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Very Good Readings

= Causal Inference in Statistics
A Primer

Judea Pearl, Madelyn Glymour and Nicholas P. Jewel
Wiley, 2016

= Elements of Causal Inference
Foundations and Learning Algorithms

Jonas Peters, Dominik Janzing and Bernhard Scholkopf
MIT Press, 2017
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Expected Value of 3 Random Variable

Basic definition In a more concise

_ Z . P(X _ 33) notation: E[X] o — Zx P(CL‘)

reX

Continuous case
Ex[X] := / z p(x)dz
reX

—

Probability density

Expectation is a linear operator
EX +Y]|=E[X]|+ E[Y]
ElcX] = cE[X]

Conditional expectation

Ex[X|[Y =y =E[X|Y =y]:= ) 2 P(X =az[]Y =y)
reX
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Simpson’s Paradox
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Causes and Effects: the Simpson’s Paradox [1922]

= Does physical exercise prevent cholesterol?

Apparently not: correlation is positive

E[(X — ux)(Y — py)]

p(X,Y) =
Ox0y
W h ere: Pearson correlation
Hx = EX [X]
o = \/ Var X f— E X — 2
: - -( )= VEI wx ) Cholesterol
standard deviation
In words:

Exercise

Does more physical exercise cause more cholesterol?

[Image from Pearl, J. et al., “Causal Inference in Statistics: A Primer”, Wiley, 2016]
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Causes and Effects: the Simpson’s Paradox [1922]

= Does physical exercise prevent cholesterol?

Maybe yes if we consider another variable...

Correlation in Age subgroups is negative

Cholesterol

In words: - , > X
Does more physical exercise cause less cholesterol? XCICISC

[Image from Pearl, J. et al., “Causal Inference in Statistics: A Primer”, Wiley, 2016]
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Causes and Effects: say it with graphs

= Does physical exercise prevent cholesterol?

Cholesterol

X Y Exercise

Undirected structure (a clique): no independence assumptions.
All DAGs built form it will be equivalent (just different factorizations)

X > Y
Does this DAG make more sense from a causal viewpoint?
And what is the meaning of this, after all?

[Image from Pearl, J. et al., “Causal Inference in Statistics: A Primer”, Wiley, 2016]

[7]
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Causes and Effects: sqy it with graphs

= Whatis a cause?

Cholesterol

Exercise

A variable X is said to be a cause of a variable Y
if Y can change in response to changes in X

In a Causal Graphical Model (CGM), each parent is a direct cause of all its children

The notation is the same as with Probabilistic Graphical Model (PGM), the intended meaning is different

[Image from Pearl, J. et al., “Causal Inference in Statistics: A Primer”, Wiley, 2016]
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Reichenbach’s Common Cause Principle

Given two observed variables X and Y
that are dependent on each other

(X LY)

There exists a third variable Z which causally influences both of them
and makes them conditionally independent

(X LY |2Z)

As a special case, Z may coincide with either X or Y

Caution: such principle is not undisputed...

Probabilistic Graphical Models and Causal Inference [9]



Causation, Dependence, Correlation
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Correlation and Dependence

E[(X — ux)(Y — py)]

p(X,Y) =
Oxoy
Pearson correlation
where:
px = E[X]

gx .

v/ Var(X) = \/E X — pux)?] 1 0.8 0.4 0 -0.4 0.8 1
Standard deviation / ' s £

1 1 1 (undefined) <1 -1 -1

[Image from https://en.wikipedia.org/wiki/Pearson_correlation_coefficient]
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Correlation and Dependence

E[(X —pux)(Y — py
v o B =) (V= )
O0X0y
Pearson correlation
where:
px = E[X]
ox =/ Var(X) = VE[(X — ux)?]
Standard deviation
12
10
3 6 8
6
4
4 6 8 10 12 14 16 18 4 6 8 10 12 14 16 18
X3 X4

Anscombe Quartet: eleven points in 2D space - same mean, variance and correlation

[Image from https://en.wikipedia.org/wiki/Anscombe%27s_quartet]
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Correlation and Dependence

Zero correlation does NOT imply independence

Does independence imply zero correlation?

