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What happened with Artificial Intelligence?

The revolution in Al
has been profound,

it definitely surprised
me, even though I was
sitting right there.

Sergey Brin

Google co-founder

. Sergey Brin [Google Co-Founder, January 2017]

“Ididn’t pay attention to it [i.e. Artificial Intelligence] at all, to be perfectly honest.”

“Having been trained as a computer scientist in the 90s,
everybody knew that Al didn’t work.
People tried it, they tried neural nets and none of it worked.”

[Quote and image from https://www.weforum.org/agenda/2017/01/google-sergey-brin-i-didn-t-see-ai-coming/]
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Reinforcement Learning:
we knew that already...
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Adent/Environment Interactions

= General setting with Reinforcement Learning

An agent, that performs actions on an environment

The actions of the agent change the state of the environment
The agent gets a reward (either positive or negative) in consequence of its action

state reward
Fy

""'I [ Agent }

. .
Firr
|_‘

| St

Environment

|

Examples:

action
oy

[image from: Sutton, Barto, Reinforcement Learning. 1998]

= a, could be a movein a game, whereby the agent changes the state of the game
= a, could be a movement, whereby the agent changes its position in the environment

The agent seeks an optimal strategy towards a given goal...
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Markov Decision Process (MDP)

The Gridworld example

-\
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Markov Decision Process: < S, A,r, P,y >
Setof states: S ={s1,52,...}
Setofactions: A={a,as,...}

this is the goal state, to be reached

this is a pitfall, to be avoided
in this example, reward values depend on states only

each box is a state the agent may be in

reward function : r:-§—-R / the outcome of agent's actions is uncertain

transition probability distribution : P(Si11 | St, A+) (also called a model)
Markov property: the transition probability depends only the previous state and action

P(St—l—l | StaAt) — P(St—l—l | StaAta St—laAt—la St—QaAt—Qa .. )
discountfactor: 0<~vy <1
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Markov Decision Process (MDP): policies and values

The agent is supposed to adopt a deterministic policy: ©:S — A
In other words, the agent always chooses its action depending on the state alone

Given a policy 7 , the state value function is defined, for each state s as:
VW(S) = E[T(St) —+ ’}/T(St_|_1) + ’72?“(51;4_2) —+ ... | T, St = S]

Note the role of the discount factor: avalue v < 1 means that that future rewards
could be weighted less (by the agent) than immediate ones

Note also that all states S; must be described by random variables
i.e. the policy is deterministic but state transitions are not

Note also that when the reward is bounded, i.e. 7(S) < rpax

Z'y r(Sy) < frmaXZ'}/ = Tmax %
=0 7

for v < 1 thisis the geometric series
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Bellman equations

By working on the definition of value function:
V™(s) == E[r(S;) +vr(Sit1) +v?1r(Siq2) +...| 7, St = 5]
E[r(St) +v(r(Se41) +7(Seq2) +...)[ 7,5 = 8]
(s) +VE[r(Si1) +97(Seq2) + ... | 7,5 = 4]
(s) +v 22y P(s" | 5,7(s)) - E[r(Ses1) + 97 (Siq2) + ... | ™, 841 = §]
() + 72 s, P(Sev1 | s,m(s)) - VT (St41)

r

|
!-i

r

This means that in a Markov Decision Process:

V7(s) =7(s) +72s,,, P(St1|s,7m(s)) - VT (Se41)

This is true for any state, so there is one such equation for each of those

If the set of states is finite, there are exactly | S| (linear) Bellman equations for |S| variables:
in general, for any deterministic policy, V™ can be computed analytically
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Optimal policy — Optimal value function

= Basic definitions
7*(s) := argmax_V7"(s), Vs € S

V*(s) :=maxV7"(s), Vs € S

Property: for every MDP, there exists such an optimal deterministic policy (possibly non-unique)

With Bellman Equations:
max, V7™ (s) = r(s) + v max, (Zstﬂ P(Sty1 | s,7(s)) - Vﬂ(5t+1))

V*(s) =r(s) +ymax, (Zstﬂ P(Siy1 | s,m(s)) - V*(St+1))
= 1(s) +ymaxe (Y, P(Sie1|5,0) - V*(Sey))

