

Smart inventory management:

Will Deep Reinforcement Learning help us win the game?

Marco Piastra

25-01-2018

This presentation is available at: http://vision.unipv.it/Al/AIRG.html

What happened with Artificial Intelligence?

The revolution in AI has been profound, it definitely surprised me, even though I was sitting right there.

Sergey Brin
Google co-founder

Sergey Brin [Google Co-Founder, January 2017]

"I didn't pay attention to it [i.e. Artificial Intelligence] at all, to be perfectly honest."

"Having been trained as a computer scientist in the 90s, everybody knew that AI didn't work. People tried it, they tried neural nets and none of it worked."

[Quote and image from https://www.weforum.org/agenda/2017/01/google-sergey-brin-i-didn-t-see-ai-coming/]

Reinforcement Learning: we knew that already...

Agent/Environment Interactions

General setting with Reinforcement Learning

An agent, that performs actions on an environment

The actions of the agent change the *state* of the environment

The agent gets a reward (either positive or negative) in consequence of its action

Examples:

- a_t could be a *move in a game*, whereby the agent changes the state of the game
- a_t could be a movement, whereby the agent changes its position in the environment

The agent seeks an *optimal strategy* towards a given goal...

Markov Decision Process (MDP)

Markov Decision Process: $\langle S, A, r, P, \gamma \rangle$

Set of <u>states</u>: $S = \{s_1, s_2, \dots\}$

Set of *actions*: $A = \{a_1, a_2, \dots\}$

 $\underline{reward\ function}: \quad r:\mathcal{S} o \mathbb{R}$ the outcome of $agent's\ actions$ is uncertain

<u>transition probability distribution</u>: $P(S_{t+1} \mid S_t, A_t)$ (also called a *model*)

Markov property: the transition probability depends only the previous state and action

$$P(S_{t+1} \mid S_t, A_t) = P(S_{t+1} \mid S_t, A_t, S_{t-1}, A_{t-1}, S_{t-2}, A_{t-2}, \dots)$$

discount factor: $0 \le \gamma < 1$

Markov Decision Process (MDP): policies and values

The agent is supposed to adopt a *deterministic policy*: $\pi: \mathcal{S} \to \mathcal{A}$ In other words, the agent always chooses its *action* depending on the *state* alone

Given a policy π , the **state value function** is defined, for each state s as:

$$V^{\pi}(s) := \mathbb{E}[r(S_t) + \gamma r(S_{t+1}) + \gamma^2 r(S_{t+2}) + \dots \mid \pi, S_t = s]$$

Note the role of the discount factor: a value $\,\gamma < 1\,$ means that that future rewards could be weighted less (by the agent) than immediate ones

Note also that all states $\,S_t\,$ must be described by $\it random\ \it variables$: i.e. the $\it policy$ is $\it deterministic$ but $\it state\ \it transitions$ are not

Note also that when the reward is *bounded*, i.e. $r(S) \leq r_{\text{max}}$

$$\sum_{t=0}^{\infty} \gamma^t \ r(S_t) \le r_{\max} \sum_{t=0}^{\infty} \gamma^t = r_{\max} \, rac{1}{1-\gamma}$$
 for $\gamma < 1$ this is the geometric series

Bellman equations

By working on the definition of value function:

$$V^{\pi}(s) := \mathbb{E}[r(S_t) + \gamma r(S_{t+1}) + \gamma^2 r(S_{t+2}) + \dots \mid \pi, S_t = s]$$

$$= \mathbb{E}[r(S_t) + \gamma (r(S_{t+1}) + \gamma r(S_{t+2}) + \dots) \mid \pi, S_t = s]$$

$$= r(s) + \gamma \mathbb{E}[r(S_{t+1}) + \gamma r(S_{t+2}) + \dots \mid \pi, S_t = s]$$

$$= r(s) + \gamma \sum_{s'} P(s' \mid s, \pi(s)) \cdot \mathbb{E}[r(S_{t+1}) + \gamma r(S_{t+2}) + \dots \mid \pi, S_{t+1} = s']$$

$$= r(s) + \gamma \sum_{S_{t+1}} P(S_{t+1} \mid s, \pi(s)) \cdot V^{\pi}(S_{t+1})$$