E[(X — px)(Y — py)]
Cov(X,Y) :=E[(X —ux)(Y —uy)|]  covariance

=E[XY — Xpy —Ypux + pxpy]

=E[XY] - pyE[X] = YuxE[Y] + pxpy

— IE:XY: _ E[X]E[Y] - E[X]E[Y] + E[X]E[Y]
XY] - E[X]E]Y]

—nyny Z.’I?P ZyP
—Zmnyy) Z:cyP

p(X,Y) =

So, the answer is yes: the last term must be zero if the two variables are independent

Probabilistic Graphical Models and Causal Inference [13]



Causation and Dependence

Cholesterol

Exercise

In a Causal Graphical Model (CGM), each parent is a direct cause of all its children

A chain of causes along the arrows is a causal path

« All variables along a path are dependent on each other

 The direction of arrows matters

Detecting the independence of random variables (absence of connections)
from observations may be difficult, but even in that case ...

[Image from Pearl, J. et al., “Causal Inference in Statistics: A Primer”, Wiley, 2016]
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Causation and Dependence

Cholesterol

Exercise
From Episode 1 of this course

= Markov Equivalence Class

Two graphical models share the same independence assumptions when:
1) they share the same undirected structure (i.e., skeleton)
2) they share the same joins (a.k.a. colliders)

(*) This holds true when some independence is expressed (i.e., if some links are missing).
Any DAG built out of a clique will be equivalent, regardless of joins
(i.e., no independence assumptions represented anyway)

[Image from Pearl, J. et al., “Causal Inference in Statistics: A Primer”, Wiley, 2016]
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Causation and Correlation

» Between any two random variables:

Causation, either direct or through a path, implies dependence

Non-zero correlation implies dependence but not vice-versa

Both correlation and independence are commutative relations

E[(X — ux)(Y — py)]

p(X,Y) =
Ox0yvy

P(X,Y) = P(X)P(Y)

None of them will reveal the direction of arrows

Except for independence in a non-clique collider

Pearson correlation

Independence

‘join”or ‘collider’

Probabilistic Graphical Models and Causal Inference
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Say it with graphs
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Causes and Effects: sqy it with graphs

» What is a cause? (Another example)

Females R=0 R=1 Recovery Rate
D=0 25 55 80 ( 69%)
D=1 71 192 263 73%
06 247 343
(7 is biological gender (= Male/Female) Males R=0 R=1 Recovery Rate
D is drug administration (= Yes(1)/No(0)) D=0 36 234 270 67%\)
R is recovery from illness (= Yes(1)/No(0)) b=1 6 81 8 3%
42 315 357
Experimental data
* In both groups, recovery rates are higher R=0R=1 Recovery Rate
if drug is administered... D=0 61 289 350 (83% ,
D=1 77 273 350 /8%
* .. whilein the entire population, 138 562 700

recovery rates are lower

[Data from Pearl, J. et al.,, “Causal Inference in Statistics: A Primer”, Wiley, 2016]
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Causes and Effects: sqy it with graphs

» What is a cause? (Another example)

Females R=0 R=1 __ Recovery Rate

D=0 25 55 80 69%
D=1 71 192 \ 263 /3%

(G is biological gender (= Male/Female)
D is drug administration (= Yes(1)/No(0))
Ris recovery from illness (= Yes(1)/No(0))

Experimental data

* Note however that gender also influenced drug

prescription...

« ..infact, in this example, doctors were more likely
to prescribe drug to males than to females

96 247 343

Males R=0 R=1 , _ RecoveryRate

.

