

A Discrete Approach to Reeb Graph Computation and Surface Mesh Segmentation: Theory and Algorithm Laura Brandolini

Department of Industrial and Information Engineering Computer Vision & Multimedia Lab

Prof. Marco Piastra Prof. Virginio Cantoni

Given a closed and triangulated mesh

S

Given a closed and triangulated mesh we want a compact *graph* representation of its shape

Augmenting shape representations

[L Antiga 2002]

(e.g. in order to detect thinnings and thickenings)

As an alternative, compact shape representation
 (e.g. shape matching)

[Aleotti Caselli 2012]

An application: striatal mesh descriptor

Meshes extracted from 3D medical images (MRI) of human brain

left striatum

right striatum

An application: striatal mesh descriptor

Meshes extracted from 3D medical images (MRI) of human brain and the corresponding *Reeb graph*

left striatum

right striatum

An application: striatal mesh descriptor

40 different subjects: meshes extracted from 3D images (MRI) and the corresponding Reeb graphs

Simplified Reeb Graph as Effective Shape Descriptor for the Striatum - MICCAI 2012 MeshMed workshop, 2012, Nice, France Tampere University of Technology, VTT Technical Research Centre of Finland, University of Turku Finland

Registering graphs instead of entire meshes

Simplified Reeb Graph as Effective Shape Descriptor for the Striatum - MICCAI 2012 MeshMed workshop, 2012, Nice, France Tampere University of Technology, VTT Technical Research Centre of Finland, University of Turku Finland

The human striatum has three main parts

Simplified Reeb Graph as Effective Shape Descriptor for the Striatum - MICCAI 2012 MeshMed workshop, 2012, Nice, France Tampere University of Technology, VTT Technical Research Centre of Finland, University of Turku Finland

S

Reeb graph: a *faithful* and compact representation of a shape (see after)

There are many algorithms for computing Reeb graphs:

Cole-McLaughlin, Edelsbrunner, Harer, Natarajan, Pascucci 2003: Correct Reeb graph computation but but no esplicit embedding or segmentation and requires global sorting of mesh vertices and local remeshing

Tierny, Vandeborre, Daudi 2006: Efficient but no guarantee of correctness

Pascucci, Scorzelli, Bremer, Mascarenhas 2007: Correct and robust on-line computation but without segmentation

Patanè, Spagnuolo, Falcidieno, Biasotti 2009: Correct Reeb graph and segmentation but requires remeshing In what sense a graph is a *faithful* representation of a shape?

Smooth surfaces

Morse, 1931 Milnor, 1963

Reeb, 1946

f is a **smooth scalar** function defined on a **smooth surface** *M*.

A point $p \in M$ is **critical** for fif f all first partial derivatives are zero in p.

A critical point p is said to be **non-degenerate** if the Hessian matrix (matrix of second partial derivatives) of f is non-singular at p (determinant not zero in p).

A height function is a Morse function

f is called a **Morse function** if <u>all its critical points are non-degenerate</u>.

Morse function on smooth surfaces

A level line $f^{1}(\alpha)$ is the set of points of *M* having the same value α of *f*.

Morse theory:

- the critical points of a Morse function are finite
- all level lines are the union of a finite set of connected components
- connected components become points at maxima and minima
- connected components **intersect** at saddle points

Reeb graphs: on smooth surfaces

Equivalence relation: two points on *M* are equivalent if they belong to the same connected component of a level line.

Each point of the **Reeb graph** corresponds to a connected component of a level line:

- the **nodes** of the Reeb graph correspond to the **critical values** of *f*.
- all other points in the graph correspond to non-critical values.

The genus of a surface

The genus of a closed surface equals the number of 'holes' through it

Fundamental property

for orientable, closed, smooth, connected **surfaces**, if *f* is Morse, the <u>number of loops</u> in the Reeb graph corresponds to the <u>genus</u> of the surface [Cole-McLaughlin et al., 2003]

The actual Reeb graph depends on f

(but the number of loops in the Reeb Graph does not vary)

Given a closed, orientable, connected, **triangulated surface** *X*.

f is a function defined **on the vertices** of the triangulation *X*.

f is **general** if *it takes* **different values** at **each vertex**.

