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Stating the problem 
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Given a closed and triangulated mesh 



Stating the problem 
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Given a closed and triangulated mesh 

we want a compact graph representation 

of its shape 



What is the purpose? 
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• Augmenting shape representations 

(e.g. in order to detect thinnings and thickenings) 

 

• As an alternative, compact shape representation 

(e.g. shape matching) 

 

[L Antiga 2002 ] 

[Aleotti Caselli 2012 ] 
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Meshes extracted from 3D medical images (MRI)  

of human brain 

left striatum right striatum 

An application: striatal mesh descriptor 
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left striatum right striatum 

An application: striatal mesh descriptor 

Meshes extracted from 3D medical images (MRI)  

of human brain and the corresponding Reeb graph 



An application: striatal mesh descriptor 
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Simplified Reeb Graph as Effective Shape Descriptor for the Striatum - MICCAI 2012 MeshMed workshop, 2012, Nice, France 

Tampere University of Technology, VTT Technical Research Centre of Finland, University of Turku Finland 

40 different subjects:  meshes extracted from 3D images (MRI) 

and the corresponding Reeb graphs 



An application: striatal mesh descriptor 
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Registering graphs instead of entire meshes 

each graph: 5 vertices each mesh: 3335 vertices 

Simplified Reeb Graph as Effective Shape Descriptor for the Striatum - MICCAI 2012 MeshMed workshop, 2012, Nice, France 

Tampere University of Technology, VTT Technical Research Centre of Finland, University of Turku Finland 



An application: segmentation 
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The human striatum has three main parts  

Simplified Reeb Graph as Effective Shape Descriptor for the Striatum - MICCAI 2012 MeshMed workshop, 2012, Nice, France 

Tampere University of Technology, VTT Technical Research Centre of Finland, University of Turku Finland 

putamen putamen 

caudate caudate 

nucleus accumbens nucleus accumbens 



Reeb graphs: state of the art 

10 

Reeb graph: a faithful and compact representation of a shape (see after) 

 

There are many algorithms for computing Reeb graphs: 

 

Cole-McLaughlin, Edelsbrunner, Harer, Natarajan, Pascucci 2003: 

Correct Reeb graph computation but 

 but no esplicit embedding or segmentation and  

 requires global sorting of mesh vertices and local remeshing 

 

Tierny, Vandeborre, Daudi 2006: 

Efficient but no guarantee of correctness 

 

Pascucci, Scorzelli, Bremer, Mascarenhas 2007: 

Correct and robust on-line computation but without segmentation 

 

Patanè, Spagnuolo, Falcidieno, Biasotti 2009: 

Correct Reeb graph and segmentation but requires remeshing 

 



Reeb graphs: representative of the shape  
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Smooth 
surfaces 

Morse 
theory 

Reeb 
graphs 

In what sense a graph is a faithful representation of a shape? 

Morse, 1931 

Milnor, 1963 

Reeb, 1946 



Morse function on smooth surfaces 
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A height function 

is a Morse function 

f  is a smooth scalar function defined on a 

smooth surface M. 

 

A point p  M is critical for f  

if f all first partial derivatives are zero in p. 

 

A critical point p is said to be non-degenerate  

if the Hessian matrix (matrix of second partial 
derivatives) of f is non-singular at p  

(determinant not zero in p). 

 

f is called a Morse function  

if all its critical points are non-degenerate. 

p 



Morse function on smooth surfaces 

A level line f-1( ) is the set of points of M 

having the same value  of f.  

 

Morse theory: 

- the critical points of a Morse function are finite 

- all level lines are the union of a finite set of 

connected components 

- connected components become points at 

maxima and minima 

- connected components intersect at saddle 

points 

f-1 
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Reeb graphs: on smooth surfaces 

Equivalence relation: 
two points on M are equivalent 

if they belong to the same connected 

component of a level line.  

 

Each point of the Reeb graph 

corresponds to a connected component 

of a level line: 
 

- the nodes of the Reeb graph 
correspond to the critical values of f. 
 

- all other points in the graph 

correspond to non-critical values. 
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Genus and Loop lemma 
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Fundamental property 

for orientable, closed, smooth, connected surfaces,  
if f is Morse, the number of loops in the Reeb graph 

corresponds to the genus of the surface  
[Cole-McLaughlin et al., 2003] 

The genus of a surface 
The genus of a closed surface equals the number of ‘holes’ through it 

 

genus = 1 genus = 2 genus = 3 



The actual Reeb graph depends on f 

The Reeb graph is not unique 
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z 

x 

(but the number of loops in the Reeb Graph does not vary) 

 



Reeb graphs on triangulated surfaces 
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Smooth 
surfaces 

Morse 
theory 

Reeb 
graphs 

Triangulated 

surfaces 

~Morse 
theory 

~Reeb 
graphs 



f on triangulated surfaces 
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Given a closed, orientable, connected, 
triangulated surface X. 