D=0 36 234 <27o) 87%
D=1 6 81 \_87 93%
42 315 357
R=0 R=1 Recovery Rate
D=0 61 289 350 83%
D=1 77 273 350 78%

138 562 700

[Data from Pearl, J. et al.,, “Causal Inference in Statistics: A Primer”, Wiley, 2016]
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Causes and Effects: say it with graphs

» What is a cause? (Another example)

. o . : Females R=0 R=1 Recovery Rate
Maximum Likelihood Estimation (CPTs) 55 5 ( 69%
P(Q) 27 5 263 73%
343
=1 /0.49
= m(S.SJ
Males R=0 R=1 ___ Recovery Rate
D=0 §36 23% (279 87%
D=1(6 81/ \ 87 93%
315 357
G=fG=fG=mG=m
D=0D=1D=0D=1 R=0 R=1 Recovery Rate
D=0 61 289 350 83%
D=1 77 273 350 78%

138 562 700

[Data from Pearl, J. et al.,, “Causal Inference in Statistics: A Primer”, Wiley, 2016]
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Causes and Effects: say it with graphs

» What is a cause? (Another example)

Maximum Likelihood Estimation (CPTs)

P(G)

G=f 049

P(D|G) P(R|G, D)
G=fG=m

G=fG=fG=mG=m
D=0D=1D=0D=1

0 0.23 0.76
1 0.7/ 0.24

D
D

R=0 031 027 0.13 0.07
R=1 069 0.73 0.87 0.93

Using Graphical Model as a predictor

Case 1: Gender is observed
P(R=1|G =0,D = 0) = 0.69

P(R=1/G=0,D=1) =<0.73)
P(R=1|G=1,D =0)=0.87

P(R=1|G=1,D=1) =0.93)

Prescribe drug, regardless

Case 2: Gender is not observed
2. P(R|G,D)P(D|G)P(G)
P = S P(RIG. D)PDIG)P(G)
P(R=1|D =0) = 0.83
P(R=1|D =1) =(0.78)
Do not prescribe drug, regardless
(ridiculous!)

[21]
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Causes and Effects: sqy it with graphs

» What is a cause? (Another example)

(G is biological gender (= Male/Female)
D is drug administration (= Yes(1)/No(0))
Ris recovery from illness (= Yes(1)/No(0))

How can we solve the problem?

* The problemis due to the discrepancy in drug

administration across genders

* An obvious solution would be to repeat the
experiment with equal administration rates

* Inother words, we would sever this link

Females R=0 R=1 Recovery Rate

D=0 25 55 80 69%
D=1 71 192\ 263 /3%

N

96 247 343

Males R=0 R=1 —_ Recovery Rate

pa

D=0 36 234 <27o) 87%
D=1 6 81 \_87 93%
42 315 357
R=0 R=1 Recovery Rate
D=0 61 289 350 83%
D=1 77 273 350 78%

138 562 700

[Data from Pearl, J. et al.,, “Causal Inference in Statistics: A Primer”, Wiley, 2016]
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A Working Example
(see GeNle ‘berkeley’ attachment)
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Causation and observations

Probabilistic Graphical Models and Causal Inference [24]



Causation and observations

= Confounders

In this example, the problem is that G represents a ‘common cause’ of both D and R
It is a confounder, if we are interested in the causal link from D to R

In a controlled experiment, we could administer drug at random, regardless of GG

In this case we would have:

<D1G> = PD|G)=PG)

D " R

Probabilistic Graphical Models and Causal Inference [25]

Can we always neutralize confounders in this way?




Causation ahd observations

= Counterfactuals, potential outcomes

In many circumstances, data are acquired in an uncontrolled ways: they are mere observations

We might still circumvent the problem if we knew would have happened
if actions were different (i.e., counterfactuals or potential outcomes)

Subject G D R(D=0) R(D=1)

1 0 1 ? 1 factual outcomes
2 1 1
It may be seen as a problem 3 1 0 g g
of missing data in the dataset: counterfactual
20 1 (2) (U
outcomes
5 0 o (o (2
N0 @O (v

Probabilistic Graphical Models and Causal Inference [26]



Causation ahd observations

= Counterfactuals, potential outcomes

In many circumstances, data are acquired in an uncontrolled ways: they are mere observations

Can we work around all of this,
even with data from uncontrolled (i.e., observational) experiments?

