

Probabilistic Graphical Models and Causal Inference

Episode 2: Causal Graphical Models

Marco Piastra

This presentation can be downloaded at: <u>https://vision.unipv.it/Al/AIRG.html</u>

Very Good Readings

Causal Inference in Statistics

A Primer

Judea Pearl, Madelyn Glymour and Nicholas P. Jewel *Wiley, 2016*

 Elements of Causal Inference Foundations and Learning Algorithms
 Jonas Peters, Dominik Janzing and Bernhard Schölkopf *MIT Press, 2017*

Expected Value of a Random Variable

Basic definitionIn a more concise
notation:
$$\mathbb{E}_X[X] := \sum_{x \in \mathcal{X}} x \ P(X = x)$$
 $\mathbb{E}[X]$ Continuous case
 $\mathbb{E}_X[X] := \int_{x \in \mathcal{X}} x \ p(x) dx$ Probability density

a more concise
$$^{tation:} \quad \mathbb{E}[X] := \sum_x x \; P(x)$$

Expectation is a linear operator

 $\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$ $\mathbb{E}[cX] = c\mathbb{E}[X]$

Conditional expectation

$$\mathbb{E}_X[X|Y=y] = \mathbb{E}[X|Y=y] := \sum_{x \in \mathcal{X}} x \ P(X=x|Y=y)$$

Simpson's Paradox

Causes and Effects: the Simpson's Paradox [1922]

Does physical exercise prevent cholesterol?

Apparently not: correlation is *positive*

$$\rho(X,Y) := \frac{\mathbb{E}[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}$$

where:

Pearson correlation

 $\mu_X := \mathbb{E}_X[X]$

$$\sigma_X := \sqrt{\operatorname{Var}(X)} = \sqrt{\mathbb{E}[(X - \mu_X)^2]}$$

standard deviation

In words: Does <u>more</u> physical exercise *cause* <u>more</u> cholesterol?

Causes and Effects: the Simpson's Paradox [1922]

Does physical exercise prevent cholesterol?

Maybe yes if we consider another variable...

Correlation in Age subgroups is *negative*

In words: Does <u>more</u> physical exercise *cause* <u>less</u> cholesterol?

Does physical exercise prevent cholesterol?

Undirected structure (a clique): no independence assumptions. All DAGs built form it will be equivalent (just different factorizations)

Does this DAG make more sense from a <u>causal</u> viewpoint?

And what is the meaning of this, after all?

What is a cause?

A variable X is said to be a <u>cause</u> of a variable Y if Y can change in response to changes in X

In a Causal Graphical Model (CGM), each parent is a direct cause of all its children

The notation is the same as with <u>Probabilistic Graphical Model (PGM)</u>, the intended meaning is different

Reichenbach's Common Cause Principle

Given two <u>observed</u> variables X and Y that are *dependent* on each other

 $\langle X \not\perp Y \rangle$

There exists a third variable Z which causally influences both of them and makes them conditionally independent

 $\langle X \perp Y \mid Z \rangle$

As a special case, ${\cal Z}$ may coincide with either ${\cal X}$ or ${\cal Y}$

Caution: such principle is not undisputed...

Causation, Dependence, Correlation

Correlation and Dependence

$$\rho(X,Y) := \frac{\mathbb{E}[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}$$

Pearson correlation

where:

$$\mu_X := \mathbb{E}[X]$$

$$\sigma_X := \sqrt{\operatorname{Var}(X)} = \sqrt{\mathbb{E}[(X - \mu_X)^2]}$$

Standard deviation

[Image from https://en.wikipedia.org/wiki/Pearson_correlation_coefficient]

Correlation and Dependence

$$\rho(X,Y) := \frac{\mathbb{E}[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}$$

Pearson correlation

where:

$$\mu_X := \mathbb{E}[X]$$

$$\sigma_X := \sqrt{\operatorname{Var}(X)} = \sqrt{\mathbb{E}[(X - \mu_X)^2]}$$

Standard deviation

Anscombe Quartet: eleven points in 2D space - same mean, variance and correlation

[Image from https://en.wikipedia.org/wiki/Anscombe%27s_quartet]

Correlation and Dependence

Zero correlation does NOT imply independence Does <u>independence</u> imply <u>zero correlation</u>?