This means that in a Markov Decision Process:

$$V^{\pi}(s) = r(s) + \gamma \sum_{S_{t+1}} P(S_{t+1} \mid s, \pi(s)) \cdot V^{\pi}(S_{t+1})$$

This is true for any state, so there is one such equation for each of those If the set of states is <u>finite</u>, there are exactly |S| (linear) Bellman equations for |S| variables: in general, for any <u>deterministic</u> policy, V^{π} <u>can</u> be computed analytically

Optimal policy - Optimal value function

Basic definitions

$$\pi^*(s) := \underset{\pi}{\operatorname{argmax}} V^{\pi}(s), \ \forall s \in S$$
$$V^*(s) := \underset{\pi}{\operatorname{max}} V^{\pi}(s), \ \forall s \in S$$

Property: for every MDP, there exists such an optimal deterministic policy (possibly non-unique)

With Bellman Equations:

$$\max_{\pi} V^{\pi}(s) = r(s) + \gamma \max_{\pi} \left(\sum_{S_{t+1}} P(S_{t+1} \mid s, \pi(s)) \cdot V^{\pi}(S_{t+1}) \right)$$
$$V^{*}(s) = r(s) + \gamma \max_{\pi} \left(\sum_{S_{t+1}} P(S_{t+1} \mid s, \pi(s)) \cdot V^{*}(S_{t+1}) \right)$$
$$= r(s) + \gamma \max_{a} \left(\sum_{S_{t+1}} P(S_{t+1} \mid s, a) \cdot V^{*}(S_{t+1}) \right)$$

Therefore:

$$\pi^*(s) = \operatorname{argmax}_a \left(\sum_{S_{t+1}} P(S_{t+1} \mid s, a) V^*(S_{t+1}) \right)$$

Computing V^* directly from these equations is unfeasible, however There are in fact $|A|^{|S|}$ possible strategies

However, once V^* has been determined, π^* can be determined as well

Optimal policy - Optimal value function

Value iteration algorithm

Initialize: $V(s) := r(s), \ \forall s \in S$ Repeat:

Note that there is no policy: all actions must be explored

1) For every state, update:
$$V(s) := r(s) + \gamma \max_{a} \sum_{s'} P(s' \mid s, a) V(s')$$

Theorem: for every fair way (i.e. giving an equal chance) of visiting the states in S, this algorithm converges to V^{st}

Computing the optimal policy

Initialize states (e.g. using rewards as initial values)

Computing the optimal policy

Nice, but not very realistic ...

Main limitations of the value function approach

Everything must be known in advance:

- the environment (i.e. the map, in the gridworld example)
- the model, i.e. the transition probability

These elements allow a direct (albeit expensive) computation of π^*

In reality

- the environment is in general unknown to agent which has to explore in order to gain knowledge of it
- the model, i.e. the transition probability that determines the outcome of actions is also unknown to the agent (which implies that even more exploration is required)

Moral: we need to learn by doing...

Action value function

An analogous of the value function $\,V^{\pi}$

Given a policy π , the *action value function* is defined, for each pair (s,a) as:

$$Q^{\pi}(s, a) := \sum_{S_{t+1}} P(S_{t+1} \mid s, a) \cdot V^{\pi}(S_{t+1})$$

$$= \sum_{S_{t+1}} P(S_{t+1} \mid s, a) \cdot \mathbb{E}[r(S_{t+1}) + \gamma r(S_{t+2}) + \dots \mid \pi, S_{t+1}]$$

$$= \sum_{S_{t+1}} P(S_{t+1} \mid s, a) \cdot [r(S_{t+1}) + \mathbb{E}[\gamma r(S_{t+2}) + \dots \mid \pi, S_{t+1}]]$$

$$= \sum_{S_{t+1}} P(S_{t+1} \mid s, a) \cdot [r(S_{t+1}) + \gamma Q^{\pi}(S_{t+1}, \pi(S_{t+1}))]$$

In other words, $Q^{\pi}(s,a)$ is the expected value of the reward in S_{t+1} by taking action a in state s and then following policy π from that point on

Following a similar line of reasoning, the *optimal* action value function is

$$Q^*(s, a) = \sum_{S_{t+1}} P(S_{t+1} \mid s, a) \cdot [r(S_{t+1}) + \gamma \max_{a'} Q^*(S_{t+1}, a')]$$

This is an expected value: it can be approximated by an empirical average...