Probabilistic Graphical Models and Causal Inference [27]



Causal Graphical Models at Work
(do-calculus)

Probabilistic Graphical Models and Causal Inference [28]



Causation and Conditionals

= Conditioning and Intervening

Population Subpopulations

~ @

Assume we have data about a population of subjects

Some have been treated (7'= 1) and some not (7'=0)

Conditioning means considering two subpopulations
and computing probabilities from each of them

Intervening, in the jargon of causal models, means
assuming that every subject in the population has
been treated or not (potential outcomes)

Conditioning Intervening

=

[Image from https://www.bradyneal.com/causal-inference-course]

Probabilistic Graphical Models and Causal Inference
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Causation and Conditionals

= Causal Model and Estimation Causal Estimand Causal Model
lldentiﬁcation
Statistical Estimand Data
lEstimation
Basic principles:
1. Having selected what kind of causal effect Estimate

we want to estimate
2. We start from a Causal Graphical Model (CGM)

To translate the estimate into a statistical estimand,
(Identification)

4. We use then observational data to compute the estimate:
a probability or an expected value

[Image from https://www.bradyneal.com/causal-inference-course]

[30]
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The Magic of Controlled Experiments

= When association is causation

G,
—) @\D
D R D - R

In this Causal Graphical Model.

1.  The causal effect we are interested in is that of D over R

2. Thelink between GG and D is problematic: we know that P(D|G = 0) # P(D|G = 1)
3. Inacontrolled experiment, D is administered at random, therefore

<D1G> = PDIG=0)=PD|G=1)=P(D)

4. In other words, the corresponding CGM ‘loses’ the problematic link and the estimate becomes
P(R|D):=)» P(G)P(R|G,D)
G

Probabilistic Graphical Models and Causal Inference [31]



The Magic of Controlled Experiments

= When association is causation
A B @\D

With controlled experiments (i.e., the ‘gold standard’ for testing) the principle is more general:

» by randomizing the administration of treatment
» we make the effects independent of any confounders (be them observed or not)

Probabilistic Graphical Models and Causal Inference [32]



* From Conditional (pre-intervention) to Intervention Probability

D R D=d R

\ A ‘deterministic’ node (i.e., not ‘random’ anymore)
In this Causal Graphical Model (for an uncontrolled experiment):

1.  Conditional probability:

>.¢ P(G)P(R|G,D = d)P(D = d|G)
ZG’ (G)P (D — d|G) These two expression would be identical if
P(D=d|G) =1

which cannot be true in general

P(R|D = d) =

2. Intervention (do-calculus, this is new)

P(R|do(D = d)) ZP P(R|G,D = d)

3. Thisis equivalent to P(R|D d) in a modified CGM in which we ‘enforce intervention’

Probabilistic Graphical Models and Causal Inference [33]



* From Conditional (pre-intervention) to Intervention Probability

(same observational probabilities, from MLE)

56

P(R|G, D) G=fG=fG=mG=m
D=0D=1D=0D=1

=1 (069)(673)(087)(053)

Using do-calculus

P(R = 1|do(D ZP

= 0.49 - 0.69 + 0.51 -0.87 =0.78

= 1|G, D = 0)

P(R=1|do(D=1))=)» P(G)P(R=1|G,D=1)

=0.49-0.73 +0.51-0.93 =(0.83

Prescribe drug, regardless

Probabilistic Graphical Models and Causal Inference
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= Compare two expressions

B B
N @

1. Conditioning:

P(RID = d) = 226 P(GOPEHIG, D = d)P(D = d|G)

2.q P(G)P(D = d|G)
2. Intervening:
P(R|do(D = d)) ZP P(R|G,D = d)

\ no normalization =
no conditional subspace

Conditioning

Intervening

o

Probabilistic Graphical Models and Causal Inference
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do-calculus:
Is it that simple?

(hotso Bst..)

Probabilistic Graphical Models and Causal Inference [36]



* In general, in a Causal Graphical Model
1. Joint Probability Distribution

P(X{,Xo,....X,) = HP(X,,; | parents(X;))

where {X1, Xo, ..., X,,} is the set of random variables in the model

2. Intervention (do-calculus):
P({Xi}izk|do(Xy = 21)) = | | P(X; | parents(X;))
i#k X =Tk

In general, do-calculus allows translating a causal estimand into a statistical estimand,
hence a probability

Under which conditions such translation is effective and justified?