$$\begin{split} \rho(X,Y) &:= \frac{\mathbb{E}[(X-\mu_X)(Y-\mu_Y)]}{\sigma_X \sigma_Y} \\ \operatorname{Cov}(X,Y) &:= \mathbb{E}[(X-\mu_X)(Y-\mu_Y)] \quad \text{Covariance} \\ &= \mathbb{E}[XY - X\mu_Y - Y\mu_X + \mu_X\mu_Y] \\ &= \mathbb{E}[XY] - \mu_Y \mathbb{E}[X] - Y\mu_X \mathbb{E}[Y] + \mu_X \mu_Y \\ &= \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y] - \mathbb{E}[X]\mathbb{E}[Y] + \mathbb{E}[X]\mathbb{E}[Y] \\ &= \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y] \\ &= \sum_{x,y} xy \ P(x,y) - \sum_x x \ P(x) \sum_y y \ P(y) \\ &= \sum_{x,y} xy \ P(x,y) - \sum_{x,y} xy \ P(x)P(y) \end{split}$$

So, the answer is <u>yes</u>: the last term must be zero if the two variables are independent

Probabilistic Graphical Models and Causal Inference

Causation and Dependence

A X Y

In a Causal Graphical Model (CGM), each parent is a direct cause of all its children

A chain of causes along the arrows is a causal path

- All variables along a path are <u>dependent</u> on each other
- The <u>direction</u> of arrows matters

Detecting the independence of random variables (absence of connections) from observations may be difficult, but even in that case ...

Causation and Dependence

From Episode 1 of this course

Markov Equivalence Class

Two graphical models share the same independence assumptions when:

- 1) they share the same *undirected* structure (i.e., *skeleton*)
- 2) they share the same *joins* (a.k.a. *colliders*)
- (*) This holds true when some independence is expressed (i.e., if some links are missing). Any DAG built out of a clique will be equivalent, regardless of joins (i.e., no independence assumptions represented anyway)

Causation and Correlation

Between any two random variables:

<u>Causation</u>, either direct or through a path, implies <u>dependence</u> Non-zero <u>correlation</u> implies <u>dependence</u> but not vice-versa Both <u>correlation</u> and <u>independence</u> are <u>commutative</u> relations

 $\rho(X,Y) := \frac{\mathbb{E}[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}$ Pearson correlation P(X,Y) = P(X)P(Y)

Independence

None of them will reveal the direction of arrows

Except for <u>independence</u> in a non-clique collider

Say it with graphs

What is a cause? (Another example)

G is biological gender (= Male/Female) *D* is drug administration (= Yes(1)/No(0)) *R* is recovery from illness (= Yes(1)/No(0))

Experimental data

- In both groups, recovery rates are *higher* if drug is administered...
- ... while in the entire population, recovery rates are *lower*

Females	R = 0	R = 1		Recovery Rate
D = 0	25	55	80	69%
<i>D</i> = 1	71	192	263	73%
	96	247	343	
Males	R = 0	R = 1		Recovery Rate
D = 0	36	234	270	87%
<i>D</i> = 1	6	81	87	93%
	42	315	357	\smile
	R = 0	R = 1		Recovery Rate
D = 0	61	289	350	83%
<i>D</i> = 1	77	273	350	78%
	138	562	700	

What is a cause? (Another example)

G is biological gender (= Male/Female) *D* is drug administration (= Yes(1)/No(0)) *R* is recovery from illness (= Yes(1)/No(0))

Experimental data

- Note however that gender also influenced drug prescription...
- ... in fact, in this example, doctors were more likely to prescribe drug to males than to females

Females	R = 0	R = 1		Recovery Rate
D = 0	25	55	80	69%
<i>D</i> = 1	71	192	263	73%
	96	247	343	
Males	R = 0	<i>R</i> = 1		Recovery Rate
D = 0	36	234	270	87%
<i>D</i> = 1	6	81	87	93%
	42	315	357	
	R = 0	<i>R</i> = 1		Recovery Rate
D = 0	61	289	350	83%
<i>D</i> = 1	77	273	350	78%
	138	562	700	

 What is a cause? (Another example) Maximum Likelihood Estimation (CPTs)

Females

R = 0 R = 1

[Data from Pearl, J. et al., "Causal Inference in Statistics: A Primer", Wiley, 2016]

Recovery Rate

 What is a cause? (Another example) Maximum Likelihood Estimation (CPTs)

Using Graphical Model as a predictor

Case 1: Gender is observed

$$P(R = 1 | G = 0, D = 0) = 0.69$$

$$P(R = 1 | G = 0, D = 1) = 0.73$$

$$P(R = 1 | G = 1, D = 0) = 0.87$$

$$P(R = 1 | G = 1, D = 1) = 0.93$$

Prescribe drug, regardless

Case 2: Gender is not observed

 $P(R|D) = \frac{\sum_{G} P(R|G, D) P(D|G) P(G)}{\sum_{G, R} P(R|G, D) P(D|G) P(G)}$ P(R = 1|D = 0) = 0.83 P(R = 1|D = 1) = 0.78Do not prescribe drug, regardless
(ridiculous!)

What is a cause? (Another example)

G is biological gender (= Male/Female) *D* is drug administration (= Yes(1)/No(0)) *R* is recovery from illness (= Yes(1)/No(0))

How can we solve the problem?