Q-Learning

• Q-learning algorithm (ε -greedy version)

Initialize $\hat{Q}(s,a)$ at random, put the agent in a random state s Repeat: An estimator of the 'real' Q function

- 1) Select the action $rgmax_a\hat{Q}(s,a)$ with probability (1-arepsilon) otherwise, select a at random
- 2) The agent is now in state s^\prime and has received the reward r
- 3) Update $\hat{Q}(s,a)$ by

$$\Delta \hat{Q}(s, a) = \alpha [r + \gamma \max_{a'} \hat{Q}(s', a') - \hat{Q}(s, a)]$$

Exponential Moving Average

Note in step 1) the dualism between **exploration** and **exploitation**:

- with probability (1-arepsilon) the agent will **exploit** its knowledge $\hat{Q}(s,a)$
- with probability ε the agent will **explore** new actions

Q-Learning

• Q-learning algorithm (ε -greedy version)

Initialize $\hat{Q}(s,a)$ at random, put the agent in a random state s Repeat:

- 1) Select the action $\argmax_a \hat{Q}(s,a)$ with probability $(1-\varepsilon)$ otherwise, select a at random
- 2) The agent is now in state s^\prime and has received the reward r
- 3) Update $\hat{Q}(s,a)$ by

$$\Delta \hat{Q}(s, a) = \alpha [r + \gamma \max_{a'} \hat{Q}(s', a') - \hat{Q}(s, a)]$$

A very nice mathematical model, however:

- the argmax in step 1) is expensive, in particular when ${\cal A}$ is <u>continuous</u>....
- learning $\hat{Q}(s,a)$ requires in general a <u>huge</u> amount of trials....
- and the latter problem becomes even worse when $\, {\cal S} \,$ is $\,$ continuous $\,$

Deep Learning: this is new

[15]

Increasing network depth

A feed-forward neural network with one hidden layer

$$ilde{y} = m{w} \cdot g(m{W}^{(1)}m{x} + m{c}^{(1)}) + c$$
 output layer hidden layer input layer

Increasing network depth

A feed-forward neural network with one hidden layer

$$\tilde{y} = \boldsymbol{w} \cdot g(\boldsymbol{W}^{(1)}\boldsymbol{x} + \boldsymbol{c}^{(1)}) + c$$

Universal approximation theorem (Cybenko, 1989, Hornik, 1991)

When g is a non-linear function of a certain class any continuous target function

$$y = f^*(x), x \in \mathbb{R}$$

can be approximated arbitrarily well by \tilde{y} (in the sense that there exists parameters $\boldsymbol{w}, \boldsymbol{W}^{(1)}, \boldsymbol{c}^{(1)}, c$ such that the above holds)

Want a better approximation? Increase the number of units in the <u>hidden</u> layer . . .

Increasing network depth

A feed-forward neural network with two hidden layers

$$\tilde{y} = \mathbf{w} \cdot g(\mathbf{W}^{(1)}g(\mathbf{W}^{(2)}\mathbf{x} + \mathbf{c}^{(2)}) + \mathbf{c}^{(1)}) + c$$

Increasing network depth

A feed-forward neural network with three hidden layers

$$\tilde{y} = \boldsymbol{w} \cdot g(\boldsymbol{W}^{(1)}g(\boldsymbol{W}^{(2)}g(\boldsymbol{W}^{(3)}\boldsymbol{x} + \boldsymbol{c}^{(3)}) + \boldsymbol{c}^{(2)}) + \boldsymbol{c}^{(1)}) + c$$

Increasing network depth

A feed-forward neural network with three hidden layers

$$\tilde{y} = \boldsymbol{w} \cdot g(\boldsymbol{W}^{(1)}g(\boldsymbol{W}^{(2)}g(\boldsymbol{W}^{(3)}\boldsymbol{x} + \boldsymbol{c}^{(3)}) + \boldsymbol{c}^{(2)}) + \boldsymbol{c}^{(1)}) + c$$

OK, but what is there to gain from such increase in depth?

