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Expected Value of a Random Variable 
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Simpson’s Paradox
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Causes and Effects: the Simpson’s Paradox [1922]
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Causes and Effects: the Simpson’s Paradox [1922]
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Causes and Effects: say it with graphs
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Reichenbach’s Common Cause Principle
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Causation, Dependence, Correlation
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Correlation and Dependence
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Correlation and Dependence
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Correlation and Dependence
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Causation and Dependence

•
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Causation and Correlation

▪
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Say it with graphs
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R = 0 R = 1

D = 0 25 55 80 69%

D = 1 71 192 263 73%

96 247 343

R = 0 R = 1

D = 0 36 234 270 87%

D = 1 6 81 87 93%

42 315 357

R = 0 R = 1

D = 0 61 289 350 83%

D = 1 77 273 350 78%

138 562 700
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A Working Example
(see GeNIe ‘berkeley’ attachment) 



[24]Probabilistic Graphical Models and Causal Inference

Causation and observations
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Causation and observations
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Causation and observations

▪

G

D R

G D R(D=0) R(D=1)

1 0 1 ? 1

2 1 1 ? 0

3 1 0 1 ?

4 0 1 ? 1

5 0 0 0 ?

... ... ... ... ...

N 1 0 1 ?
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Causation and observations
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Causal Graphical Models at Work
(do-calculus)
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Causation and Conditionals

▪
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Causation and Conditionals
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The Magic of Controlled Experiments
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do-Calculus

▪
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do-calculus:
Is it that simple?

(not so fast...)
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do-Calculus

▪
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Identification
▪
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Identification
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Identification

▪



[44]Probabilistic Graphical Models and Causal Inference

Estimating Effects

Y T

•
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Another Working Example
(see GeNIe ‘berkeley_modified’ attachment) 
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