Artificial Intelligence

A course about foundations

Introduction

Marco Piastra
Artificial Mind?
[Descartes, R., *Discours de la méthode pour bien conduire sa raison, et chercher la vérité dans les sciences*, 1637]

“I had after this described the **reasonable soul**, and shown that *it could by no means be educated from the power of matter*, as the other things of which I had spoken, but that it must be expressly created; and that it is not sufficient that it be lodged in the human body exactly like a pilot in a ship, unless perhaps to move its members, but that it is necessary for it to be joined and united more closely to the body, in order to have sensations and appetites similar to ours, and thus constitute a real man” [English version from Project Gutenberg]

“You, your joys and your sorrows, your memories and your ambitions, your sense of personal identity and free will, are in fact no more than the behavior of a vast assembly of nerve cell and their associated molecules.”
Artificial Brain: can machines think?

“Because we do not understand the brain very well we are constantly tempted to use the latest technology as a model for trying to understand it.

In my childhood we were always assured that the brain was a telephone switchboard ('What else could it be?').

I was amused to see that Sherrington, the great British neuroscientist, thought that the brain worked like a telegraph system. Freud often compared the brain to hydraulic and electro-magnetic systems. Leibniz compared it to a mill, and I am told some of the ancient Greeks thought the brain functions like a catapult.

At present, obviously, the metaphor is the digital computer.”
Turing Machine (A. Turing, 1937)

- Informal description *(more to come, later on)*
 - A **tape**, made up of individual **cells**
 - Each cell contains a **symbol**, from a finite **alphabet**
 - A **read/write head**, which can move in each direction - one cell at time
 - A **state register** that keeps the current **state**, from a finite set
 - A **transition table**, i.e. a set of **entries** like this:

 \[
 \{ \langle \text{current_state, input_symbol} \rangle \rightarrow \langle \text{next_state, output_symbol, move} \rangle \}
 \]

The **transition table** describes a **finite state machine**

- Each **transition** is governed by the input symbol, the current state and the corresponding entry in the transition table
- The next state is stored into the state register
- The output is written to the cell
- Then the head moves (i.e. **Left**, **None**, **Right**)
What is the meaning of this?
The Turing Machine is a mathematical model of a physical computing device. Any given problem for which there is a Turing Machine that computes the solution is clearly computable by a physical machine.

Is the vice-versa also true?
(Whenever a problem is computable by a physical machine, does it exist a Turing Machine for it?)
Church–Turing Thesis

Caution: there is no such a thesis in the original writings of either author. Its formulation could be extrapolated from both, hence the attribution (made by others)

- A possible formulation (from Wikipedia):

 “Every 'function which would naturally be regarded as computable' can be computed by a Turing machine.”

 The vagueness in the above sentence gives raise to different interpretations. One of these (though not entirely equivalent) is (from Wikipedia):

 “Every 'function that could be physically computed' can be computed by a Turing machine.”

 Searle: “... At present, obviously, the metaphor is the digital computer.”
Can machines think? (the Turing Test)

- Turing, A., *Computing Machinery and Intelligence*, 1950

 “[The ‘imitation game’:] a man (A), a woman (B), and an interrogator (C) who may be of either sex. The interrogator stays in a room apart from the other two. The object for the interrogator is to determine which of the other two is the man and which is the woman. The interrogator is allowed to put questions to A and B. […]

 We now ask the question, 'What will happen when a machine takes the part of A in this game?’

 Will the interrogator decide wrongly as often when the game is played like this as he does when the game is played between a man and a woman?

 These questions replace our original, 'Can machines think?'”
Artificial Brain: can machines think?
Artificial Brain: can machines think?

Do answers, however partial, change the original question?
Can machines play chess?

In 1945 A. Turing mentions playing chess as an example of intelligent human activity that some days machines could perform
In 1946 A. Turing defines the first algorithm for playing chess
In 1948 C. Shannon wrote a famous article on the possible strategies for playing chess automatically

- Programming a Computer for Playing Chess [Shannon, 1948]
 - More than 10^{43} different legitimate chessboard configurations
 - More than 10^{120} possible games

Strategy A

Starting from the current position, the machine *looks forward* by exploring all possible positions in the game not farther away than k moves

*The computer chooses its move by *backward induction* using a *value function* (MINIMAX method)*

Strategy B

“A good human player examines only *a few selected variations* and carries these out to a reasonable stopping point”
Strategy A or Strategy B?