From now on we assume *f* to be **general**

The neighborhood of a vertex in a triangulated surface

Closure of the star

Link

higher vertexlower vertex

Index of a vertex: $i(v) = 1 - \frac{1}{2}t_c$

regular: i=0

saddle:

i=-1

max

i=1

V

min i=1

multiple saddle i<=-2

f is defined on the vertices

 $p = (\lambda_1, \lambda_2, \lambda_3)$ $\lambda_1 + \lambda_2 + \lambda_3 = 1$

 f^* is defined on the entire surface X

$$f^*(p) := \lambda_1 f(v_1) + \lambda_2 f(v_2) + \lambda_3 f(v_3)$$

$\int f and f^* \text{ on triangulated surfaces}$

A level line of f^* at α is the **set of points** of the surface *X* having the **same value** α of f^* .

Each level line is the union of a finite set of connected components called **contours**.

Each contour is the union of a set of **straight segments**.

These **segments**, on a same face, are **parallel to each other**, for different α values

level lines f^{*-1} are the union of straight segments level lines f^{*-1} are parallel

$$P = (t_{13}, 0, 1 - t_{13})$$

$$Q = (t_{12}, 1 - t_{12}, 0)$$

$$f^*(P) = f^*(Q) = l$$

$$t_{13}f(v_1) + (1 - t_{13})f(v_3) = f^*(P)$$

$$t_{12}f(v_1) + (1 - t_{12})f(v_2) = f^*(Q)$$

$$t_{12} = \frac{l - f(v_2)}{f(v_1) - f(v_2)}$$

$$t_{13} = \frac{l - f(v_3)}{f(v_1) - f(v_3)}$$

level lines f^{*-1} are the union of straight segments level lines f^{*-1} are parallel

$$P = (t_{13}, 0, 1 - t_{13})$$
$$Q = (t_{12}, 1 - t_{12}, 0)$$

$$\begin{vmatrix} t_{12} & (1 - t_{12}) & 0 \\ t_{13} & 0 & (1 - t_{13}) \\ \lambda_1 & \lambda_2 & \lambda_3 \end{vmatrix} = 0$$

http://mathworld.wolfram.com/BarycentricCoordinates.html

$$\lambda_1 (1 - t_{12})(1 - t_{13}) - \lambda_2 t_{12}(1 - t_{13}) - \lambda_3 t_{13}(1 - t_{12}) = 0$$
$$\lambda_1 - \lambda_2 \frac{t_{12}}{(1 - t_{12})} - \lambda_3 \frac{t_{13}}{(1 - t_{13})} = 0$$

level lines *f*^{*-1} are the **union of straight segments** level lines *f*^{*-1} are **parallel**

$$\lambda_{1} - \lambda_{2} \frac{t_{12}}{(1 - t_{12})} - \lambda_{3} \frac{t_{13}}{(1 - t_{13})} = 0$$

$$\frac{\lambda_{1} - \lambda_{2} \frac{t_{12}}{(1 - t_{12})} = \frac{\lambda_{3} \frac{t_{13}}{(1 - t_{13})} = 0$$

$$\frac{t_{12}}{(1 - t_{12})} = \frac{l - f(v_{2})}{f(v_{1}) - l}$$

$$\frac{t_{13}}{(1 - t_{13})} = \frac{l - f(v_{3})}{f(v_{1}) - l}$$

$$\lambda_{1} - \lambda_{2} \frac{l - f(v_{2})}{f(v_{1}) - l} - \lambda_{3} \frac{l - f(v_{3})}{f(v_{1}) - l} = 0$$

$$\lambda_{1}(l - f(v_{1})) + \lambda_{2}(l - f(v_{2})) + \lambda_{3}(l - f(v_{3})) = 0$$
but recalling that $\lambda_{1} + \lambda_{2} + \lambda_{3} = 1$ it gives us:

 $\lambda_1 f(v_1) + \lambda_2 f(v_2) + \lambda_3 f(v_3) = l$

On triangulated surfaces the definition of Reeb graph is even more robust: when f^* is a Morse function the definition of Reeb graph goes as in the smooth case.

When *f*^{*} is **not a Morse function**, i.e. when there are **multiple saddles** for *f*^{*}, the definition of Reeb graph holds but the graph might have nodes with **connectivity higher than 3**.

