Reinforcement learning

Marco Piastra
Multi-Armed Bandit

- Basic definitions
 - N arms or bandits
 - Each arm a yields a random reward r with probability distribution $P(r \mid a)$
 - For simplicity, only Bernoullian rewards (i.e. either 0 or 1) will be considered here
 - Each time t in a sequence, the player (i.e. the agent) selects the arm $\pi(t)$
 - In other words, π is the policy adopted by the agent

- Problem
 - Find a policy π that maximizes the total reward over time
 - The policy will include random choices i.e. it will be stochastic
Multi-Armed Bandit: strategies

- Informed (i.e. *optimal*) strategy
 At all times, select the bandit with higher probability of reward:
 \[\pi^*(t) = \arg\max_a P_i(r = 1 | a) \]
 Clearly, this strategy is optimal but requires knowing all distributions \(P(r | a) \)
 With enough data (e.g. from other players), these distributions can be learnt

- Random strategy
 At all times, select a bandit \(a \) at random, with uniform probability

How does the Random strategy compare with the optimal, informed strategy?
Multi-Armed Bandit: basic definitions

- **Actions, Rewards**
 \[a \in A \quad \text{in this case} \quad a \in \{1, \ldots, N\} \]
 \[r \in \mathcal{R} \quad \text{in this case} \quad r \in \{0, 1\} \]

- **Probability distribution (unknown)**
 \[P(R \mid A) \] the probability of reward \(R \) for action \(A \) (i.e. two random variables)

- **Policy**
 \[\pi : \mathbb{N}^+ \rightarrow A \] at each time, defines which action will be taken, it may be stochastic

- **Q-value**
 The expected reward of action \(a \)
 \[Q(a) := \mathbb{E}[R \mid A = a] = \sum_r r \ P(r \mid A = a) \]

- **Optimal Value**
 Maximum expected reward
 \[V^* := Q(a^*) = \max_{a \in A} Q(a) \]
Multi-Armed Bandit: evaluating strategies

- **Total Expected Regret**

 How far from optimality a policy is, considering the total reward over T trials.

 For just one sequence of T trials, the Total Regret with expected rewards is

 \[
 L(T) := TV^* - \sum_{t=1}^{T} Q(\pi(t))
 \]

 action taken at step t

 In a more general definition, the Total Expected Regret is

 \[
 \overline{L}(T) := TV^* - \sum_{a=1}^{N} \mathbb{E}[T_a(T)] Q(a) = \sum_{a=1}^{N} \mathbb{E}[T_a(T)] \Delta_a
 \]

 number of times action a is taken in T trials (i.e. a random variable)

 where

 \[
 \Delta_a := V^* - Q(a)
 \]
Multi-Armed Bandit: evaluating strategies

- **Total Expected Regret**

\[
\overline{L}(T) := TV^* - \sum_{a=1}^{N} \mathbb{E}[T_a(T)]Q(a) = \sum_{a=1}^{N} \mathbb{E}[T_a(T)]\Delta_a
\]

where

\[
\Delta_a := V^* - Q(a)
\]

With the optimal policy \(\pi^* \) the total expected regret is 0.

Whereas, with the random policy the total expected regret grows linearly over time:

\[
\overline{L}(T) = \frac{T}{N} \sum_{a=1}^{N} \Delta_a \quad \text{...since, with a random strategy} \quad \mathbb{E}[T_a(T)] = \frac{T}{N}
\]
Multi-Armed Bandit: Online learning

Adaptive policy: *exploration vs. exploitation*

- **exploration**: make trials over the set of N arms to improve on estimates $\hat{Q}(a)$
- **exploitation**: make use of the current best estimates $\hat{Q}(a)$

- **Greedy policy**

 Initialize all the estimates $\hat{Q}(a)$ at random

 Repeat:
 1) select the bandit with the current best estimated reward $a = \arg\max_a \hat{Q}(a)$
 2) update the current estimate about a as

 $$
 \hat{Q}(a) := \frac{\sum_{t=1}^{T_a} r_{a,t}}{T_a} \quad \text{reward of arm } a \text{ at trial } t
 $$

 Total number of times the arm a has been played
Multi-Armed Bandit: **Online learning**

Adaptive policy: *exploration vs. exploitation*

- **exploration**: make trials over the set of N arms to improve on estimates $\hat{Q}(a)$
- **exploitation**: make use of the current best estimates $\hat{Q}(a)$

- **ϵ-greedy policy** ($0 < \epsilon < 1$)