[Shannon, 1948]
Due to the high computational complexity of Strategy A, he foresees a progressive development of Strategy B
(i.e. “Computer can improve by emulating humans”)

How did it go, in reality?
- At the early stages of computer chess technology, Strategy B was preferred
- During the period 1959-1962 a first ‘credible’ player was developed (Kotok-McCarthy) (at the beginner level)
- In 1973 the developers of the soon-to-be world champion in computer chess players abandoned Strategy B in favor of Strategy A
- Since then, Strategy A – with significant improvements – dominates the scene
Can machines play chess?

Strategy A

Minimax on a two-person game tree of 4 plies
Deep Blue

In 1945 A. Turing mentions playing chess as an example of intelligent human activity that some days machines could perform.
In 1946 A. Turing defines the first algorithm for playing chess.
In 1948 C. Shannon wrote a famous article on the possible strategies for playing chess automatically.
In 1997 the Deep Blue system, made by IBM, beats the world chess champion Gary Kasparov.

- **Deep Blue, 1997** [Campbell, Hoane, Hsu, F., 2001]
 - 30 standard CPUs (120Mhz) + 480 special-purpose CPUs (‘chess search engines’, each evaluating >2.5M moves per second)
 - Three-layered hardware architecture, 30 GB of RAM
 - Software written in C
 - Dedicated team of software and hardware engineers, 10 year of development
 - Wide usage of a large database of recorded games played by grand masters

(A supercomputer for those times - It was turned off at the end of the match)
Artificial Intelligence: the beginning
“Artificial Intelligence” (first appearance of the term)

- [John McCarthy et al., 1955]

 “We propose that a two-month, ten man study of artificial intelligence carried out during the summer of 1956 [...] The study is to proceed on the basis of the conjecture that every aspect of learning or any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it. [...] It may be speculated that a large part of human thought consists of manipulating words according to rules of reasoning and rules of conjecture.”
“A physical symbol system consists of a set of entities, called symbols, as components of another type of entity called an expression (or symbol structure).

Thus, a symbol structure is composed of a number of instances (or tokens) of symbols related in some physical way (such as one token being next to another).

Besides these structures, the system also contains a collection of processes that operate on expressions to produce other expressions: processes of creation, modification, reproduction and destruction.”
Do elephants play chess?

[Brooks, R., Elephants Don’t Play Chess, 1990]

- Criticism of *intelligence* intended as the manipulation of *symbols*

 A unique and synchronous control system

 Studies on cerebral lesions report evidence of parallel processing

 A unique, *general purpose* and neutral computational device

 Studies about human visual perception show clear preferences towards some interpretations over others

 A unique language for the internal representation of reality

 Human beings do it differently – e.g. *change blindness*

 Separation between the thinker and its hardware (*disembodiment*)

 Are there forms of *non-symbolical* intelligence?

(And, besides, how could it possibly **evolve** such a form of intelligence?)
Connections and Behavior

- **Direct connection**

 These robots by V. Braitenberg have just a *reactive* behavior, i.e. no ‘thought in between’: *since sensors are directly connected to actuators*

 The resulting behavior is remarkable anyway ... (*intelligence is in the eye of the beholder*)
Emulation or simulation? Connectionism

“In our view, people are smarter than today’s computers because the brain employs a basic computational architecture that is more suited to deal with a central aspect of the natural information processing tasks that people are so good at.”

Basic assumption

Mental phenomena can be described by interconnected networks of simple and often uniform units
Artificial Neural Network

- **Function approximation**
 - Basically, this is what an artificial neural network does

- **Supervised learning**
 - The parameters (i.e. weights) are "learnt" from a dataset of inputs and expected outputs pairs

- **Incremental optimization** — a.k.a. "backward propagation"
 - Weights are progressively corrected to reduce the difference between actual and expected outputs

Artificial Intelligence now: a long jump ahead
A.I. of the PAST...

DATA OVERLOAD!

INVALID INPUT.

BZZZ.

A.I. of TOMORROW...

MY REPORT IS ON YOUR DESK,
YOUR SHOELACE IS UNTIED AND
TOMORROW IS YOUR WEDDING ANNIVERSARY.

[Image from https://www.tomgauld.com/portfolio]
AI strikes back...