7*(s) = argmax,, (Zst—l—l P(Sii1 | s,a)V™ (St+1))

Computing V™ directly from these equations is unfeasible, however
There are in fact | A] |51 possible strategies

Therefore:

However, once V™ has been determined, ™ can be determined as well
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Optimal policy — Optimal value function

= Value iteration algorithm

Initialize: V(S) = ?"(S), Vse S Note that there is no policy:
Repeat: all actions must be explored

1)  Forevery state, update: V(s) := r(s) —|—"}’H1&XZP(S, | s,a)V(s")
a

Theorem: for every fair way (i.e. giving an equal chance) of visiting the states in S,
this algorithm converges to V*
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Compuﬁng the op’cimal policy

l ’ z

Define the optlmal policy as:

T (8) 1= argmaxa(zs P(St+1 | 87@) V¥ (5¢41))

Initialize states
(e.g. using rewards as initial values)
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Computing the optimal policy

Nice, but not very realistic ...

» Main limitations of the value function approach
Everything must be known in advance:
* the environment (i.e. the map, in the gridworld example)
* the model, i.e. the transition probability
These elements allow a direct (albeit expensive) computation of 7*

= |nreality

* the environmentis in general unknown to agent
which has to explore in order to gain knowledge of it

* the model, i.e. the transition probability that determines the outcome of actions
is also unknown to the agent

(which implies that even more exploration is required)

Moral: we need to learn by doing...
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Action value function

An analogous of the value function V'™

Given a policy 7, the action value function is defined, for each pair (s,a) as:
Qﬂ-(87 a) c= Zst-i-l P(St+]- | 87 a’) ) vﬂ-(St_l‘]-)

= ZSH-l P(St+1
p— Zst—l—l P(St_|_1
= ZSH-l P(St_|_1

S, (L) . E[T‘(St_|_1) + ’YT‘(SH_Q) + ... | T, St_|_1]
$,a) - [1(St41) + E[yr(Sq2) + ... | 7, Sepa]]
s,a) - [r(Sty1) +YQT (Stq1, T(St41))]

In other words, Q™ (s, a) is the expected value of the reward in S; 11
by taking action a in state s and then following policy ot from that point on

Following a similar line of reasoning, the optimal action value function is

Q* (37 CL) = ZSt-{-l P(St—l—l | S, O‘,) . [T(St—l—l) + ymaXg/ Q*(S,H_l, a’)]

\

This is an expected value:
it can be approximated by an empirical average...
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Q-Learning

= Q-learning algorithm (e-greedy version)

Initialize (s, a) atrandom, put the agent in a random state s
Repeat: ~ Anestimator of the 'real' @) function

1) Select the action argmax,Q(s,a) with probability (1 — &)
otherwise, select a at random

2) Theagentis now in state s’ and has received the reward r
3) Update Q(s,a) by

AQ(s,a) = alr + ymaxy Q(s',a’) — Q(s,a)]
\ Exponential Moving Average

Note in step 1) the dualism between exploration and exploitation:
*  with probability (1 — €) the agent will exploit its knowledge Q(s, a)
* withprobability € the agent will explore new actions
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Q-Learning

= Q-learning algorithm (e-greedy version)

Initialize ' @Q(s,a) at random, put the agent in a random state s
Repeat:

1) Select the action argmax,@(s,a) with probability (1 — &)
otherwise, select a at random

2) Theagentis now in state s’ and has received the reward r
3) Update Q(s,a) by

AQ(s,a) = alr + ymaxy Q(s',a’) — Q(s,a)]

A very nice mathematical model, however:

« theargmaxin step 1) is expensive, in particular when A is continuous. ...

