup\{\neg \varphi\}$ satisfiable?"

Hence the initial tableau is $\Gamma \cup\{\neg \varphi\}$

$$
\begin{aligned}
& A \rightarrow(B \rightarrow C), \neg(B \rightarrow(\boldsymbol{A} \rightarrow \boldsymbol{C})) \\
& \text { | (a4) } \\
& A \rightarrow(B \rightarrow C), B, \neg(\boldsymbol{A} \rightarrow \boldsymbol{C})
\end{aligned}
$$

$C, B, A, \neg C$ obaso

Semantic Tableau - a working example

- Original problem: " $\Gamma \models \varphi$?"

Example input: $A \rightarrow(B \rightarrow C) \models B \rightarrow(A \rightarrow C)$?

- Transformed problem: "is $\Gamma \cup\{\neg \varphi\}$ satisfiable?"

Hence the initial tableau is $\Gamma \cup\{\neg \varphi\}$

The usual notation in textbooks is even more concise:
only those wffs that are added to the initial tableau in each branch are shown in the tree

Semantic Tableau - algorithm recap

- Algorithm (informal description - see Lab for the implementation):

Input problem: " $\Gamma \vDash \varphi$? "
The input problem is transformed into "is $\Gamma \cup\{\neg \varphi\}$ satisfiable?"
Methods of this type are also called 'by refutation'
For each active tableau (i.e. the leaves in the tree),
There could be two cases:

1) The tableau contains only literals

If the tableau contains a complementary pair of literals
then declare it closed
else declare it open (i.e. failure)
2) The tableau contains one or more composite wff

First try to apply an alpha rule, otherwise, if this is not possible, try to apply a beta rule. In either case, two new tableau will be generated

Output: the tree structure of tableau

Semantic Tableau - (required) algorithm properties

- Termination

The algorithm never diverges (i.e. it never enters an infinite loop)
Each application of either alpha or beta rule simplifies a wff (i.e. it makes it less composite): so the application of rules cannot continue forever

- Symbolic derivation

As already stated, in spite of its name, this is a symbolic method
We write

$$
\Gamma \vdash_{S T} \varphi
$$

iff the Semantic Tableau method is successful (i.e. all leaves are closed) for $\Gamma \cup\{\neg \varphi\}$
How do we know that $\Gamma \vdash_{S T} \varphi \Rightarrow \Gamma \vDash \varphi$?
(Soundness - also correctness - of the method)
Exercise: prove it
(hint: consider the condition on $\Gamma \cup\{\neg \varphi\}$ and think about how it relates to each rule)
How do we know that $\Gamma \models \varphi \Rightarrow \Gamma \vdash_{S T} \varphi$?
(Completeness of the method)
Proving it is definitely more difficult: see textbook (i.e. Ben-Ari)

Semantic Tableau - (required) algorithm properties

- Termination

The algorithm never diverges (i.e. it never enters an infinite loop)
Each application of either alpha or beta rule simplifies a wff (i.e. it makes it less composite): so the application of rules cannot continue forever

- Soundness
$\Gamma \vdash_{S T} \varphi \Rightarrow \Gamma \vDash \varphi$
- Completeness
$\Gamma \vDash \varphi \Rightarrow \Gamma \vdash_{S T} \varphi$
- Termination + Soundness + Completeness = Decision Algorithm
(for propositional logic)

Which method is faster?

- Time complexity (remember: consider the worst case)

The 'brute-force search' and Semantic Tableau have the same complexity : $O\left(2^{n}\right)$

- How well do these method perform in practice?

It depends

Example 1(try it):

$$
A \wedge B \wedge C \wedge \neg A
$$

The 'brute-force search' requires $2^{3}=8$ attempts
The Semantic Tableau method requires applying the same alpha rule 3 times

Example 2 (try it):

$$
(A \vee B) \wedge(A \vee \neg B) \wedge(\neg A \vee B) \wedge(\neg A \vee \neg B)
$$

The 'brute-force search' requires $2^{2}=4$ attempts
The Semantic Tableau method requires applying the same alpha rule 3 times; then the same beta rule is applied exhaustively producing a tree with 4 levels, with each node in a tree with a branching factor 2
At the end, the tree has $2^{4}=16$ leaves (all closed tableau)