There are formal results (plus empirical evidence) that depth promotes <u>greater effectiveness</u> of the *hidden* units (in blue)

In other words, using depth you can do more with less blue units

Increasing network depth

A feed-forward neural network with three hidden layers

$$\tilde{y} = \boldsymbol{w} \cdot g(\boldsymbol{W}^{(1)}g(\boldsymbol{W}^{(2)}g(\boldsymbol{W}^{(3)}\boldsymbol{x} + \boldsymbol{c}^{(3)}) + \boldsymbol{c}^{(2)}) + \boldsymbol{c}^{(1)}) + c$$

Problem: deeper networks are harder to train from examples $D = \{(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(1)})\}_{i=1}^{N}$

Increasing network depth

A feed-forward neural network with three hidden layers

$$\tilde{y} = \boldsymbol{w} \cdot g(\boldsymbol{W}^{(1)}g(\boldsymbol{W}^{(2)}g(\boldsymbol{W}^{(3)}\boldsymbol{x} + \boldsymbol{c}^{(3)}) + \boldsymbol{c}^{(2)}) + \boldsymbol{c}^{(1)}) + c$$

Problem: deeper networks are harder to train from examples $D = \{(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(1)})\}_{i=1}^N$

This is new!

A full bag of formal results and *empirical tricks* have made such training of deep neural networks *feasible*

Tools like TensorFlow (by Google Inc.) contain lots of such provisions already implemented

Putting things together: Deep Reinforcement Learning

Deep Reinforcement Learning

Q-Learning Algorithm

Initialize $\hat{Q}(s,a)$ at random, put the agent in a random state s Repeat:

- 1) Select the action $rgmax_a\hat{Q}(s,a)$ with probability (1-arepsilon) otherwise, select a at random
- 2) The agent is now in state s^\prime and has received the reward r
- 3) Update $\hat{Q}(s,a)$ by

$$\Delta \hat{Q}(s, a) = \alpha [r + \gamma \max_{a'} \hat{Q}(s', a') - \hat{Q}(s, a)]$$

Fundamental Idea:

use a deep neural network to learn the approximator $\hat{Q}(s,a)$ from the examples collected while **exploring** - **exploiting**

S. Gu, T. P. Lillicrap, I. Sutskever, S. Levine.

Continuous deep Q-learning

with model-based acceleration, 2016

```
Algorithm 1.2 NAF algorithm for continuous Q-learning
Randomly initialize \tilde{Q}(s, a | \theta_{PRED}^{Q})
                                                                       \theta^Q := (\theta^\mu, \theta^P, \theta^V)
Initialize the target network with \theta_{TAR}^Q \leftarrow \theta_{PRED}^Q
Initialize replay buffer R \leftarrow 0
for each episode do:
   Initialize random process \mathcal{N} for action exploration
   s_0 \leftarrow Environment(reset)
   for t = 0 to T do:
      a_t \leftarrow \mu(s_t | \theta_{\text{PRED}}^{\mu}) + \mathcal{N}_t
       r_t \leftarrow r(s_t, a_t)
       s_{t+1} \leftarrow Environment(s_t, a_t)
       RB \leftarrow RB \cup \{(s_t, a_t, r_t, s_{t+1})\}store transition in the replay buffer
       Sample at random and normalize the mini batch MB
       for each sample i = (s_i, a_i, r_i, s_{i+1}) in m
           y_i = r_i + \gamma \tilde{V}(s_{i+1}|\theta_{TAD}^V)
           Compute gradients
              \frac{\partial}{\partial \theta^Q} \left( y_i - Q \left( s_i, a_i | \theta_{PRED}^Q \right) \right)^2  (Loss function L(\theta^Q))
          \theta_{\text{PRED}}^Q \leftarrow \theta_{\text{PRED}}^Q - \eta \left( \frac{\partial}{\partial \theta^Q} L(\theta^Q) \right)
         \theta_{\mathrm{TAR}}^{Q} \leftarrow \tau \theta_{\mathrm{PRED}}^{Q} + (1+\tau)\theta_{\mathrm{TAR}}^{Q}
   end for
end for
```