Genus of triangulated surfaces

For orientable, closed, triangulated, connected surfaces the **number of loops** in the Reeb graph corresponds to the **genus** of the surface (Cole-McLaughlin et al., 2003)

Reeb graph of X

$$\beta_1(R_{f^*}(X)) = g(X)$$

The actual Reeb graph depends on *f* but the number of loops in the Reeb Graph does not vary

Genus of triangulated surfaces For orientable, closed, triangulated, connected surfaces the **number of loops** in the Reeb graph corresponds to the **genus** of the surface (Cole-McLaughlin et al., 2003)

 $\chi(R_{f^*}(X)) = \beta_0(R_{f^*}(X)) - \beta_1(R_{f^*}(X))$ $\chi(R_{f^*}(X)) := V(X) - E(X)$ $V(R_{f^*}(X)) - E(R_{f^*}(X)) = \beta_0(R_{f^*}(X)) - \beta_1(R_{f^*}(X))$ $V(R_{f^*}(X)) - E(R_{f^*}(X)) = 1 - \beta_1(R_{f^*}(X))$ $\beta_1(R_{f^*}(X)) = 1 - V(R_{f^*}(X)) + E(R_{f^*}(X))$

$$\beta_1(R_{f^*}(X)) = 1 - V(R_{f^*}(X)) + E(R_{f^*}(X))$$

 n_1 = number of maxima and minima n_{-i} = number saddles with index -i

$$V(R_{f^*}(X)) = n_1 + \sum_{i>0} n_{-i}$$
$$E(R_{f^*}(X)) = \frac{1}{2}(n_1 + \sum_{i>0} (2+i) \cdot n_{-i})$$

$$\beta_1(R_{f^*}(X)) = 1 - \frac{1}{2}(n_1 - \sum_{i>0} i \cdot n_{-i})$$

Theorem
$$\chi(X) = \sum_{v \in V(X)} i(v)$$

Proof:

$$\chi(X) = \sum_{v \in V(X)} (1 - \frac{1}{2}t_c(v))$$
$$\chi(X) = V(x) - \sum_{v \in V(X)} \frac{1}{2}t_c(v)$$
$$\chi(X) = V(X) - \frac{1}{2}T(X)$$

 $\chi(X) := V(X) - E(X) + T(X)$

[Critical Point Theorem - Banchoff, 1967]

3T(X) = 2E(X)

$$\zeta(X) = V(X) - \frac{1}{2}T(X)$$

Theorem can be reformulated:

$$\chi(X) = n_1 - \sum_{i>0} i \cdot n_{-i}$$

$$\beta_1(R_{f^*}(X)) = 1 - \frac{1}{2}(n_1 - \sum_{i>0} i \cdot n_{-i})$$
$$\chi(X) = n_1 - \sum_{i>0} i \cdot n_{-i}$$
$$\beta_1(R_{f^*}(X)) = 1 - \frac{1}{2}\chi(X)$$
$$\chi(X) := 2 - 2g(X)$$
$$\beta_1(R_{f^*}(X)) = g(X)$$

Apropos computation...

Computing the level lines of f^* is **expensive** as they **run on the surface** (i.e. **through** triangular faces)

It would be nice to have a **computationally simpler** alternative.

But the alternative must be theoretically sound

The **level strip** of a function f^* for α is the set of : -all the cross-triangles for α -all the cross-edges for α -the vertex v such that $f^*(v) = \alpha$

LS is not a simplicial complex - some outer edges are missing **Homotopy between LS(** α **) and** f^{*-1} For each $v \in V(X)$, the union of the interior of the simplices in the level strip

LS(v) has the same homotopy type of the level set $f^{*-1}(f(v))$.

In addition, for any other value `in between'

(i.e. for which there is no v such that $\alpha = f(v)$),

the level strip $LS(\alpha)$ has the same homotopy type of $f^{*-1}(\alpha)$.

S

Given two topological spaces X, Y, such that $Y \subseteq X$, a deformation retraction is a map :

 $h: \mathbf{X} \times [0,1] \to \mathbf{X}$

such that

- *h* is continuous
- $\forall x \in \mathbf{X}, \ h(x, 0) = x \ (i.e. \ h(., 0) = \mathrm{Id}_x)$
- $\forall x \in \mathbf{X}, \ h(x, 1) \in \mathbf{Y}$
- $\forall y \in \mathbf{Y}, \ \forall t \in [0,1], \ h(y,t) = y$

The interior of an edge face has the same homotopy type of the interior of the segment that crosses it

$$t \in [0, 1]$$
$$p := a + t(a' - a)$$

The interior of a triangular face has the same homotopy type of the interior of the segment that crosses it

Proof.