- The problem is due to the discrepancy in drug administration across genders
- An obvious solution would be *to repeat* the experiment with equal administration rates
- In other words, we would sever this link

Females	R = 0	R = 1		Recovery Rate
D = 0	25	55	80	69%
<i>D</i> = 1	71	192	263	73%
	96	247	343	
Males	R = 0	<i>R</i> = 1		Recovery Rate
D = 0	36	234	270	87%
<i>D</i> = 1	6	81	87	93%
	42	315	357	
	R = 0	R = 1		Recovery Rate
 D = 0	$\frac{R=0}{61}$	<u><i>R</i> = 1</u> 289	350	Recovery Rate 83%
D = 0 $D = 1$	$\frac{R=0}{61}$	<i>R</i> = 1 289 273	350 350	Recovery Rate 83% 78%

A Working Example (see GeNIe 'berkeley' attachment)

Confounders

In this example, the problem is that G represents a 'common cause' of both D and R It is a *confounder*, if we are interested in the causal link from D to R

In a controlled experiment, we could administer drug *at random*, regardless of G

In this case we would have:

Counterfactuals, potential outcomes

In many circumstances, data are acquired in an *uncontrolled* ways: they are mere *observations*

We might still circumvent the problem if we knew would have happened if actions were *different (i.e., counterfactuals* or *potential outcomes)*

Probabilistic Graphical Models and Causal Inference

Counterfactuals, potential outcomes

In many circumstances, data are acquired in an uncontrolled ways: they are mere observations

Can we work around all of this, even with data from uncontrolled (i.e., observational) experiments?

Causal Graphical Models at Work (do-calculus)

Causation and Conditionals

Conditioning and Intervening

T=1

Assume we have data about a population of subjects Some have been treated (T = 1) and some not (T = 0)

Conditioning means considering two subpopulations

and computing probabilities from each of them

Intervening, in the jargon of causal models, means assuming that every subject in the population has been treated or not (*potential outcomes*)

[Image from https://www.bradyneal.com/causal-inference-course]

Causation and Conditionals

Causal Model and Estimation

Basic principles:

- Having selected what kind of causal effect we want to estimate
- 2. We start from a *Causal Graphical Model* (CGM)
- 3. To translate the estimate into a statistical estimand, (*Identification*)
- 4. We use then *observational* data to compute the estimate: a *probability* or an *expected value*

The Magic of Controlled Experiments

When association is causation

In this Causal Graphical Model:

- 1. The causal effect we are interested in is that of D over R
- 2. The link between G and D is *problematic*: we know that $P(D|G = 0) \neq P(D|G = 1)$
- 3. In a *controlled experiment*, *D* is administered at random , therefore

 $\langle D \perp G \rangle \implies P(D|G=0) = P(D|G=1) = P(D)$

4. In other words, the corresponding CGM 'loses' the problematic link and the estimate becomes $P(R|D) := \sum P(G)P(R|G,D)$

The Magic of Controlled Experiments

When association is causation

With *controlled experiments* (i.e., the 'gold standard' for testing) the principle is more general:

- by *randomizing* the administration of treatment
- we make the *effects* independent of any *confounders* (be them observed or not)

do-calculus

From Conditional (pre-intervention) to Intervention Probability

A 'deterministic' node (i.e., not 'random' anymore)

In this *Causal Graphical Model* (for an <u>uncontrolled</u> experiment):

1. Conditional probability:

$$P(R|D=d) = \frac{\sum_{G} P(G)P(R|G, D=d)P(D=d|G)}{\sum_{G} P(G)P(D=d|G)}$$

These two expression would be identical if

$$P(D = d|G) = 1$$

which cannot be true in general

2. Intervention (do-calculus, this is new)

$$P(R|do(D=d)) := \sum_{G} P(G)P(R|G, D=d)$$

3. This is equivalent to P(R|D = d) in a modified CGM in which we 'enforce intervention'

do-calculus

From Conditional (pre-intervention) to Intervention Probability

(same observational probabilities, from MLE)

Using do-calculus

$$P(R = 1 | do(D = 0)) = \sum_{G} P(G)P(R = 1 | G, D = 0)$$
$$= 0.49 \cdot 0.69 + 0.51 \cdot 0.87 = 0.78$$

$$P(R = 1 | do(D = 1)) = \sum_{G} P(G)P(R = 1 | G, D = 1)$$

= 0.49 \cdot 0.73 + 0.51 \cdot 0.93 = 0.83

Prescribe drug, regardless

do-Calculus

2.

Compare two expressions

do-calculus: Is it that simple?

