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' Artificia] Intelligence’

“We propose that a two-month, ten-man study {mage from Wikipedia
of artificial intelligence carried out during the summer of 1956 [...]

The study is to proceed on the basis of the conjecture

that every aspect of learning or any other feature of intelligence
can in principle be so precisely described

that a machine can be made to simulate it.”

[John McCarthy et al., 1955, emphasis added]
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Reasoning 3s 3 Process

A line of reasoning, in formal logic, is translated into a process made of steps

Each step is of inference: from some elements, derive some others

= What is the purpose of logic?

To distinguish correct reasoning from incorrect reasoning
“No false conclusions from true premises”
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Causal Model

Namely, the objective of what we are talking about

A causal model is a conceptual tool that we can align with actual observations,
that allows us to perform virtual interventions and estimate their effects

and to evaluate possible counterfactual worlds
(“What if one element was different from actuality?”)

All of this in a precise and formal framework,
in which each inference step can be performed,
under specific prerequisites

Using probability theory as the basic formalism
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Apropos dependence and independence
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(*) In a finitary setting

Random variables: notation

» Random variables, events and event spaces

A random variable X assumes valuesinaset X
and generates an eventspace X =z, x € X

Probability:

This is the probability measure over the event space generated by the random variable X

P(X)

This the probability (i.e., a value in [0,1] ) associated to theevent X = x
P(X =x)

This is the probability measure over the event space generated by the random variables X and Y
as joint occurrences of X and theevent Y =1y

P(X,Y =y)
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Marginalization

Removing a random variable from a joint distribution

Given a joint probability distribution
P(X,)Y)

The marginal probability P(X) is obtained via a summation:

P(X) := Y P(X,Y =y)

A marginal probability can be a joint probability as well ...

P(X,Y) = Y P(X)Y,Z=2)

Marginal probability, shorthand notation with values of Y omitted:

P(X) = Y P(X,Y)

(*) In a finitary setting
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(*) In a finitary setting

Conditionalization

Exploring ‘what if something becomes known

Given a joint probability distribution
P(X,)Y)

The conditional probability P(X | Y =y) isdefined as:

PX Y =y) =
P(Y =y)
A conditional probability can be a joint probability as well ...
_ . PXY Z =27
PX)Y | Z=2) = P(Z = 2)

Conditional probability, more general notation:

P(X,Y)
P(Y)

P(X|Y) =
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(*) In a finitary setting

Conditionalization

Exploring ‘what if something becomes known
Conditional probability, more general notation:

P(X,Y)
P(Y)

P(X|Y) =

Assume both variables are binary XY € {0, 1}

P(X|Y =0) = jij((li(;yo))
P(X,Y)
PIX|Y =1) = e

Each value of the conditioning variable defines a distinct event (sub)space
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(*) In a finitary setting

Remarkable Rules
Following from the definition of conditionalization:
_ PX)Y)
PIXIY) = 5

= Chain Rule

= Bayes’' Theorem
P(X |Y)P(Y)= P(Y | X)P(X)

P(X|Y) = P(YI%})P(X)
pix (v - PO IXOPCO

- Xx PV | X)P(X)
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Probabilistic Inference (no learning)

= General Structure
Starting from a fully-specified joint probability distribution
P(Xq1,Xo,...,X,)
In an inference problem, random variables {X7, Xo,..., X, } are divided into three categories:
1) Observed variables { X, }, having a definite value
2) Irrelevant variables {X;}, which are not directly part of the answer
3) Relevant variables {X, }, which are part of the answer we seek

The general solution is:

PH{X: tH{Xo}) = Z P X}, { Xi H{ Xo})
{X:}
= Computability is always guaranteed (*in a finitary setting)

» Computational efficiency can be a problem
The number of combinations grows exponentially with the number of random variables
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Independence, conditional independence

* Independence (also marginal independence)

Two variables are independent
iff their joint probability can be factorized into the product of marginals

<XLlY> &  P(X,Y)=P(X)P(Y) o <YLX>
- . P(X,Y) P(X)P(Y)
PIXIY) = 5" = —py— = P

= Conditional independence

Two variables are conditionally independent given a third variable,
iff their joint conditional probability can be factorized into the product of conditional marginals

<XLlY|z> o  P(X.Y|Z)=P(X|2)P(Y|Z) <  <YLX|Z>
- P(X[Y.Z) = Pgéfl/Z')Z) - P(X}L@]rg'z) — P(X|2)

CAUTION: the two forms of independence are distinct!
<XLY>=3<XLlY|Z> <XLY|Z> 4 <XLY>
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Say it with graphs
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Chain Factorization

= Univariate factorization of a Joint Probability Distribution
From the definition of conditional probability (through chain rule)
P(X.Y.Z,W) = P(X)P(Y|X)P(Z|X,Y)P(W|Y, X, 2)

Any joint probability distribution can be factorized in a way such that
each factor is univariate (i.e., one random variable as independent) conditional distribution.