Probabilistic Graphical Models and Causal Inference [37]



Identification

= Adjustment Set Criterion [Shipster et al. 2010]

In a Causal Graphical Model, the causal effect of T over Y s identifiable
iff it exists an adjustmentset W of variables such that:

* novariablein W ison, oris a descendant of any variables on, a causal path
(excluding the descendants of 1" alone)

» thevariablesin W block (in the sense of graphical models)
all the non-causal paths between 7" and Y

This criterion is necessary and sufficient for effect identifiability

Then:
P(Y|do(T =t)) =Y P(Y|T =t,W)P(W)
%%

In words, the causal effect can be estimated statistically, from data

(*) An earlier (and weaker) version of this is called ‘back-door criterion’ [Pearl, 1993]

Probabilistic Graphical Models and Causal Inference [38]



Identification

* |dentifiable Causal Effect
In this example, assuming that 7" over Y is the causal effect of interest :

1. Theoneinredisthe causal path
(there could be more, in general)

2. Noneof M, or M, should be in the adjustment set W

Probabilistic Graphical Models and Causal Inference [39]



Identification

= |dentifiable Causal Effect

In this example, assuming that 7" over Y is the causal effect of interest :

1. Theoneinredisthe causal path
(there could be more, in general)

2. Noneof M, or M, should be in the adjustment set W

3. Anynon-empty subset of these threenodes (7 )}—( M )——
is a valid adjustment set W

Probabilistic Graphical Models and Causal Inference [40]



Identification

= |dentifiable Causal Effect

In this example, assuming that 7" over Y is the causal effect of interest :

1. Theoneinredisthe causal path
(there could be more, in general)

2. Noneof M, or M, should be in the adjustment set W

3. Anynon-empty subset of these threenodes (7 )}—( M )——
is a valid adjustment set W

4. Adding node X, makes it invalid

Probabilistic Graphical Models and Causal Inference [41]



Identification

» |dentifiable Causal Effect
In this example, assuming that 7" over Y is the causal effect of interest :

1. Theoneinredisthe causal path
(there could be more, in general)

2. Noneof M, or M, should be in the adjustment set W

3.  Any non-empty subset of these three nodes
is a valid adjustment set W

4. Adding node X, makes it invalid

5. Unlike with PGM, adding either X; or X,
does not make W valid again,
since X, is adescendantof Y

Probabilistic Graphical Models and Causal Inference [42]



Identification

= Adjustment Set Criterion with observed and unobserved variables

More in general, in practical cases,
there can be both observed and unobserved (possibly hidden) variables

An adjustment set can be composed of both:
W = W,ps UWpig
Then, if W satisfies the Adjustment Set Criterion:

P(Y|do(T =t),Wops) = »  P(Y|T =t, Whig, Wops) P(Whia)
Whid

When there are no observed variables in the adjustment set:

P(Y|do(T =t)) =) PY|T =t,W)P(W)

Likewise, when there are no unobserved variables in the adjustment set:

P(Y|do(T = t),W) = P(Y|T = t, W)

Probabilistic Graphical Models and Causal Inference [43]



Estimating Effects

Expected effects of different interventions can be estimated via do-calculus

In general, the expected effect on Y of treatment T will be

EY|T =t,Wops] := Yy P(Y[do(T =t), Wops)
yey
where W = W, U Wy,a is avalid adjustment set

Differences in effects can be measured by comparing expected effects.
As a special case, when T € {0,1}
» The Conditional Average Treatment Effect (CATE) is defined as:

T(Wops) := E[Y|T =1, W] —E[Y|T = 0, W]

* The Average Treatment Effect (ATE) is defined as:
E[r(W)] .= E[Y|T =1] - E[Y|T = 0]

Probabilistic Graphical Models and Causal Inference [44]



Another Working Example
(see GeNle ‘berkeley moglﬁed " attachment)

Probabilistic Graphical Models and Causal Inference [45]
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