 Initialize all the estimates $\hat{Q}(a)$ at random

 Repeat:

 1) with probability $(1 - \epsilon)$ select the bandit $a = \arg\max_a \hat{Q}(a)$

 else (i.e. with probability ϵ) select one bandit at random

 2) update the current estimate about a

 \[
 \hat{Q}(a) := \frac{\sum_{t=1}^{T_a} r_{a,t}}{T_a} \quad \text{reward of arm } a \text{ at trial } t

 \text{total number of times the arm } a \text{ has been played}
 \]
Multi-Armed Bandit: **Online learning**

Adaptive policy: *exploration vs. exploitation*

- **exploration**: make trials over the set of N arms to improve on estimates $\hat{Q}(a)$
- **exploitation**: make use of the current best estimates $\hat{Q}(a)$

- Experimental comparison of different strategies (*Total Expected Regret*)

After a certain period of time, the *greedy* strategy stops exploring and exploits its estimates whereas, the ϵ-greedy strategy keeps exploring and improving

Decaying ϵ-greedy strategy: $\epsilon = \frac{\epsilon_{\text{initial}}}{t}$
Multi-Armed Bandit: evaluating strategies

- The two greedy strategies

 They are biased: they depend on the initial random estimates

 Optimistic variant: initially, set all $\hat{Q}(a) := 1$

 The average total regret grows linearly, in the long run

 In fact:
 - on the average, the greedy strategy will get stuck in a suboptimal choice
 - the ε-greedy strategy will continue to choose an arm at random (with probability ε)

 Can we do any better?

 The decaying ε-greedy strategy does that…

 Is there a minimum, i.e. a lower bound?
Multi-Armed Bandit: Optimal online learning

- **Lower bound theorem** [Lai & Robbins 1985]

 Consider a generic, adaptive (i.e. learning) strategy for the multi-armed bandit problem with Bernoulli reward (i.e. \(r \in \{0, 1\} \))

 \[
 \lim_{T \to \infty} \bar{L}(T) \geq \ln T \sum_{a: \Delta_a > 0} \frac{\Delta_a}{\text{kl}(Q(a), V^*)} \quad \Delta_a := V^* - Q(a)
 \]

 where

 \[
 \text{kl}(Q(a), V^*) := Q(a) \ln \frac{Q(a)}{V^*} + (1 - Q(a)) \ln \frac{1 - Q(a)}{1 - V^*}
 \]

 \(\text{the Kullback-Leibler divergence} \)

 In other words, we can achieve logarithmic growth for the total expected regret, but not better: on average, any adaptive strategy will choose suboptimal bandits a minimum number of times

 \[
 \lim_{T \to \infty} \mathbb{E}[T_a(T)] \geq \frac{\ln T}{\text{kl}(Q(a), V^*)}
 \]
Multi-Armed Bandit: UCB strategy

- **Upper confidence bound (UCB) strategy** [Auer, Cesa-Bianchi and Fisher 2002]

 Initialize all the estimates of the expected reward \(\hat{Q}(a) := 0 \)

 Play each arm once *(to avoid zeroes in the formula below)*

 Repeat:

 1) select the bandit \(a = \arg\max_k \left(\hat{Q}(a) + \frac{\sqrt{2 \ln T}}{T^a} \right) \)

 2) update the current estimate \(\hat{Q}(a) \) as the *average* reward

Theorem

With the UCB strategy, \(\lim_{T \to \infty} \mathbb{E}[T_a(T)] \leq \frac{8 \ln T}{\Delta^2_a} + c \)

where it can be shown that \(\frac{8}{\Delta^2_a} \geq \frac{1}{\text{kl}(Q(a), V^*)} \)

(i.e. there is a reasonably small gap between the two bounds – near optimality)
Multi-Armed Bandit: Thompson Sampling

- Thompson Sampling strategy (also ‘Bayesian Bandit’) [Thompson, 1933]

 Initialize all the expected reward \(\hat{Q}(a) \sim \text{Beta}(x; 1, 1) \)

 Repeat:

 1) sample each of the \(N \) distributions to obtain an estimate \(\hat{Q}(a) \)
 2) select the bandit \(a = \arg\max_a \hat{Q}(a) \)
 3) update the posterior distribution
 \(\hat{Q}(a) \sim \text{Beta}(x; R_a + 1, T_a - R_a + 1) \)

 i.e. assume this as a random variable with this distribution

 total number of times the arm has been played

 total (Bernoulli) reward from this arm (i.e. number of wins)

Theorem [Kaufmann et al., 2012]