 

f  is a function defined on the vertices 

of the triangulation X. 

 

f  is general if  

it takes different values at each vertex. 

 

From now on we assume f   

to be general  



Triangulated surfaces 

19 

The neighborhood of a vertex in a triangulated surface 

Star Link Closure of the star 



Critical points 
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regular: 

i=0 

saddle:  

i=-1 

max 

i=1 

min 

i=1 

multiple saddle 

i<=-2 

ctvi
2

1
1)(Index of a vertex: 

higher vertex 

lower vertex 

Cross-triangle for  f(v) 



Barycentric coordinates 
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f  is defined on the vertices 

f* is defined on the entire surface X 
  



f and f* on triangulated surfaces 
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A level line of f* at  is  

the set of points of  the surface X   

having the same value  of  f*. 
 

Each level line is the union of  

a finite set   

of connected components  

called contours. 
 

Each contour is the union 

of a set of straight segments. 
 

These segments, on a same face,  

are parallel to each other,  

for different  values  

f  f*  



Level lines: straight and parallel 
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level lines f*-1 are the union of straight segments 

level lines f*-1 are parallel 



Level lines: straight and parallel 
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level lines f*-1 are the union of straight segments 

level lines f*-1 are parallel 

http://mathworld.wolfram.com/BarycentricCoordinates.html 



Level lines: straight and parallel 
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level lines f*-1 are the union of straight segments 

level lines f*-1 are parallel 



Reeb graph on triangulated surfaces 
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On triangulated surfaces 

the definition of Reeb graph  

is even more robust: 

when f* is a Morse function  

the definition of Reeb graph  

goes as in the smooth case. 

 



Reeb graph on triangulated surfaces 
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When f* is not a Morse function,  

i.e. when there are multiple saddles for f*,  

the definition of Reeb graph holds  

but the graph might have  

nodes with connectivity higher than 3. 



Loop lemma on triangulated surfaces 
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Genus of triangulated surfaces 

For orientable, closed, triangulated, connected 

surfaces the number of loops in the Reeb graph 

corresponds to the genus of the surface 
(Cole-McLaughlin et al., 2003) 

The actual Reeb graph depends on f but the number of loops 

in the Reeb Graph does not vary 

Reeb graph of X 



Loop lemma on triangulated surfaces 
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Genus of triangulated surfaces 

For orientable, closed, triangulated, connected 

surfaces the number of loops in the Reeb graph 

corresponds to the genus of the surface 
(Cole-McLaughlin et al., 2003) 



Loop lemma on triangulated surfaces 
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Loop lemma on triangulated surfaces 
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Theorem can be reformulated: 

Theorem 

Proof: 

[Critical Point Theorem - Banchoff, 1967] 



Loop lemma on triangulated surfaces 
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Apropos computation… 

 
Computing the level lines of f* is expensive 

as they run on the surface  

(i.e. through triangular faces)  

 

 

It would be nice to have a computationally simpler alternative. 

 

But the alternative must be theoretically sound  

An alternative approach? 
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Cross simplexes 
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Cross edge Cross face Cross vertex 



Level strip 
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The level strip of a function f * for  is the set of : 

-all the cross-triangles for  

-all the cross-edges for  

-the vertex v such that f*(v)=  



Homotopy between LS and f *-1  
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LS is not a simplicial complex -  some outer edges are missing 

Homotopy between LS( ) and f *-1 

For each v V (X), the union of the interior of the simplices in the level strip 

LS(v) has the same homotopy type of the level set f *-1(f(v)).  

 

In addition, for any other value  `in between'  

(i.e. for which there is no v such that  = f(v)),  

the level strip LS( ) has the same homotopy type of f*-1( ).  



Deformation retraction 

13/05/2013 Laura Brandolini 37 

Given two topological spaces X, Y, such that Y  X, a deformation 

retraction is a map : 

such that 



Homotopy between LS and f *-1  

13/05/2013 Laura Brandolini 38 

The interior of an edge face has the same homotopy type of the interior of 

the segment that crosses it 



Homotopy between LS and f *-1  

13/05/2013 Laura Brandolini 39 

The interior of a triangular face has the same homotopy type of the interior 

of the segment that crosses it 

Proof. 