$$v_1 = (1, 0, 0)$$

 $a = (a_1, a_2, a_3)$
 $a' = (\lambda_1, \lambda_2, \lambda_3)$

$$\begin{vmatrix} 1 & 0 & 0 \\ a_1 & a_2 & a_3 \\ \lambda_1 & \lambda_2 & \lambda_3 \end{vmatrix} = 0$$

$$a_2\lambda_3 - a_3\lambda_2 = 0$$
$$a_2\lambda_3 = a_3\lambda_2$$

The intersection between the radial line through a and the generic level line at I is:

$$\begin{cases} \lambda_1 f(v_1) + \lambda_2 f(v_2) + \lambda_3 f(v_3) = l \\ a_2 \lambda_3 = a_3 \lambda_2 \\ \lambda_1 + \lambda_2 + \lambda_3 = 1 \end{cases}$$

Whose solution is:

$$\lambda_{1} = \frac{a_{2}l + a_{3}l - a_{2}f(v_{2}) - a_{3}f(v_{3})}{a_{2}f(v_{1}) - a_{2}f(v_{2}) + a_{3}f(v_{1}) - a_{3}f(v_{3})}$$
$$\lambda_{2} = \frac{a_{2}(f(v_{1}) - l)}{a_{2}f(v_{1}) - a_{2}f(v_{2}) + a_{3}f(v_{1}) - a_{3}f(v_{3})}$$
$$\lambda_{3} = \frac{a_{3}(f(v_{1}) - l)}{a_{2}f(v_{1}) - a_{2}f(v_{2}) + a_{3}f(v_{1}) - a_{3}f(v_{3})}$$

Homotopy between LS and f^{*-1}

The equation of
$$f^*$$
 at a is: $a_1 f(v_1) + a_2 f(v_2) + a_3 f(v_3) = l_a$

interior of a triangle

The map $h: X \times [0,1] \to X$ projects each point $a \in X$ to the intersection between the radial line through a and a level set at $l = l_a - t(l_a - l_0)$ where l_0 is the value of the target level set.

- clearly h is continuous
- $\forall a \in \mathbf{X}, h(a,0) = a$ (that is the intersection between the radial line through a and the level set l_a)
- $\forall a \in \mathbf{X}, h(a, 1) \in \mathbf{Y}$ (where Y is the interior of the level set in X)
- $\forall a \in \mathbf{Y}, \ \forall t \in [0,1], \ h(a,t) = a$

End proof

The contour strip of a vertex v CS(v) is the connected component of LS(v) that contains v.

If **v** is a **regular vertex** the CS(v) will contain a **unique cycle**

If **v** is either a **maximum or a minimum** the CS(v) will contain the vertex **v itself**

If **v** is a **saddle** the CS(v) will contain a **number of cycles** equal to **m+1** (being m saddle multiplicity)

Each **point** of the **CSRG** corresponds to a contour strip:

- the **nodes** of the Reeb graph correspond to the **CS** of **critical vertices**.

- all other points in the graph correspond to the CS of non-critical values

The adjacency of the points of the Rg follows the adjacency of the corresponding contour strips

Given two vertices v_1 and v_2 , regular or saddle, such that $f(v_1) < f(v_2)$ their CS are **adjacent** if they **share at least one cross face** and **there is no other overlapping contour strip** for v_3 such that $f(v_1) < f(v_3) < f(v_2)$

If **v** is a **minimum** or a **maximum** the above definition applies assuming that any other contour strip **overlaps CS(v)** if **it overlaps St(v)**

Level strips are an interesting approach because they do not require computing f^{*-1} .

But is there a simpler approximation of the level strip (V, E, T)? (...hence of the level line of f^* ?)

One approach that uses only mesh edges and vertices (V,E)?

Upper Level Set

Lower Level Set

In this case, the graph corresponding to the connected components of the ULS has **no loops** and **violates the Loop Lemma**

Connected components of the augmented Upper (lower) level set made up of edges and vertices with **possible multiple presence** are **topologically equivalent to the connected components of** *f* ^{*-1}

The **multiplicity** of an edge in the AULS(α)

is equal to the number of faces that are adjacent to the edge and also belong to the level strip $LS(\alpha)$.

An edge $e \in ULS(\alpha)$ has **multiplicity 2** in $ULS(\alpha)$ if:

 $\exists t_i, t_j \in LS(\alpha) | e \subset t_i, e \subset t_j$

Any other edge $e \in ULS(\alpha)$ has **multiplicity 1**.