* learning Q(s, a) requires in general a huge amount of trials. ...
* and the latter problem becomes even worse when & is continuous
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Shallow vs. Deep Feed-Forward Neural Networks

* Increasing network depth

A feed-forward neural network with one hidden layer

/

output layer
hidden layer

input layer

output layer

hidden layer

input layer
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Shallow vs. Deep Feed-Fomard Neural Networks

* Increasing network depth
A feed-forward neural network with one hidden layer

Universal approximation theorem (cybenko, 1989, Hornik, 1991)

When g is a non-linear function of a certain class
any continuous target function

y=f"(z), xR

can be approximated arbitrarily well by g
(in the sense that there exists parameters
w, W(l), c(l), ¢ such that the above holds)

Want a better approximation?
Increase the number of units in the hidden layer ...
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Shallow vs. Deep Feed-Forward Neural Networks

* Increasing network depth

A feed-forward neural network with two hidden layers

g = w - g(W(l)g(W(Q)w + 6(2)) + C(l)) + ¢
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Shallow vs. Deep Feed-Forward Neural Networks

* Increasing network depth

A feed-forward neural network with three hidden layers

g — w - g(W(l)g(W(Q)g(W(3)m + 0(3)) + 0(2)) + C(l)) +c
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Shallow vs. Deep Feed-Fomard Neural Networks

* Increasing network depth
A feed-forward neural network with three hidden layers

g — w - g(W(l)g(W(Q)g(W(3)m + 0(3)) + 6(2)) + C(l)) +c

OK, but what is there to gain from
such increase in depth?

There are formal results (plus empirical evidence)
that depth promotes greater effectiveness
of the hidden units (in blue)

In other words, using depth you can do more
with less blue units
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Shallow vs. Deep Feed-Forward Neural Networks

* Increasing network depth

A feed-forward neural network with three hidden layers

g — w - g(W(l)g(W(Q)g(W(3)m + 6(3)) + 0(2)) + C(l)) +c

Problem: deeper networks are harder to train
N

1=1

from examples D = {(xV,y™")
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Shallow vs. Deep Feed-Forward Neural Networks

* Increasing network depth
A feed-forward neural network with three hidden layers

g — w - g(W(l)g(W(Q)g(W(3)a: + 0(3)) + 6(2)) + C(l)) +c

Problem: deeper networks are harder to train

from examples D = {(x,y}Y |

This is new!

A full bag of formal results and empirical tricks
have made such training of deep neural networks
feasible

f Tools like TensorFlow (by Google Inc.)
TensorFlow  contain lots of such provisions already implemented
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Putting things together:
Deep Reinforcement Learning
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Deep Reinforcement Learning

= Q-Learning Algorithm

Initialize ' @Q(s,a) at random, put the agent in a random state s
Repeat:

1) Select the action argmax,Q(s,a) with probability (1 — &)
otherwise, select a at random

2) Theagentis now in state s’ and has received the reward r
3) Update Q(s,a) by

AQ(s,a) = alr + ymaxy Q(s',a’) — Q(s,a)]

Fundamental Idea:

use a deep neural network to learn the approximator Q(s, a)
from the examples collected while exploring - exploiting

Smart Inventory Management and DRL
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Normalized Advantage Function (NAF) algorithm

Algorithm 1.2 NAF algorithm for continuous ()-learning

S.Gu, T. P. Lillicrap, I. Sutskever, S. Levine.
Continuous deep Q-learning
with model-based acceleration, 2016

Randomly initialize Q(s, ”"HERED ) g9 = (6*, 07,0
In:lt:lal:lze the target network with H% AR © H%RED
I[nitialize replay buffer B « 0
for each episode do:
Initialize random process N for action exploration
s + E'nvironment(reset)
fort =0to T do:
p < P’*(StW%RED} +N;
reé— (8, Qe )
8y+14 Environment(s,, a,)
RB « RBU{(s;,0a;,7;,8;1)}store transition in the replay buffer
Sample at random and normalize the mini batch M B
for each saml::le i = (8i,@ai,Ti,8+1) inm
="+ TV(S'E+1|H'¥AR}
Compute gradients

ﬁ?q (-yf; —Q (sﬁ ”’ingED))E (Loss function L(69))

il a
UprED < PPRED 7 (@L{W})

o 2 o
en T
end for

end for
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Normalized Advantage Function (NAF) algorithm