* Each factorization depends on an arbitrary sequence of the random variables
* Hence factorizations are not unique: any sequence produces a legitimate factorization of the same kind

Graphical equivalent of a univariate factorization

In this oriented graph:

* each node represents a random variable (and the corresponding univariate factor)
* each arcrepresents a conditioning of a random variable over another one (i.e. dependence)
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Chain Factorization

* Graphical model
P(X,Y,Z,W) VP(Y|X)P(Z|X,Y)P(WI|Y, X, Z)

fx@@

This graph:
 isacyclic: if you follow the arrows, you will never return to the same node
* is completely connected:. if you ignore arc orientations, every node is connected to any other node

Any univariate factorization can be represented by a graphical model
Every completely connected, acyclic and oriented graph represents a univariate factorization
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Chain Factorization and Independence Assumptions

* Graphical model
P(X,Y,Z,W) VP(Y|X)P(Z|X,Y)P(WI|Y, X, Z)

f?@\@

* Independence

Let’s remove a few arcs from the graph and rewrite the factorization accordingly

o~ N
T
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Chain Factorization and Independence Assumptions

* Graphical model
P(X,Y,Z,W) VP(Y|X)P(Z|X,Y)P(WI|Y, X, Z)

fx@@

* Independence

Let’s remove a few arcs from the graph and rewrite the factorization accordingly

@@

P(X,Y,Z, W) X)P VJP(Z|X,Y)P(W|X, Z)
which is true only if Independence
P (YlX ) =P (Y) (X = Y) / onditional Independence
P(W|X,Y, Z) = P(W|X, Z) v WXz
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Graphical models and independence assumptions

= Structural Equivalence
Different structures, different factorizations, same independence assumptions:

‘fork’ ‘sequence’ ‘sequence’

PY)P(X|Y)P(Z]Y) = (X L Z|Y) P(X)P(Y|X)P(Z|Y) = (X L Z|Y) P(Z)P(Y|2)P(X|Y) = (X L Z|Y)

Yet, this other structure implies a different independence assumption:

‘join’ or ‘collider’

o

P(X)P(Z)P(Y|X,Z) = (X L Z)
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Graphical models and independence assumptions

Equivalence criterion, in general

= Markov Equivalence Class

Two graphical models share the same independence assumptions when:
1) they share the same undirected structure (i.e., skeleton)
2) they share the same joins (a.k.a. colliders)

(*) This holds true when some independence is expressed (i.e., if some links are missing).
Any DAG built out of a clique will be equivalent, regardless of joins
(i.e., no independence assumptions represented anyway)

Probabilistic Graphical Models and Causal Inference

[20]



Graphical Models as Univariate Factorization

Any graphical model represents a univariate factorization

* Factorization for a graphical model

The general formula is:

P(X1,X2,...,Xy) = HP(X,; | parents(X;))

where parents are all nodes having a direct, incoming dependence arc

For the example in figure:

P(Wl,WQ,WE.,Tg M15M29Ya X15X27X3) —

P(Wa) P(W, |Wa) P(Wa|Wa) P(T|W1)P(M;|T)P(Ms| M) P(Y |Wa, Mo) P(X1|T)P(X3|Y) P(X5| X1, Xo)

Probabilistic Graphical Models and Causal Inference
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Paths in Graphical Models

In a graphical model

Consider any two nodes X and Y

A path between Xand Y
is a path in the graph ignoring orientations (i.e., arrows)

Example:

In the graph on the right,
consider all paths between M, and Y
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Blocked Paths in Graphical Models

In a graphical model

A path between any two nodes X and Y
is blocked whenever the observations {Z,}
are such that the path contains either: "~ Observed Variables

1) asequenceor a fork for which {Z,} contains
the node in between

2) acollider for which {Z,} does not contain the
observation of the join node nor of any of its
descendants