Algorithm Highlights

• a deep neural network for $\hat{Q}(s,a)$

```
Algorithm 1.2 NAF algorithm for continuous Q-learning
```

```
Randomly initialize \tilde{Q}(s, a | \theta_{PRED}^{Q})
                                                                             \theta^Q := (\theta^\mu, \theta^P, \theta^V)
Initialize the target network with \theta_{\mathrm{TAR}}^{Q} \leftarrow \theta_{\mathrm{PRED}}^{Q}
Initialize replay buffer R \leftarrow 0
for each episode do:
    Initialize random process \mathcal{N} for action exploration
    s_0 \leftarrow Environment(reset)
   for t = 0 to T do:
       a_t \leftarrow \mu(s_t | \theta_{\text{PRED}}^{\mu}) + \mathcal{N}_t
       r_t \leftarrow r(s_t, a_t)
       s_{t+1} \leftarrow Environment(s_t, a_t)
       RB \leftarrow RB \cup \{(s_t, a_t, r_t, s_{t+1})\}store transition in the replay buffer
       Sample at random and normalize the mini batch MB
       for each sample i = (s_i, a_i, r_i, s_{i+1}) in m
           y_i = r_i + \gamma \tilde{V}(s_{i+1}|\theta_{TAR}^V)
           Compute gradients
               \frac{\partial}{\partial \theta^Q} \left( y_i - Q \left( s_i, a_i | \theta_{PRED}^Q \right) \right)^2  (Loss function L(\theta^Q))
           \theta_{\text{PRED}}^Q \leftarrow \theta_{\text{PRED}}^Q - \eta \left( \frac{\partial}{\partial \theta^Q} L(\theta^Q) \right)
          \theta_{\mathrm{TAR}}^{Q} \leftarrow \tau \theta_{\mathrm{PRED}}^{Q} + (1+\tau)\theta_{\mathrm{TAR}}^{Q}
   end for
end for
```

- ullet a deep neural network for $\hat{Q}(s,a)$
- two deep networks:
 one TARget, which is the objective
 and one PREDictor for transient
 approximations

```
Algorithm 1.2 NAF algorithm for continuous Q-learning
Randomly initialize \tilde{Q}(s, a | \theta_{PRED}^{Q})
                                                                                   \theta^Q := (\theta^\mu, \theta^P, \theta^V)
 \begin{array}{l} \text{Initialize the target network with } \theta^Q_{\text{TAR}} \leftarrow \theta^Q_{\text{PRED}} \\ \hline \text{Initialize replay buffer } R \leftarrow 0 \end{array} 
for each episode do:
    Initialize random process \mathcal{N} for action exploration
    s_0 \leftarrow Environment(reset)
    for t = 0 to T do:
        a_t \leftarrow \mu(s_t | \theta_{\text{PRED}}^{\mu}) + \mathcal{N}_t
        r_t \leftarrow r(s_t, a_t)
        s_{t+1} \leftarrow Environment(s_t, a_t)
        RB \leftarrow RB \cup \{(s_t, a_t, r_t, s_{t+1})\}store transition in the replay buffer
        Sample at random and normalize the mini batch MB
        for each sample i = (s_i, a_i, r_i, s_{i+1}) in m
             y_i = r_i + \gamma \tilde{V}(s_{i+1}|\theta_{TAR}^V)
             Compute gradients
                \frac{\partial}{\partial \theta^Q} \left( y_i - Q \left( s_i, a_i | \theta_{PRED}^Q \right) \right)^2  (Loss function L(\theta^Q))
            \theta_{\text{PRED}}^Q \leftarrow \theta_{\text{PRED}}^Q - \eta \left( \frac{\partial}{\partial \theta^Q} L(\theta^Q) \right)
         \begin{array}{c} \theta_{\mathrm{TAR}}^{Q} \leftarrow \tau \theta_{\mathrm{PRED}}^{Q} + (1+\tau)\theta_{\mathrm{TAR}}^{Q} \\ \mathbf{end\ for} \end{array}
    end for
end for
```