The Thompson Sampling strategy has essentially the same theoretical bounds of the UCB strategy
Multi-Armed Bandit: Thompson Sampling

- **Thompson Sampling strategy** *(also ‘Bayesian Bandit’)* [Thompson, 1933]

 Example run with 3 arms: trace of the posterior probabilities for each $\hat{Q}(a)$

 ground truth: $Q(a)$
Multi-Armed Bandit: Thompson Sampling

- Thompson Sampling strategy (also ‘Bayesian Bandit’) [Thompson, 1933]

 In practical experiments, this strategy shows better performances in the long run
 [Chapelle & Li, 2011]

Actually, Thompson Sampling is a preferred strategy at Google Inc.
(see https://support.google.com/analytics/answer/2846882?hl=en)

[Image from: http://camdp.com/blogs/multi-armed-bandits]
Agent/Environment Interactions

With multi-armed bandits, the context never changes in the sense that the optimal choice does not depend on the current state.

What if the actions of the agent change the state of its interaction with the environment?

Examples:
- a_t could be a move in a game, whereby the agent changes the state of the game.
- a_t could be a movement, whereby the agent changes its position in the environment.

The agent could be wanting to learn an optimal strategy towards a given goal…
An example: gridworld

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.02</td>
<td>-0.02</td>
<td>-0.02</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>-0.02</td>
<td></td>
<td>-0.02</td>
<td>-1</td>
</tr>
<tr>
<td>3</td>
<td>-0.02</td>
<td>-0.02</td>
<td>-0.02</td>
<td>-0.02</td>
</tr>
</tbody>
</table>

The state of the agent is the position on the grid: e.g. (1,1), (3,4), (2,3)

At each time step, the agent can move one box in the directions \(\Rightarrow \uparrow \downarrow \rightarrow \)

The effect of each move is somewhat stochastic, however: for example, a move \(\uparrow \) has a slight probability of producing a different (and perhaps unwanted) effect.

Entering each state yields the reward shown in each box above.

There are two absorbing states: entering either the green or the red box means exiting the gridworld and completing the game.

- What is the best (i.e. maximally rewarding) movement policy?
Markov Decision Process (MDP)

Formalization and abstraction of the gridworld example

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.02</td>
<td>-0.02</td>
<td>-0.02</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>-0.02</td>
<td>-0.02</td>
<td>-0.02</td>
<td>-1</td>
</tr>
<tr>
<td>3</td>
<td>-0.02</td>
<td>-0.02</td>
<td>-0.02</td>
<td>-0.02</td>
</tr>
</tbody>
</table>

Markov Decision Process: \(\langle S, A, r, P, \gamma \rangle \)

A set of **states:** \(S = \{ s_1, s_2, \ldots \} \)

A set of **actions:** \(A = \{ a_1, a_2, \ldots \} \)

A **reward function:** \(r : S \rightarrow \mathbb{R} \)

A **transition probability distribution:** \(P(S_{t+1} \mid S_t, A_t) \) (also called a model)

Markov property: the transition probability depends only on the previous state and action

\[
P(S_{t+1} \mid S_t, A_t) = P(S_{t+1} \mid S_t, A_t, S_{t-1}, A_{t-1}, S_{t-2}, A_{t-2}, \ldots)
\]

A **discount factor:** \(0 \leq \gamma < 1 \)
Markov Decision Process (MDP): policies and values

The agent is supposed to adopt a deterministic policy: \(\pi : S \rightarrow A \)
In other words, the agent always chooses its action depending on the state alone.

Given a policy \(\pi \), the state value function is defined, for each state \(s \) as:

\[
V^\pi(s) := \mathbb{E}[r(S_t) + \gamma r(S_{t+1}) + \gamma^2 r(S_{t+2}) + \ldots \mid \pi, S_t = s]
\]

Note the role of the discount factor: a value \(\gamma < 1 \) means that that future rewards could be weighted less (by the agent) than immediate ones.

Note also that all states \(S_t \) must be described by random variables: i.e. the policy is deterministic but the state transition is not.

Note also that when the reward is bounded, i.e. \(r(S) \leq r_{\max} \)

\[
\sum_{t=0}^{\infty} \gamma^t r(S_t) \leq r_{\max} \sum_{t=0}^{\infty} \gamma^t = r_{\max} \frac{1}{1 - \gamma}
\]

for \(\gamma < 1 \) this is the geometric series.
Markov Decision Process (MDP): policies and values

The agent is supposed to adopt a **deterministic policy**: \(\pi : S \rightarrow A \)

In other words, the agent always chooses its **action** depending on the **state** alone.