This path is blocked
whenever any of these
nodes are observed

Probabilistic Graphical Models and Causal Inference [23]



Blocked Paths in Graphical Models

In a graphical model

This path is blocked
whenever any of these

A path between any two nodes X and Y nodes are observed

is blocked whenever the observations {Z,} \ @
i i : "~ Observed Variables 4

are such that the path contains either:

1) asequence or a fork for which {Z,} contains
the node in between

2) acollider for which {Z,} does not contain the
observation of the join node nor of any of its
descendants
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Blocked Paths in Graphical Models

In a graphical model

A path between any two nodes X and Y
is blocked whenever the observations {Z,}
are such that the path contains either: "~ Observed Variables

1) asequence or a fork for which {Z,} contains
the node in between

2) acollider for which {Z,} does not contain the
observation of the join node nor of any of its
descendants

This path is blocked AS IS:
the collider blocks it /

It becomes unblocked when this
node is observed...
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Blocked Paths in Graphical Models

In a graphical model

A path between any two nodes A and B
is blocked whenever the observations { X, }
are such that the path contains either: "~ Observed Variables

1) asequence or a fork for which {Z,} contains
the node in between

2) acollider for which {X,} does not contain the
observation of the join node nor of any of its
descendants

" and yet the path can be
blocked again by observing
any of these two nodes

It becomes unblocked when this
node is observed...
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D-Separation in Graphical Models

= Dependency Separation (d-separation)

Any two nodes X and Y in a graphical model
are d-separated whenever the observations{Z,}

\
are such that all paths between X and Y Observed Variables
are blocked

In that case we have

(X LY {Z.})

REMEMBER: all paths need to be blocked

These observations make the two
nodes d-separated
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Graphical models: fundamental assumptions

= Minimality

Adjacent nodes in the graph are dependent.

= Local Markov Assumption

Given its parents in the graph, a node X
is independent of all its non-descendants

Consider this
node and have its
parents observed

It is independent
from all these nodes
(non-descendants)

But it is still dependent
on these others
(descendants)

Probabilistic Graphical Models and Causal Inference
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Learning Probabilities
om D3t
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Graphical Models: Learning Parameters

Conditional Probability Factors
Given a graphical model

Example (assume that all random variables are binary):

Joint distribution (general formula)

P(X1,Xa,...,Xp) = HP(XZ- | parents(X;))

Probabilistic Graphical Models and Causal Inference [30]



Graphical Models: Learning Parameters

Conditional Probability Factors
Given a graphical model

Example (assume that all random variables are binary):

T [P(T)
0 /098
1 10.02
T
TIF|A[PAITF
0/0/|0/| 09999
0/0/| 1] 00001
0/1/0]| o001
0/1]1] o099
1/0/0] 015
1/0/1] o085
1/1/0] o5
1/1/1] o5
L|R[PR|L)
0|0/ 099
0| 1] o001
1/0/| 025
1/1] 075

F |P(F)
0099
F|S|PGS|F
11001 0/0] 099
F 0/1] 001
1/0] o1
1/1] o9
A S
AL PLIA
v 0/0 | 0999
L 0] 1] 0.001
1/0] 012
1/1] 088
v Conditional Probability Tables (CPTs)

@ (one per each node)

Joint distribution (general formula)

P(X1,Xo,....,Xp) = HP(XZ- | parents(X;))

Each CPT corresponds to a conditional factor

P(X; | parents(X;))

How can we learn all these factors from data?

Probabilistic Graphical Models and Causal Inference
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Observations (Datgset)

For a given set of random variables {X1, Xo2,..., X}
Consider a dataset

{(371 7332 ’ . "7335:;)) i\il
namely, a set of data items

19 = @029 at))

9 * 0y

* Independent and Identically Distributed (lID) Dataset

1) All data items are independent from each other
(@D LdPy, Vi it

2) The generating distribution is the same for all data items
dY ~ P(X1,Xs,...,X,), Vi

CAUTION: Being lID is not an obvious property of observations

for example, different measurements on different patients may be IID,
but different measurements over time on the same patient are not IID

Probabilistic Graphical Models and Causal Inference
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Complete Observations

For a given set of random variables {X1,Xo,...,X,,}
Consider a dataset

{("I;I 7332 3. 7x£:)) i\il
namely, a set of data items
D = (2,2, ... 2l))

,o‘o,

= Complete Observations
Are all observations complete? o

In other words, are all values (27, Ty, - . -, x?(f)) completely specified or some of them are missing?