The multiplicity of a vertex v in the ULS(v) is equal to

1/2 the sum of the multiplicity of the edges in the augmented ULS adjacent to the vertex

$$n(v) = \frac{1}{2} \sum_{e \in ULS(\alpha), v \prec e} m(e)$$

where m(e) is the multiplicity of the edge in ULS(α).

The **contour** $\gamma(v)$ is the connected component of the **augmented** ULS(v)

Homotopy equivalence between a connected component of f^{*-1} and the contour $\gamma(v)$

A connected component of a level line f^{*-1} containing v is homotopy equivalent to the corresponding connected component of the augmented ULS (the contour $\gamma(v)$) if the latter contains at least one edge.

 $\tau \in K$ is a **free face** iif there exists $\sigma \in K$ such that $\tau \subseteq \sigma$ and σ is unique, i.e. there is no other $\sigma' \in K$ such that $\tau \subseteq \sigma'$

The pair (τ, σ) is a **free pair**.

An **elementary collapse** of K is a subcomplex K' that can be obtained from K by removing one free pair.

A **collapse** of K is a subcomplex K' that can be obtained from K via a sequence of elementary collapses.

An elementary expansion of K is a subcomplex K' that can be reduced to

K by removing one free pair.

An **expansion** of K is a subcomplex K' that can be reduced to K via a sequence of elementary expansions.

expansion

Two simplicial complexes K and M are **simple-homotopy equivalent** if M can be obtained from K via a sequence of collapses and expansions. If K and M are simple-homotopy equivalent they are also **homotopy equivalent**.

homotopy equivalent.

Homotopy equivalence between a connected component of f^{*-1} and

the contour $\gamma(v)$ A connected component of a level line f^{*-1} containing v is homotopy equivalent to the corresponding connected component of the augmented ULS (the contour $\gamma(v)$) if the latter contains at least one edge.

Homotopy equivalence between a connected component of f^{*-1} and the contour w(w)

the contour $\gamma(v)$ A connected component of a level line f^{*-1} containing v is homotopy equivalent to the corresponding connected component of the augmented ULS (the contour $\gamma(v)$) if the latter contains at least one edge.

Homotopy equivalence between a connected component of f^{*-1} and

the contour $\gamma(v)$ A connected component of a level line f^{*-1} containing v is homotopy equivalent to the corresponding connected component of the augmented ULS (the contour $\gamma(v)$) if the latter contains at least one edge.

S

The contour $\gamma(v)$ must contain at least one edge,

otherwise the counterexample shown below becomes possible.

$$\gamma_{upd}(v) = \gamma(v) - \operatorname{St}(v, \gamma(v)) + (\operatorname{Lk}^+(v, f) - \operatorname{Lk}(v, \gamma(v)))$$

 $f(v_i) < f(v_j)$

and there exists a contour γ such that:

 $\gamma \subseteq \gamma_{upd}(v_i) \text{ and } \gamma \subseteq \gamma(v_j)$

A **segment** is the **portion of surface** delimited by the contours passing by the critical points

The simplified Reeb graph (SRG) is a graph that has:

- one node for each critical
 point
- one node for each segment.

Each segment-node is adjacent to the nodes corresponding to the **two critical points** whose **contours delimit the segment**.

Contour = each **connected component** of an augmented **upper**

```
level line (AULL)
```

Given a mesh and a general function f:

- 1. initialize a contour at each local minima;
- 2. evolve incrementally all the contours;
- 3. perform either split or merge operations at critical points;
- 4. terminate when all contours have reached a local maximum.

Contour evolution starts at local minima and selects at each step

a candidate vertex has the lowest value of f in all contours

$$\begin{split} & \Gamma \leftarrow \emptyset \\ & \Sigma \leftarrow \emptyset \\ & V_{minima} \leftarrow minima(T, f) \\ & \textbf{for each } v_{min} \in V_{minima} \\ & \textbf{do} \quad \begin{cases} \textbf{comment: } \gamma \text{ is a } multiset \text{ of vertices and edges} \\ & \sigma_{min} \leftarrow \text{new } \sigma(\{v_{min}\}) \\ & \gamma \leftarrow \text{new } \gamma(\{v_{min}\}) \\ & \sigma(\gamma) \leftarrow \text{new } \sigma(\emptyset) \\ & \Gamma \leftarrow \Gamma \cup \{\gamma\} \\ & \Sigma \leftarrow \Sigma \cup \{\sigma_{min}\} \cup \{\sigma(\gamma)\} \\ & adjacency(\Sigma) \leftarrow adjacency(\Sigma) \cup \{(\sigma_{min}, \sigma(\gamma))\} \end{cases} \end{split}$$