Algor ithm nghllghts Algorithm 1.2 NAF algorithm for continuous ()-learning

 adeep neural network for Q(s,a) Randomly initialize Q(s, al0F 3_‘. {fq = (6",6.6")
Iﬂlltllalf.ZE the target network with HT AR © HPRED
I[nitialize replay buffer B « 0
for each episode do:
Initialize random process N for action exploration
s + E'nvironment(reset)
fort =0to T do:
p < #(StW%RED} +N;
reé— (8, Qe )
8y+14 Environment(s,, a,)
RB « RBU{(s;,0a;,7;,8;1)}store transition in the replay buffer
Sample at random and normalize the mini batch M B
for each saml::le i = (8i,@ai,Ti,8+1) inm
yi=mr; + T’V(Sﬁllﬂ%;&ﬂ}
Compute gradients

2
ﬁ?q (-yf; - (sﬁ ﬂ”'lﬂgRED)) (Loss function L(#%))
Q ]
E"ERED “ PRED ~ (ﬁaﬂf‘? )
f +— 76 +(1+471)0
emi[‘&rlf: PRED TAR
end for

end for
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Normalized Advantage Function (NAF) algorithm

Algor ithm nghllghts Algorithm 1.2 NAF algorithm for continuous ()-learning
A e e T = o Q. P aV
* adeep neural network for Q(s, a) Randomly initialize Q{SJWPREBE% {f = (,67.07)
Initialize the target network with # — 0
* two deep networks: —PHMM PRED
one TARget, which is the objective for each episode do:
and one PREDictor for transient Initialize random process A for action exploration

s + E'nvironment(reset)
fort =0to T do:
Ay < P’*(StW%RED} +N;
reé— (8, Qe )
8y+14 Environment(s,, a,)
RB « RBU{(s;,0a;,7;,8;1)}store transition in the replay buffer
Sample at random and normalize the mini batch M B
for each sample i = (s;, @i, 73, 8i4+1) in m
yi=mr; + T?(Si+llﬂ'¥ﬂﬂ}
Compute gradients

ﬁ?q (-yf; —Q (sﬁ ”’ingED))E (Loss function L(69))

il a
OprED © PPrep ~ 7 (7w L{HQ})

o 2 o
en T
end for

end for

approximations
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Normalized Advantage Function (NAF) algorithm

Algor ithm nghllghts Algorithm 1.2 NAF algorithm for continuous ()-learning
A T T ~ Q Q . P V
 adeep neural network for Q(s,a) Randomly initialize Q{SJWPREBE% {f = (04,07,07)
Initialize the target network with # —
. . TAR ~ "PRED
two deep networks. Initialize replay buffer R + 0
one TARget, which is the objective for each episode do:
and one PREDictor for transient Initialize random process N for action exploration
. . sp < Environment(reset)
approximations for f— 00T do
* careful tensorial formulation a; — pl(slfpppp) + N
to avoid the argmax step Teé— T(St, e)

8y+14 Environment(s,, a,)
RB « RBU{(s;,0a;,7;,8;1)}store transition in the replay buffer
Sample at random and normalize the mini batch M B
for each sample i = (s;, @i, 73, 8i4+1) in m
yi=mr; + T?(Si+llﬂ'¥ﬂﬂ}
Compute gradients

ﬁ‘?q (-yf; —Q (sﬁ ”’ingED))E (Loss function L(69))

il a
OprED © PPrep ~ 7 (7w L{HQ})

o 2 o
en T
end for

end for
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Normalized Advantage Function (NAF) algorithm

Algor ithm nghllghts Algorithm 1.2 NAF algorithm for continuous ()-learning
A T T ~ Q Q . P V
 adeep neural network for Q(s,a) Randomly initialize Q(s, alfpppy) 3_‘. {f = (,67.07)
Initialize the target network with # —
. . TAR PRED
two deep networks. Initialize replay buffer R + 0
one TARget, which is the objective for each episode do:
and one PREDictor for transient Initialize random process N for action exploration
. . sp < Environment(reset)
approximations for f— 00T do
* careful tensorial formulation a; — pl(slfpppp) +MV
to avoid the argmax step Teé T(se.a
—+ Environment(s;,a;)
* noise based on a stochastic process RB «+ RBU{(s;,a,.7;, 8 1)}store transition in the replay buffer
(i.e. a random walk, see later) Sample at random and normalize the mini batch M B
forcing exploration for each sample i = (s;, @i, 73, 8i4+1) in m

v =i + 7V (si41107aR)
Compute gradients

2
ﬁ‘?q (-yf; - (sﬁ ﬂ”'lﬂgRED)) (Loss function L(#%))
Q ]
E"ERED “ PRED ~ (ﬁaﬂf‘? )
f +— 76 +(1+471)0
en&[‘&% PRED TAR
end for

end for
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Normalized Advantage Function (NAF) algorithm