Given a policy \(\pi \), the **state value function** is defined, for each state \(s \) as:

\[
V^\pi(s) := \mathbb{E}[r(S_t) + \gamma r(S_{t+1}) + \gamma^2 r(S_{t+2}) + \ldots | \pi, S_t = s]
\]

Note the role of the **discount factor**: a value \(\gamma < 1 \) means that future rewards could be weighted less (by the agent) than immediate ones.

Note also that all states \(S_t \) must be described by **random variables**:

i.e. the policy is deterministic but the state transition is not.

In the **gridworld** example:

- The set of states is finite
- The set of actions is finite
- For every policy, each entire story is **finite**

 Sooner or later the agent will fall into one of the absorbing states.
Bellman equations

By working on the definition of value function:

\[
V^\pi(s) := \mathbb{E}[r(S_t) + \gamma r(S_{t+1}) + \gamma^2 r(S_{t+2}) + \ldots | \pi, S_t = s]
\]

\[
= \mathbb{E}[r(S_{t+1}) + \gamma r(S_{t+2}) + \ldots | \pi, S_t = s]
\]

\[
= r(s) + \gamma \mathbb{E}[r(S_{t+1}) + \gamma r(S_{t+2}) + \ldots | \pi, S_t = s]
\]

\[
= r(s) + \gamma \sum_{s'} P(s' | s, \pi(s)) \cdot \mathbb{E}[r(S_{t+1}) + \gamma r(S_{t+2}) + \ldots | \pi, S_{t+1} = s']
\]

\[
= r(s) + \gamma \sum_{S_{t+1}} P(S_{t+1} | s, \pi(s)) \cdot V^\pi(S_{t+1})
\]

This means that in a Markov Decision Process:

\[
V^\pi(s) = r(s) + \gamma \sum_{S_{t+1}} P(S_{t+1} | s, \pi(s)) \cdot V^\pi(S_{t+1})
\]

This is true for any state, so there is one such equation for each of those

If the set of states is finite, there are exactly \(|S|\) (linear) Bellman equations for \(|S|\) variables: in general, for any deterministic policy, \(V^\pi\) can be computed analytically
Optimal policy – Optimal value function

Basic definitions

\[\pi^*(s) := \arg\max_{\pi} V^\pi(s), \ \forall s \in S \]
\[V^*(s) := \max_{\pi} V^\pi(s), \ \forall s \in S \]

Property: for every MDP, there exists such an optimal deterministic policy (possibly non-unique)

With Bellman Equations:

\[\max_{\pi} V^\pi(s) = r(s) + \gamma \max_{\pi} \left(\sum_{S_{t+1}} P(S_{t+1} \mid s, \pi(s)) \cdot V^\pi(S_{t+1}) \right) \]
\[V^*(s) = r(s) + \gamma \max_{\pi} \left(\sum_{S_{t+1}} P(S_{t+1} \mid s, \pi(s)) \cdot V^*(S_{t+1}) \right) \]
\[= r(s) + \gamma \max_a \left(\sum_{S_{t+1}} P(S_{t+1} \mid s, a) \cdot V^*(S_{t+1}) \right) \]

Therefore:

\[\pi^*(s) = \arg\max_a \left(\sum_{S_{t+1}} P(S_{t+1} \mid s, a) V^*(S_{t+1}) \right) \]

Computing \(V^* \) directly from these equations is unfeasible, however

There are in fact \(|A||S| \) possible strategies

However, once \(V^* \) has been determined, \(\pi^* \) can be determined as well
Optimal value function: value iteration

- **Value iteration algorithm**

 Initialize: \(V(s) := r(s), \ \forall s \in S \)

 Repeat:

 1) For every state, update:
 \[
 V(s) := r(s) + \gamma \max_{a} \sum_{s'} P(s' | s, a)V(s')
 \]

 Theorem: for every fair way (i.e. giving an equal chance) of visiting the states in \(S \), this algorithm converges to \(V^* \)

 Note that there is no policy: all actions must be explored
Value iteration and optimal policy

Initialize states (e.g. using rewards as initial values)

Iterate and compute

\[V^* \]

Define the optimal policy as:

\[\pi^*(s) := \arg\max_a (\sum_{S_{t+1}} P(S_{t+1} \mid s, a) \cdot V^*(S_{t+1})) \]
Optimal policy: policy iteration

- Policy iteration algorithm

 Initialize $\pi(s), \forall s \in S$ at random

 Repeat:

 1) For each state, compute: $V(s) := V^\pi(s)$

 2) For each state, define: $\pi(s) := \arg\max_a \sum_{s'} P(s' | s, a) V(s')$

 Theorem: for every fair way (i.e. giving an equal chance) of visiting the states in S, this algorithm converges to π^*

 As with the value iteration algorithm, this algorithm uses partial estimates to compute new estimates.