- ullet a deep neural network for $\hat{Q}(s,a)$
- two deep networks: one TARget, which is the objective and one PREDictor for transient approximations
- careful <u>tensorial</u> formulation to avoid the argmax step

```
Algorithm 1.2 NAF algorithm for continuous Q-learning
Randomly initialize \tilde{Q}(s, a | \theta_{PRED}^{Q})
                                                                       \theta^Q := (\theta^\mu, \theta^P, \theta^V)
Initialize the target network with \theta_{TAR}^Q \leftarrow \theta_{PRED}^Q
Initialize replay buffer R \leftarrow 0
for each episode do:
   Initialize random process N for action exploration
   s_0 \leftarrow Environment(reset)
   for t = 0 to T do:
      a_t \leftarrow \mu(s_t | \theta_{\text{PRED}}^{\mu}) + \mathcal{N}_t
       r_t \leftarrow r(s_t, a_t)
       s_{t+1} \leftarrow Environment(s_t, a_t)
       RB \leftarrow RB \cup \{(s_t, a_t, r_t, s_{t+1})\}store transition in the replay buffer
       Sample at random and normalize the mini batch MB
       for each sample i = (s_i, a_i, r_i, s_{i+1}) in m
          y_i = r_i + \gamma \tilde{V}(s_{i+1}|\theta_{TAR}^V)
          Compute gradients
              \frac{\partial}{\partial \theta^Q} \left( y_i - Q \left( s_i, a_i | \theta_{PRED}^Q \right) \right)^2  (Loss function L(\theta^Q))
          \theta_{\text{PRED}}^Q \leftarrow \theta_{\text{PRED}}^Q - \eta \left( \frac{\partial}{\partial \theta^Q} L(\theta^Q) \right)
          \theta_{\text{TAR}}^{Q} \leftarrow \tau \theta_{\text{PRED}}^{Q} + (1+\tau)\theta_{\text{TAR}}^{Q}
   end for
end for
```

- ullet a deep neural network for $\hat{Q}(s,a)$
- two deep networks: one TARget, which is the objective and one PREDictor for transient approximations
- careful <u>tensorial</u> formulation to avoid the argmax step
- noise based on a stochastic process (i.e. a random walk, see later) forcing exploration

```
Algorithm 1.2 NAF algorithm for continuous Q-learning
Randomly initialize \tilde{Q}(s, a | \theta_{PRED}^{Q})
                                                                       \theta^Q := (\theta^\mu, \theta^P, \theta^V)
Initialize the target network with \theta_{TAR}^Q \leftarrow \theta_{PRED}^Q
Initialize replay buffer R \leftarrow 0
for each episode do:
   Initialize random process N for action exploration
   s_0 \leftarrow Environment(reset)
   for t = 0 to T do:
       a_t \leftarrow \mu(s_t | \theta_{\text{PRED}}^{\mu}) + \mathcal{N}_t
       r_t \leftarrow r(s_t, a_t)
       s_{t+1} \leftarrow Environment(s_t, a_t)
       RB \leftarrow RB \cup \{(s_t, a_t, r_t, s_{t+1})\}store transition in the replay buffer
       Sample at random and normalize the mini batch MB
       for each sample i = (s_i, a_i, r_i, s_{i+1}) in m
          y_i = r_i + \gamma \tilde{V}(s_{i+1}|\theta_{TAR}^V)
          Compute gradients
              \frac{\partial}{\partial \theta^Q} \left( y_i - Q \left( s_i, a_i | \theta_{PRED}^Q \right) \right)^2  (Loss function L(\theta^Q))
          \theta_{\text{PRED}}^Q \leftarrow \theta_{\text{PRED}}^Q - \eta \left( \frac{\partial}{\partial \theta^Q} L(\theta^Q) \right)
          \theta_{\text{TAR}}^{Q} \leftarrow \tau \theta_{\text{PRED}}^{Q} + (1+\tau)\theta_{\text{TAR}}^{Q}
   end for
end for
```