Algor ithm nghllghts Algorithm 1.2 NAF algorithm for continuous ()-learning
A e e T = o Q . P aV
a deep neural network for Q(s, a) Randomly initialize ((s, “wPREDé {f = (04,07,07)
Initialize the target network with # —
. TAR °~ "PRED

two deep networks. Initialize replay buffer R + 0
one TARget, which is the objective for each episode do:
and one PREDictor for transient Initialize random process N for action exploration

. . sp < Environment(reset)
approximations for t— 010 T do
careful tensorial formulation a; — pl(slfpppp) + N
to avoid the argmax step Teé— T(St, e)

8y+14 Environment(s,, a,)
noise based on a stochastic process RB «+ RBU{(s;,a,.7;, 8 1)}store transition in the replay buffer
(i.e. a random walk, see later) Sample at random and normalize the mini batch M B
forcina exploration for each sam]::le i = (8i,@ai,Ti,8+1) inm
gexp Ui =i + WV (8i11|0F 4 )
replay buffer with random extraction Compute gradients :
of mini-batches to avoid temporal o ('Llri -Q (si? a"lﬂgRED)) (Loss function L(#9))
correlation arising from sequential Q _n(2
. J d %pRED + fprED ~ 7 (2902 0)
exploration 09, 62 4+ (1+7)08
&[‘%R PRED TAR
end for
end for
end for
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Normalized Advantage Function (NAF) algorithm

Algorithm Highlights

a deep neural network for Q(s, a)

two deep networks:

one TARget, which is the objective
and one PREDictor for transient
approximations

careful tensorial formulation
to avoid the argmax step

noise based on a stochastic process
(i.e.a random walk, see later)
forcing exploration

replay buffer with random extraction
of mini-batches to avoid temporal
correlation arising from sequential
exploration

no need to discretize A and S

Algorithm 1.2 NAF algorithm for continuous ()-learning

Randomly initialize Q(s, al0pp ) ) 09 = (pn,07 0"
In:lt:ml:lze the target network with Hf% AR © H%RED
I[nitialize replay buffer B « 0
for each episode do:
Initialize random process N for action exploration
s + E'nvironment(reset)
fort =0to T do:
p < P’*(StW%RED} +N;
reé— (8, Qe )
8y+14 Environment(s,, a,)
RB «— RB U {(s;,a;,7, ;1) }store transition in the replay buffer
Sample at random and normalize the mini batch M B
for each saml:jle i = (8i,@ai,Ti,8+1) inm
="+ TV(S'E+IIH'¥AR}
Compute gradients

2
ﬁ?ﬂ? ('.Uf: - (Sia, ﬂ’ilggRED)) (Loss function L(69))
Q - ]
HERED ~PrED ~7 (ﬁaﬂf‘? )
?i[‘%R < T0ppEp T 1+ 7)01aR
21 T
end for

end for
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Smart Inventory Management
(thanks to ProfumerigWeb)
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Inventory Management: the environment

= Environment description (Simplified for this experiment)

the agent is the e-commerce company, as a whole
the agent has an inventory, where products are stored

keeping products in the inventory has a cost
(yearly estimate: 18% of overall product cost)

the website can only sell products that are in the inventory — Thisis NOT true in reality
sales occur on a daily basis
products can be obtained by the agent via requests to suppliers

there exist different suppliers,
some are more expensive others are cheaper, also delivery times may differ

suppliers have their own inventories and they serve multiple buyers

Goal

Manage the inventory to maximize marginality (i.e. revenues - total costs)
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Inventory Manadement: experiments

* Implementation
NAF algorithm
implemented with TensorFlow  TensorFiow

"'[ Agent |

- J
state reward action
5 Fe ay
:4 )
i Environment

[image from: Sutton, Barto, Reinforcement Learning. 1998]