(not so fast...)

do-Calculus

- In general, in a Causal Graphical Model
 - 1. Joint Probability Distribution

$$P(X_1, X_2, \dots, X_n) = \prod_i P(X_i \mid parents(X_i))$$

where $\{X_1, X_2, \ldots, X_n\}$ is the set of random variables in the model

2. Intervention (do-calculus):

$$P(\{X_i\}_{i \neq k} | do(X_k = x_k)) = \prod_{i \neq k} P(X_i | parents(X_i)) \Big|_{X_k = x_k}$$

1

In general, do-calculus allows translating a *causal estimand* into a *statistical estimand*, hence a *probability*

Under which conditions such translation is effective and justified?

Adjustment Set Criterion [Shipster et al. 2010]

In a Causal Graphical Model, the *causal effect* of T over Y is *identifiable* iff it exists an *adjustment set* W of variables such that:

- no variable in W is on, or is a descendant of any variables on, a causal path (excluding the descendants of T alone)
- the variables in W block (in the sense of graphical models) all the non-causal paths between T and Y

This criterion is necessary and sufficient for <u>effect identifiability</u>

Then:

$$P(Y|do(T=t)) = \sum_{\boldsymbol{W}} P(Y|T=t, \boldsymbol{W}) P(\boldsymbol{W})$$

In words, the causal effect can be estimated statistically, from data

(*) An earlier (and weaker) version of this is called 'back-door criterion' [Pearl, 1993]

Identifiable Causal Effect

- 1. The one in red is the *causal path* (there could be more, in general)
- 2. None of M_1 or M_2 should be in the adjustment set W

Identifiable Causal Effect

- 1. The one in red is the *causal path* (*there could be more, in general*)
- 2. None of M_1 or M_2 should be in the adjustment set W
- 3. Any non-empty subset of these three nodes is a valid *adjustment set W*

Identifiable Causal Effect

- 1. The one in red is the *causal path* (*there could be more, in general*)
- 2. None of M_1 or M_2 should be in the adjustment set W
- 3. Any non-empty subset of these three nodes is a valid *adjustment set W*
- 4. Adding node X_2 makes it invalid

Identifiable Causal Effect

- 1. The one in red is the *causal path* (*there could be more, in general*)
- 2. None of M_1 or M_2 should be in the adjustment set W
- 3. Any non-empty subset of these three nodes is a valid *adjustment set W*
- 4. Adding node X_2 makes it invalid
- 5. Unlike with PGM, adding either X_1 or X_3 does <u>not</u> make W valid again, since X_2 is a descendant of Y

erest :	W ₂
W_1	W ₃
$T \rightarrow M_1$	M_2 Y
X1	X ₃
X	2

Adjustment Set Criterion with observed and unobserved variables

More in general, in practical cases, there can be both <u>observed</u> and <u>unobserved</u> (possibly <u>hidden</u>) variables

An *adjustment set* can be composed of both:

 $oldsymbol{W} = oldsymbol{W}_{obs} \cup oldsymbol{W}_{hid}$

Then, if *W* satisfies the <u>Adjustment Set Criterion</u>:

$$P(Y|do(T = t), \boldsymbol{W}_{obs}) = \sum_{\boldsymbol{W}_{hid}} P(Y|T = t, \boldsymbol{W}_{hid}, \boldsymbol{W}_{obs}) P(\boldsymbol{W}_{hid})$$

When there are no *observed* variables in the adjustment set:

$$P(Y|do(T = t)) = \sum_{\boldsymbol{W}} P(Y|T = t, \boldsymbol{W})P(\boldsymbol{W})$$

Likewise, when there are no *unobserved* variables in the adjustment set:

$$P(Y|do(T=t), \boldsymbol{W}) = P(Y|T=t, \boldsymbol{W})$$

Estimating Effects

Expected effects of different interventions can be estimated via <u>do-calculus</u> In general, the *expected effect* on Y of treatment T will be

$$\mathbb{E}[Y|T = t, \boldsymbol{W}_{obs}] := \sum_{y \in \mathcal{Y}} y \ P(Y|do(T = t), \boldsymbol{W}_{obs})$$

where $W = W_{obs} \cup W_{hid}$ is a valid *adjustment set*

Differences in effects can be measured by comparing expected effects. As a special case, when $T \in \{0, 1\}$

• The Conditional Average Treatment Effect (CATE) is defined as:

 $\tau(\boldsymbol{W}_{obs}) := \mathbb{E}[Y|T=1, \boldsymbol{W}_{obs}] - \mathbb{E}[Y|T=0, \boldsymbol{W}_{obs}]$

• The Average Treatment Effect (ATE) is defined as:

$$\mathbb{E}[\tau(\boldsymbol{W})] := \mathbb{E}[Y|T=1] - \mathbb{E}[Y|T=0]$$

Another Working Example (see GeNIe 'berkeley_modified' attachment)