- ullet a deep neural network for $\hat{Q}(s,a)$
- two deep networks: one TARget, which is the objective and one PREDictor for transient approximations
- careful <u>tensorial</u> formulation to avoid the argmax step
- noise based on a stochastic process (i.e. a random walk, see later) forcing exploration
- replay buffer with random extraction of mini-batches to avoid temporal correlation arising from sequential exploration

```
Algorithm 1.2 NAF algorithm for continuous Q-learning
Randomly initialize \tilde{Q}(s, a | \theta_{PRED}^{Q})
                                                                           \theta^Q := (\theta^\mu, \theta^P, \theta^V)
Initialize the target network with \theta_{TAR}^Q \leftarrow \theta_{PRED}^Q
Initialize replay buffer R \leftarrow 0
for each episode do:
   Initialize random process N for action exploration
   s_0 \leftarrow Environment(reset)
   for t = 0 to T do:
       a_t \leftarrow \mu(s_t | \theta_{\text{PRED}}^{\mu}) + \mathcal{N}_t
       r_t \leftarrow r(s_t, a_t)
       s_{t+1} \leftarrow Environment(s_t, a_t)
       RB \leftarrow RB \cup \{(s_t, a_t, r_t, s_{t+1})\}store transition in the replay buffer
       Sample at random and normalize the mini batch MB
       for each sample i = (s_i, a_i, r_i, s_{i+1}) in m
           y_i = r_i + \gamma \tilde{V}(s_{i+1}|\theta_{TAR}^V)
           Compute gradients
              \frac{\partial}{\partial \theta^Q} \left( y_i - Q \left( s_i, a_i | \theta_{PRED}^Q \right) \right)^2  (Loss function L(\theta^Q))
          \theta_{\text{PRED}}^Q \leftarrow \theta_{\text{PRED}}^Q - \eta \left( \frac{\partial}{\partial \theta^Q} L(\theta^Q) \right)
       \begin{array}{l} \theta_{\mathrm{TAR}}^{Q} \leftarrow \tau \theta_{\mathrm{PRED}}^{Q} + (1+\tau)\theta_{\mathrm{TAR}}^{Q} \\ \mathbf{end\ for} \end{array}
   end for
end for
```

- ullet a deep neural network for $\hat{Q}(s,a)$
- two deep networks: one TARget, which is the objective and one PREDictor for transient approximations
- careful <u>tensorial</u> formulation to avoid the argmax step
- noise based on a stochastic process (i.e. a random walk, see later) forcing exploration
- replay buffer with random extraction of mini-batches to avoid temporal correlation arising from sequential exploration
- no need to discretize ${\cal A}$ and ${\cal S}$

```
Algorithm 1.2 NAF algorithm for continuous Q-learning
Randomly initialize \tilde{Q}(s, a|\theta_{PRED}^{Q})
                                                                        \theta^Q := (\theta^\mu, \theta^P, \theta^V)
Initialize the target network with \theta_{TAR}^Q \leftarrow \theta_{PRED}^Q
Initialize replay buffer R \leftarrow 0
for each episode do:
   Initialize random process N for action exploration
   s_0 \leftarrow Environment(reset)
   for t = 0 to T do:
       a_t \leftarrow \mu(s_t | \theta_{\text{PRED}}^{\mu}) + \mathcal{N}_t
       r_t \leftarrow r(s_t, a_t)
       s_{t+1} \leftarrow Environment(s_t, a_t)
       RB \leftarrow RB \cup \{(s_t, a_t, r_t, s_{t+1})\}store transition in the replay buffer
       Sample at random and normalize the mini batch MB
       for each sample i = (s_i, a_i, r_i, s_{i+1}) in m
           y_i = r_i + \gamma \tilde{V}(s_{i+1}|\theta_{TAR}^V)
          Compute gradients
              \frac{\partial}{\partial \theta^Q} \left( y_i - Q \left( s_i, a_i | \theta_{PRED}^Q \right) \right)^2 \text{ (Loss function } L(\theta^Q) \text{)}
          \theta_{\text{PRED}}^Q \leftarrow \theta_{\text{PRED}}^Q - \eta \left( \frac{\partial}{\partial \theta^Q} L(\theta^Q) \right)
       \theta_{\text{TAR}}^{Q} \leftarrow \tau \theta_{\text{PRED}}^{Q} + (1+\tau)\theta_{\text{TAR}}^{Q}end for
   end for
end for
```