procedure ADVANCECONTOUR (v_c, γ) $\gamma \leftarrow \gamma - \operatorname{St}(v_c, \gamma)$ $\gamma \leftarrow \gamma \cup (\operatorname{Lk}^+(v_c, f) - \operatorname{Lk}(v_c, \gamma))$

Evolve incrementally all the contours

output (Σ)

Split or **merge** operations are performed each time a critical point is met:

 $\gamma_{tmp} \leftarrow \text{new } \gamma(\emptyset)$ $\sigma_{saddle} \leftarrow \text{new } \sigma(\{v_c\})$ $\Sigma \leftarrow \Sigma \cup \sigma_{saddle}$ for each $\gamma_c \in \Gamma_c$ **do** $\begin{cases} \gamma_{tmp} \leftarrow \gamma_{tmp} \cup \gamma_c \\ adjacency(\Sigma) \leftarrow adjacency(\Sigma) \cup \{(\sigma(\gamma_c), \sigma_{saddle})\} \end{cases}$ ADVANCECONTOUR (v_c, γ_{tmp}) $\Gamma_n \leftarrow \text{CONNECTEDCOMPONENTS}(\gamma_{tmp})$ for each $\gamma_n \in \Gamma_n$ $\mathbf{do} \begin{cases} \Gamma \leftarrow \Gamma \cup \{\gamma_n\} \\ \sigma(\gamma_n) \leftarrow \text{new } \sigma(\{v \in \gamma_n\}) \\ \Sigma \leftarrow \Sigma \cup \sigma(\gamma_n) \\ adjacency(\Sigma) \leftarrow adjacency(\Sigma) \cup \{(\sigma_{saddle}, \sigma(\gamma_n))\} \end{cases}$

When a split or merge event occurs **parent segments** are **closed** an **new ones** are **created**

Multiple presence and mesh coarseness

- Multiple presence arise and growth with the decrease of mesh sampling:
- a smaller number of vertices causes an increase of multiplicity of edges and vertices

Some *f* functions and their Reeb graphs

Algorithm in action

Experimental evidences

Mesh	Genus	Vertices	f	Mesh	Ge
bunny	0	3052		eight - f=x	
torus		190		eight - f=y eight - f=z	
		319		Mesh	Ge
eight	2	382		bunny	
		766	geodesic	torus	
		12286	distance from		
		412	closest feature	eight	:
genus3	3	828 1660 3324	point		
		6652 26620		genus 3	3
hand-genus5	5	4037		hand-genus5	
hand-genus8	8	3639		hand-genus8	
heptoroid	22	10851		heptoroid	

Mesh	Genus	Vertices	f	
eight - f=x eight - f=y eight - f=z	2	3070	height	
Mesh	Genus	Vertices	f	
bunny	0	3052		
torus	1	359		
		190		
		190	random	
oight	2	382		
eigint	2	382		
		766		
		3070		
gopus 2	2	782		
genus 5	3	828		
hand-genus5	5	4037		
hand-genus8	8	3639		
heptoroid	22	10851		

Validation test: the number of loops in the Reeb graph corresponds to the genus of the manifold and the Rg respects the adjacencies

Experiment gallery

Validation test: the number of loops in the Reeb graph corresponds to the genus of the manifold and the Rg respects the adjacencies

Computing the Reeb Graph for Triangle Meshes with Active Contours L. Brandolini and M. Piastra, ICPRAM 2012 - Vilamoura, Algarve, Portugal, 6-8 February, 2012 – **Best Student Paper Award**

Simplified Reeb Graph as Effective Shape Descriptor for the Striatum A. Pepe, L. Brandolini, M. Piastra, J. Koikkalainen, H. Juha, J. Tohka – to appear MICCAI 2012 MeshMed workshop, 1 October 2012, Nice, France

Simplified Reeb Graph for triangle meshes

L. Brandolini, M. Piastra – article submitted to *Computers & Graphics* (Special Issue on Executable Papers for 3D Object Retrieval)

Laura Brandolini laura.brandolini@unipv.it