CAUTION: Learning probabilities from a dataset with missing values is still possible but more difficult

Probabilistic Graphical Models and Causal Inference [33]



Maximum Likelihood Estimator (MLE)

Given dataset:

{(371 7332 AR fr:

and a probability measure with parameters:
P(Xl,XQ, ce ,Xn, 19)

= Likelihood of the dataset
L(Y | D) = P(D |9

Notice the inversion: likelihood = probability of generating the dataset with specific parameter values

Learning as an optimization problem (Maximum Likelihood Estimator - MLE)

U, := argmax L(¢ | D)
Y

Probabilistic Graphical Models and Causal Inference [34]



Maximum Likelihood Estimator (MLE)

For a graphical model

Joint distribution (probability measure)

P(X1,Xo,...,X,) = HP(XZ- | parents(X;))

Conditional Probability Factors (IID and complete observations)

V= {P(X; | parents(X;)) i,

MLE - General Solution (IID and complete observations)

P(X; = x; | parents(X;) = x) =
NXi =x;, parents(X;)=x

N

parents(X;)=x

In other terms, each probability factor can be computed
by just counting a relative frequency of occurrence in the dataset

Probabilistic Graphical Models and Causal Inference

[35]



Maximum Likelihood Estimator (MLE)

For a graphical model

Joint distribution (probability measure)

Nr—g
N Npy P(X1,X9,...,X,) = H P(X; | parents(X;))
N .
T |P(T / F | P(F) ¢
(1) :/, 2 F[S[PS|F Conditional Probability Factors
00 N n
T - o1 V= {P(X; | parents(X;)) i,
10
T/ F|A|PA|TF 11t MLE - General Solution (IID and complete observations)
0/0]0
001 A S _ _ _
AR Ni—o, A= P(X; = x; | parents(X;) = x) =
0/1 1 AlLIPLIAY—  Na=o N
1100 v 0/0| e Nr—1, a—o Xi=z;, parents(X;)=x
1101 0/1, o " Ni,
1010 <|—> 170 = N, N
ARRE L0 :\\\ Ni—o. ams parents(X;)=x
T TERTL ! Na=i In other terms, each probability factor can be computed
010 RID Ne=1, 421 by just counting a relative frequency of occurrence in the dataset
0|1 R Na=i
110
11
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Missing Data

For a given set of random variables {X1,Xo,...,X,,}
Consider a dataset

{(371 7332 ) ..,33( )) 1=1
in which some data items may contain missing values

d¥ = (:cgi), 7., ,:cg))

Possible Completions
A possible completion of a data item is another data item in which there are no more missing values
Example (with binary values)

Possible completions are:

40 = (20 = 0,2 = 0,20 = 0) S
For a data item with no missing data

J(Z) (ajgz) =0, :U( i) _ 1, :B( ) — ()) the only possible completion is the data item itself

Probabilistic Graphical Models and Causal Inference [37]



Expectation-Maximization (EM) Algorithm

Fundamental idea: using probabilities of possible completions

In the completely observed case: probability factor are estimated as frequencies of occurrence

NXi =x;, parents(X;)=x

Nparents(Xi )=x

In the Expectation-Maximization algorithm, estimated frequencies are used:
/ Observed values

NX'Z.’B' parents(X;)=x = al (i ;
?,~ 9 7 h : N — Pd(z) d(’&) ; ,19
- wee N = 35RO |4

parents(X;)=x

i=1 j(i)

All possible completions

In words, any incomplete observations ‘splits up’ and contributes with the probabilities of possible completions
Note that, when all observations are complete:

Np = Np

Probabilistic Graphical Models and Causal Inference [38]



Expectation-Maximization (EM) Algorithm

Fundamental idea: using probabilities of possible completions

Algorithm:

1) Assign parameters 99 at random

2) Compute probabilities for all possible completions { P(d¥) | d(¥) ; 9(V))}
3) Update all probability factors using estimated frequencies:

N =x;, parents(X;)=x
I = CP(X; = a; | parents(X;) = x) = X}% i» parents(X)

parents(X;)=x

3) Go back to step 2) until some convergence criterion is met

Probabilistic Graphical Models and Causal Inference
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