 It is also greedy, in the sense that it exploits its current estimate $V^\pi(s)$

 Policy iteration converges with very few number of iterations, but every iteration takes much longer time than that of value iteration

 The tradeoff with value iteration is the action space:

 when action space is large and state space is small, policy iteration could be better
Offline vs. Online learning

- **Value iteration** and **policy iteration** are offline algorithms
 - The *model*, i.e. the Markov Decision Process is known
 - What needs to be learn is the optimal policy π^*

 In the algorithms, *visiting states* just means considering: there is no agent actually playing the game.

- **Different conditions**: *learning by doing* …
 - Suppose the *model* (i.e. the MDP) is NOT known, or perhaps known only in part
 - *Then the agent must learn by doing*…
An analogous of the value function V^π

Given a policy π, the **action value function** is defined, for each pair (s, a) as:

$$Q^\pi(s, a) := \sum_{S_{t+1}} P(S_{t+1} \mid s, a) \cdot V^\pi(S_{t+1})$$

$$= \sum_{S_{t+1}} P(S_{t+1} \mid s, a) \cdot \mathbb{E}[r(S_{t+1}) + \gamma r(S_{t+2}) + \ldots \mid \pi, S_{t+1}]$$

$$= \sum_{S_{t+1}} P(S_{t+1} \mid s, a) \cdot [r(S_{t+1}) + \mathbb{E}[\gamma r(S_{t+2}) + \ldots \mid \pi, S_{t+1}]]$$

$$= \sum_{S_{t+1}} P(S_{t+1} \mid s, a) \cdot [r(S_{t+1}) + \gamma Q^\pi(S_{t+1}, \pi(S_{t+1}))]$$

In other words, $Q^\pi(s, a)$ is the expected value of the reward in S_{t+1} by taking action a in state s and then following policy π from that point on.

Following a similar line of reasoning, the **optimal action value function** is

$$Q^*(s, a) = \sum_{S_{t+1}} P(S_{t+1} \mid s, a) \cdot [r(S_{t+1}) + \gamma \max_{a'} Q^*(S_{t+1}, a')]$$
Q-Learning

Q-learning algorithm (ε-greedy version)

Initialize $\hat{Q}(s, a)$ at random, put the agent is in a random state s

Repeat:

1) Select the action $\arg\max_a \hat{Q}(s, a)$ with probability $(1 - \varepsilon)$ otherwise, select a at random

2) The agent is now in state s' and has received the reward r

3) Update $\hat{Q}(s, a)$ by

$$\Delta \hat{Q}(s, a) = \alpha [r + \gamma \max_{a'} \hat{Q}(s', a') - \hat{Q}(s, a)]$$

Exponential Moving Average (see later …)

Note that step 1) is closely similar to a multi-armed bandit: in each state, the agent has to choose one among all actions in \mathcal{A} and this will produce a random reward…
Q-Learning

- Q-learning algorithm

Theorem (Watkins, 1989): in the limit of that each action is played infinitely often and each state is visited infinitely often and $\alpha \rightarrow 0$ as experience progresses, then

$$\hat{Q}(s, a) \rightarrow Q^*(s, a)$$

with probability 1

The Q-learning algorithm bypasses the MDP entirely, in the sense that the optimal strategy is learnt without learning the model $P(S_{t+1} \mid S_t, A_t)$
An aside: moving averages

Following non-stationary phenomena

- **Average**
 - Definition: \(\bar{v}_T := \frac{1}{T} \sum_{k=1}^{T} v_k \)

 Running implementation:
 \[
 \bar{v}_T = \frac{1}{T} (v_T + \sum_{k=1}^{T-1} v_k) = \frac{1}{T} (v_T + (T - 1)\bar{v}_{T-1})
 \]
 \[
 = \bar{v}_{T-1} + \frac{1}{T} (v_T - \bar{v}_{T-1}) = \frac{1}{T} v_T + (1 - \frac{1}{T}) \bar{v}_{T-1}
 \]

- **Simple Moving Average (SMA)**
 \[
 \bar{v}_{T,n} := \frac{1}{n} \sum_{k=T-n}^{T} v_k
 \]