Smart Inventory Management (thanks to Profumeria Web)

Inventory Management: the environment

- Environment description ______ (Simplified for this experiment)
 - the agent is the e-commerce company, as a whole
 - the agent has an inventory, where products are stored
 - keeping products in the inventory has a cost (yearly estimate: 18% of overall product cost)
 - the website can only sell products that are in the inventory This is NOT true in reality
 - sales occur on a daily basis
 - products can be obtained by the agent via requests to suppliers
 - there exist different suppliers,
 some are more expensive others are cheaper, also delivery times may differ
 - suppliers have their own inventories and they serve multiple buyers

Goal

Manage the inventory to maximize *marginality* (i.e. revenues – total costs)

Implementation

An aside: stochastic processes for market simulations

Random walk: Ornstein-Uhlebneck (OU) stochastic process

A popular choice for market simulations:

- it is a random walk
- it is mean reverting
- its is *fully controllable* (via its parameters)

[image from: http://www.turingfinance.com/random-walks-down-wall-street-stochastic-processes-in-python/]

Inventory Management: basic assumptions

Suppliers

```
Product average market cost (AMC): mean reverting random walk (OU)

Product cost (per supplier, per product): AMC + \mathcal{N}(\delta, 0.1)

gaussian, supplier-specific cost delta (delta negative => the supplier is cheaper)
```

Product availability (per supplier): mean reverting random walk (OU)

Requests (per product, per supplier)

Limited to product availability (per supplier)

Competing model (with other buyers): requests will accepted with binomial probability

Delivery times: Poisson stochastic process

with supplier-specific *lambda* parameter (e.g. different geographic distance)

Sales

Inventory Management: simulation scenario

```
"Products": {
  "Product1": {
   "initial_cost": 30,
    "sales potential": 12
  "Product2": {
    "initial cost": 50,
    "sales potential": 8
"Suppliers": {
 "Supplier1": {
    "delivery time": 5,
    "products": {
      "Product1": {
       "initial_availability": 20,
        "initial cost": 29,
        "average_cost_delta": -1.0
      "Product2": {
       "initial_availability": 15,
        "initial cost": 48,
        "average cost delta": -5.0
  "Supplier2": {
    "delivery time": 2,
    "products": {
      "Product1": {
        "initial availability": 100,
        "initial cost": 32,
        "average_cost_delta": 2.0
      "Product2": {
        "initial_availability": 100,
        "initial_cost": 54,
        "average cost delta": 4.0
```

Inventory Management: daily routine

1. Determine sales (environment)

Determine agent sales (previous day)
Update agent inventory
Compute agent daily marginality

2. Requests (agent)

Based on current *state* (see after) determine agent product requests to each supplier

3. Prepare orders (environment)

Each supplier receives agent product requests and resolve competition (i.e. binomial)
Orders are enqueued for later delivery
Update product availability (per product, per supplier)

4. Order delivery (environment)

Dequeue orders that have been delivered to the agent Update agent inventory

Inventory Management: deep reinforcement learning

State

Daily sales (*per product*): quantity, price Agent inventory (*per product*): quantity, average inventory cost Supplier (*per supplier, per product*): availability, cost

Action

Product request (per supplier, per product): quantity

Reward

Daily marginality (per product, due to sales): DM := quantity (price - AIC)Total daily marginality (TDM): sum of daily marginality per product

Daily inventory cost (per product): (0.18/365) AIC

Total daily inventory cost (TAIC): sum of average inventory cost of each product

Action size (AS): norm of request quantities, seen as a vector

(Very preliminary results)

Sales and inventory - after 10 episodes

Agent actions - after 10 episodes

Sales and inventory - after 70 episodes

Agent actions - after 70 episodes

Sales and inventory - after 300 episodes

Agent actions - after 300 episodes