(Simplified) Market Simulator
built in python and Numpy
using stochastic processes
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An aside: stochastic processes for market simulations

* Random walk: Ornstein-Uhlebneck (OU) stochastic process

quantity that
varies over time (e.g. a price) volatility
AqW = a(g— ¢")AL + cAW D)
mean revertin g/ rate \ I brownian motion (i.e. Wiener process)
time interval

mean value

A popular choice for
market simulations:

e itisarandom walk !
* itis mean reverting ;

* itsis fully controllable
(via its parameters)

[image from: http://www.turingfinance.com/random-walks-down-wall-street-stochastic-processes-in-python/]
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Inventory Management: basic agssumptions

= Suppliers
Product average market cost (AMC): mean reverting random walk (OU)

Product cost (per supplier, per product): AMC + N (0,0.1)

o gaussian, supplier-specific cost delta
(delta negative => the supplier is cheaper)

Product availability (per supplier): mean reverting random walk (OU)

= Requests (per product, per supplier)
Limited to product availability (per supplier)
Competing model (with other buyers): requests will accepted with binomial probability

Delivery times: Poisson stochastic process
with supplier-specific lambda parameter (e.g. different geographic distance)

= Sales
Product average market price AMP := 1.65 AMP
Selling price (P, per product): P :=1.65 AIC
Sales potential (SP, per product): maximum theoretical amount of sales (fixed a priori)
Actual sales potential (per product): ASP := c(AMP — P) SP

(daily) average inventory cost

Smart Inventory Management and DRL [36]



Inventory Management: simulation scenario

"Products”: {
"Productl”: {
"initial_cost": 30,
"sales_potential": 12
s
"Product2": {
"initial_cost": 50,
"sales_potential”: 8
}
Js
"Suppliers": {
"Supplierl”: {
"delivery_time": 5,
"products": {

"Productl”: {
"initial_availability": 20,
"initial_cost": 29,
"average_cost_delta": -1.0

Ts

"Product2": {
"initial_availability": 15,
"initial_cost": 48,
"average_cost_delta": -5.0

}

}

s

"Supplier2": {
"delivery_time": 2,
"products": {

"Productl”: {
"initial_availability": 100,
"initial_cost": 32,
"average_cost_delta": 2.0

T

"Product2": {
"initial_availability": 100,
"initial_cost": 54,
"average_cost_delta": 4.0

}

}
}
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Inventory Management: daily routine

1. Determine sales (environment)

Determine agent sales (previous day)
Update agent inventory
Compute agent daily marginality

N

Requests (agent)

Based on current state (see after)
determine agent product requests to each supplier

3. Prepare orders (environment)
Each supplier receives agent product requests and resolve competition (i.e. binomial)
Orders are enqueued for later delivery
Update product availability (per product, per supplier)

4. Order delivery (environment)
Dequeue orders that have been delivered to the agent
Update agent inventory

Smart Inventory Management and DRL [38]



Inventory Management: deep reinforcement learning

= State
Daily sales (per product): quantity, price
Agent inventory (per product): quantity, average inventory cost
Supplier (per supplier, per product): availability, cost

= Action
Product request (per supplier, per product): quantity

= Reward

Daily marginality (per product, due to sales): DM := quantity (price — AIC)
Total daily marginality (TDM): sum of daily marginality per product

Daily inventory cost (per product): (0.18/365) AIC
Total daily inventory cost (TAIC): sum of average inventory cost of each product

Action size (AS): norm of request quantities, seen as a vector

reward := TDM — TDIC — ¢ AS

\ a constant, reqularization factor

Smart Inventory Management and DRL [39]



Inventory Manadement: experiments

(Very preliminary results)

Reward

100000
90000
80000
70000
60000
50000
40000
30000

20000

10000 »

0
0 50 100 150 200 250 300

Each training episode: 1 year, i.e. 365 daily iterations
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Inventory Manadement: experiments

Agent actions - after 10 episodes
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One training episode: 1 year, i.e. 365 daily iterations
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One training episode: 1 year, i.e. 365 daily iterations
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