Homotopy between LS and f *-1  

13/05/2013 Laura Brandolini 40 

The intersection between the radial line through a and the generic level line 

at l is: 

Whose solution is: 



Homotopy between LS and f *-1  

13/05/2013 Laura Brandolini 41 

The equation of f* at a is: 

The map                
projects each point a  X to the intersection 

between the radial line through a and a level set at 

 

where       is the value of the target level set.  

End proof 

interior of a triangle 



Contour strips 
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The contour strip of a vertex v CS(v)  

is the connected component of LS(v) that contains v. 

 

If v is a regular vertex the CS(v) will contain  

a unique cycle 

 

If v is either a maximum or a minimum the CS(v) will contain 

the vertex v itself 

 

If v is a saddle the CS(v) will contain  

a number of cycles equal to m+1  (being m saddle multiplicity) 

 



Contour strip Reeb graph (CSRG) 
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Each point of the CSRG corresponds to  

a contour strip: 

- the nodes of the Reeb graph correspond to 

the CS of critical vertices. 

- all other points in the graph correspond to 

the CS of non-critical values 

 

The adjacency of the points of the Rg 

follows the adjacency of the corresponding  

contour strips 



Contour strips adjacency 
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Given two vertices v1  and v2 , regular or saddle, 

such that  f(v1) < f(v2) 

their CS are adjacent 

if they share at least one cross face and  

there is no other overlapping contour strip for v3   

such that  f(v1) < f(v3) <  f(v2) 

 

 

If v is a minimum or a maximum  

the above definition applies 

assuming that any other contour strip overlaps CS(v)  

if it overlaps St(v)  



A simpler approach? 
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Level strips are an interesting approach  

because they do not require computing  f *-1.  

 

But is there a simpler approximation of the level 

strip (V, E, T)? (…hence of the level line  of f *?) 

 

One approach that uses only mesh edges and 

vertices (V,E)? 

 



Upper and lower level set 
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Upper Level Set 

Lower Level Set 



Upper level set 
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upper level line  

level line of f *   

level strip 

Self intersection 



Counterexample 
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a b c d 

In this case, the graph corresponding to the connected components of the ULS  

has no loops and violates the Loop Lemma 



Solution: augmented ULS 
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upper level set 

level line of f *   

level strip 

double presence 

Connected components of the augmented Upper (lower) level set 

made up of edges and vertices  

with possible multiple presence are topologically equivalent  
to the connected components of f *-1 



Multiplicity of an edge in augmented ULS  
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The multiplicity of an edge in the AULS()  

is equal to the number of faces that are adjacent to the edge and  

also belong to the level strip LS().  

An edge e ULS() has multiplicity 2 in ULS() if:  

 

Any other edge e ULS() has multiplicity 1.  



Multiplicity of a vertex in augmented ULS  
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The multiplicity of a vertex v in the ULS(v) is equal to  

1/2 the sum of the multiplicity of the edges in the augmented ULS 

adjacent to the vertex 

 

 

where m(e) is the multiplicity of the edge in ULS().  



Is augmented ULS theoretically sound? 
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The contour (v) is the connected component of the augmented ULS(v) 

 

Homotopy equivalence between a connected component of f *-1 and 

the contour (v)  

A connected component of a level line f *-1 containing v  

is homotopy equivalent to the corresponding  

connected component of the augmented ULS (the contour (v))  

if the latter contains at least one edge. 



Free faces and free pairs 
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 is a free face iif there exists  such that  and  is unique, i.e. 

there is no other '  such that ’ 

 

The pair ( , ) is a free pair.  

free face 

free pair 



Collapses 
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An elementary collapse of  is a subcomplex ’ that can be obtained 

from  by removing one free pair. 
 

A collapse of  is a subcomplex ’ that can be obtained from  via a 

sequence of elementary collapses. 

collapse 



Expansions 
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An elementary expansion of  is a subcomplex ’ that can be reduced to 

 by removing one free pair.  

An expansion of  is a subcomplex ’ that can be reduced to  via a 

sequence of elementary expansions. 

expansion 



Simple homotopy equivalence 
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Two simplicial complexes  and M are simple-homotopy equivalent  

if M can be obtained from  via a sequence of collapses and expansions. 

If  and M are simple-homotopy equivalent they are also homotopy 

equivalent. 

collapses 

homotopy equivalent. 