- **Exponential Moving Average (EMA)**
 \[
 \bar{v}_{T,\alpha} := \alpha v_T + (1 - \alpha) \bar{v}_{T-1,\alpha}, \quad \alpha \in [0, 1]
 \]
 "the weight of newer observations remains constant"
An aside: moving averages

- Exponential Moving Average (EMA)

\[\overline{v}_{T,\alpha} := \alpha v_T + (1 - \alpha) \overline{v}_{T-1,\alpha}, \quad \alpha \in [0, 1] \]

Expanding:

\[\overline{v}_{t,\alpha} = \alpha v_t + (1 - \alpha) \overline{v}_{t-1,\alpha} \]
\[= \alpha v_t + (1 - \alpha)(\alpha v_{t-1} + (1 - \alpha)\overline{v}_{t-2,\alpha}) \]
\[= \alpha v_t + (1 - \alpha)(\alpha v_{t-1} + (1 - \alpha)(\alpha v_{t-2} + (1 - \alpha)\overline{v}_{t-3,\alpha})) \]
\[= \alpha (v_t + (1 - \alpha) v_{t-1} + (1 - \alpha)^2 v_{t-2}) + (1 - \alpha)^3 \overline{v}_{t-3,\alpha} \]

The weight of past contributions decays as

\[(1 - \alpha)^{\Delta t} \]

A SMA with \(n \) previous values

is approximately equal to an EMA with

\[\alpha = \frac{2}{n + 1} \]
Q-Learning revisited

- **Q-learning algorithm (ε-greedy version)**

 Initialize $\hat{Q}(s, a)$ at random, put the agent is in a random state s

 Repeat:

 1) Select the action $a = \arg\max_a \hat{Q}(s, a)$ with probability $(1 - \varepsilon)$
 otherwise, select a at random

 2) The agent is now in state s' and has received the reward r

 3) Update $\hat{Q}(s, a)$ by

 \[
 \Delta \hat{Q}(s, a) = \alpha [r + \gamma \max_{a'} \hat{Q}(s', a') - \hat{Q}(s, a)]
 \]

 By rewriting step 3)

 \[
 \hat{Q}(s, a) = \hat{Q}(s, a) + \Delta \hat{Q}(s, a) = \hat{Q}(s, a) + \alpha [r + \gamma \max_{a'} \hat{Q}(s', a') - \hat{Q}(s, a)]
 \]

 \[
 = \alpha [r + \gamma \max_{a'} \hat{Q}(s', a')] + (1 - \alpha) \hat{Q}(s, a)
 \]

 Exponential Moving Average

 compare with (see before):

 \[
 Q^*(s, a) = \sum_{S_{t+1}} P(S_{t+1} \mid s, a) \cdot [r(S_{t+1}) + \gamma \max_{a'} Q^*(S_{t+1}, a')]
 \]

 Expectation
SARSA

- **SARSA algorithm (ε-greedy version)**

 Initialize \(\hat{Q}(s, a) \) at random, put the agent is in a random state \(s \)

 Repeat:

 1) Select the action \(a = \arg\max_a \hat{Q}(s, a) \) with probability \((1 - \varepsilon) \)
 otherwise, select \(a \) at random

 2) The agent is now in state \(s' \) and has received the reward \(r \)

 3) Select the action \(a' = \arg\max_a \hat{Q}(s', a) \) with probability \((1 - \varepsilon) \)
 otherwise, select \(a' \) at random

 4) Update \(\hat{Q}(s, a) \) by

 \[
 \Delta \hat{Q}(s, a) = \alpha [r + \gamma \hat{Q}(s', a') - \hat{Q}(s, a)]
 \]

 No more 'max' here

Q-learning is a an off-policy algorithm: each update involves \(\max_{a'} \hat{Q}(s', a') \)
(i.e. exploration is not taken into account)

SARSA is a an on-policy algorithm: each update involves \(\hat{Q}(s', a') \)
(which involves the next policy action, exploration included)
SARSA vs Q-Learning

- **Cliff World**
 - 'S' is the start
 - 'G' is the goal
 - Each white box has $r = -1$
 - 'The Cliff' region has $r = -100$
 - and entails going back to 'S'

- **Experimental Results**
 - SARSA finds a sub-optimal but safer path since its learning takes into account the ϵ risk of going off the cliff
 - Q-learning finds the optimal path but, occasionally, it falls off the cliff during learning due to the ϵ-greedy strategy