Homotopy equivalence: cc of f *-1 and (v) 
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Homotopy equivalence between a connected component of f *-1 and 

the contour (v)  

A connected component of a level line f *-1 containing v  

is homotopy equivalent to the corresponding  
connected component of the augmented ULS (the contour (v))  

if the latter contains at least one edge. 



Homotopy equivalence: cc of f *-1 and AULS 

58 

Homotopy equivalence between a connected component of f *-1 and 

the contour (v)  

A connected component of a level line f *-1 containing v  

is homotopy equivalent to the corresponding  
connected component of the augmented ULS (the contour (v))  

if the latter contains at least one edge. 



Homotopy equivalence: cc of f *-1 and AULS 
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Homotopy equivalence between a connected component of f *-1 and 

the contour (v)  

A connected component of a level line f *-1 containing v  

is homotopy equivalent to the corresponding  
connected component of the augmented ULS (the contour (v))  

if the latter contains at least one edge. 



Homotopy equivalence 
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The contour (v) must contain at least one edge,  

otherwise the counterexample shown below becomes possible. 



Contours’ update 
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Contours’ adjacency 
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Segment 
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A segment is  

the portion of surface  

delimited by the contours  

passing by the critical points 



The simplified Reeb graph - SRG 

13/05/2013 Laura Brandolini 64 

The simplified Reeb graph (SRG) is a graph that has:  

 
• one node for each critical 

point   

• one node for each 

segment.  

Each segment-node is adjacent 

to the nodes corresponding to 

the two critical points whose 

contours delimit the segment.  



Algorithm stream 
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Input 

mesh 

 

 

 

 

 

 

 

 
 f general 

Reeb graph algorithm 

Reeb graph Segmentation 
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The basic idea of the algorithm 

Contour = each connected component of an augmented upper 

level line (AULL) 

 

Given a mesh and a general function f : 

1.  initialize a contour at each local minima; 

2.  evolve incrementally all the contours; 

3.  perform either split or merge operations at critical points; 

4.  terminate when all contours have reached a local maximum. 
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Contour evolution 

Contour evolution starts at local minima and selects at each step 

a candidate vertex has the lowest value of f in all contours  
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Initialize a contour at each local minima 



69 

Contour evolution 
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Evolve incrementally all the contours 
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Contour events at critical points 

Split or merge operations are performed  

each time a critical point is met: 

SPLIT 

MERGE 
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MERGESPLIT procedure 



Segmentation 
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Incremental segmentation 

When a split or merge event occurs  

parent segments are closed an new ones are created 

SPLIT 

MERGE 



Multiple presence and mesh coarseness 
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Multiple presence arise and growth with the decrease of mesh 

sampling:  

a smaller number of vertices causes an increase of multiplicity 

of edges and vertices 



Some f functions and their Reeb graphs 

f =x f =y 

f =z f =random 

Reeb graph and 

segmentation 

Reeb graph and 

segmentation 

Rg(f =x) 

Rg(f =z) Rg(f =random) 

Rg(f =y) 
x 

z 

y 

x 

z 

y 

x 

z 

y 
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Algorithm in action 



Experimental evidences 
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Mesh Genus  Vertices f 

bunny 0 3052 

geodesic 
distance 

from 
closest 
feature 
point 

torus  1 359 

eight 2 

190 

319 

382 

766 

3070 

12286 

genus3 3 

412 

782 

828 

1660 

3324 

6652 

26620 

hand-genus5 5 4037 

hand-genus8 8 3639 

heptoroid 22 10851 

Mesh Genus  Vertices f 

eight - f=x 
2 3070 height eight - f=y 

eight - f=z 

Mesh Genus  Vertices f 

bunny 0 3052 

random 

torus  1 359 

eight  2 

190 

190 

382 

382 

766 

3070 

genus 3 3 
782 

828 

hand-genus5 5 4037 

hand-genus8 8 3639 

heptoroid 22 10851 



Experiment gallery 
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Validation test: the number of loops in the Reeb graph corresponds to the 

genus of the manifold  and the Rg  respects the adjacencies 

genus3 

horse 

torus 
bunny 

dinopet 

eight 



Experiment gallery 
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Validation test: the number of loops in the Reeb graph corresponds to the 

genus of the manifold  and the Rg  respects the adjacencies 

hand  

(genus5) 

heptoroid  

(genus 22) 
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The end 

Thank you! 

Laura Brandolini 

laura.brandolini@unipv.it 