The revolution in AI has been profound, it definitely surprised me, even though I was sitting right there.

Sergey Brin
Google co-founder

- Sergey Brin [Google Co-Founder, January 2017]

“I didn’t pay attention to it [i.e. Artificial Intelligence] at all, to be perfectly honest.”

“Having been trained as a computer scientist in the 90s, everybody knew that AI didn’t work.
People tried it, they tried neural nets and none of it worked.”

[Quote and image from https://www.weforum.org/agenda/2017/01/google-sergey-brin-i-didn-t-see-ai-coming/]

Artificial Intelligence 2020–2021
3 Reasons AI Is Way Overhyped

1. Many CEOs Are Being Scared Into Caring Too Much About AI
2. There Are Very Few Examples of High Payoff AI Applications
3. Very Few Companies Can Afford or Find Good Uses For AI

[Quote from https://www.forbes.com/sites/petercohan/2019/02/15/3-reasons-ai-is-way-overhyped/#3d3fef8c5a6a/}
I’m an AI researcher, and here’s what scares me about AI

AI is being increasingly used to make important decisions. Many AI experts (including Jeff Dean, head of AI at Google, and Andrew Ng, founder of Coursera and deeplearning.ai) say that warnings about sentient robots are overblown, but other harms are not getting enough attention. I agree. I am an AI researcher, and I’m worried about some of the societal impacts that we’re already seeing. In particular, these 5 things scare me about AI:

1. Algorithms are often implemented without ways to address mistakes.
2. AI makes it easier to not feel responsible.
3. AI encodes & magnifies bias.
4. Optimizing metrics above all else leads to negative outcomes.
5. There is no accountability for big tech companies.

[Quote from https://medium.com/@racheltlo/im-an-ai-researcher-and-here-is-what-scares-me-about-ai-909a406e4a71]
Question Answering
DeepQA (a.k.a. “Watson”)

- Jeopardy!: a quiz game

 Category: General Science
 Clue: When hit by electrons, a phosphor gives off electromagnetic energy in this form.
 Answer: Light (or Photons)

 Category: Diplomatic Relations
 Clue: Of the four countries in the world that the United States does not have diplomatic relations with, the one that’s farthest north.
 Answer: North Korea

 Category: Rhyme Time
 Clue: It’s where Pele stores his ball.
 Answer: soccer locker

 Category: Lincoln Blogs
 Clue: Secretary Chase just submitted this to me for the third time; guess what, pal. This time I’m accepting it.
 Answer: his resignation
DeepQA (a.k.a. "Watson")

 The Event (14-18/02/2011)

 In a sequence of three "Jeopardy!" games, Watson beats in a very convincing way the all-times human champions
 - Brad Rutter, winner of the highest amount of money
 - Ken Jennings, winner of the longest string of games

Jeopardy!: a quiz game

In the real game, questions can also be about images, audio or video displays

DeepQA can only accept spoken text as input

Autonomous search, local memory

The rules of the challenge forbid connecting to Internet during the game:

DeepQA must use its local memory only

It does use Internet during training

Conventional hardware, massive parallelism

High Performance system, with 2880 standard CPUs (no specialized hardware required)

Linux SUSE ES 11, Software in Java and C++, with Apache Hadoop and Apache UIMA

(IBM makes business on Watson, now)
“Is Watson intelligent?”

“Does Watson Think?”

[D. Ferrucci, transcript from video
http://www.ted.com/webcast/archive/event/ibmwatson]

“Huh, hmm, what’s my favorite response on that?
(Do submarines swim?) […]

I’d like to look at it as a sort of task-based view:
when you think of Watson playing Jeopardy!
it is acting like an intelligent Jeopardy! player,
if you deconstruct its intelligence
you’re gonna find lots of different algorithms
no one of them you would look at and say
“Wow! That’s really intelligent! It really understands the question!”
[…]

You have this holistic effect,
where it’s solving a problem that you formally think
that takes you think, to solve that problem, …
Watson is doing it in a perhaps different way.
[…]

And I think ultimately of it as a tool, that helps humans solving problems…”
Image Classification via Deep Convolutional Neural Networks
Is there a cat in this picture?

[this is my cat, Rabarbaro]
The ImageNet Large Scale Visual Recognition Challenge

1,461,406 full resolution images
Complex and multiple textual annotation, hierarchy of 1000 object classes along several dimensions

The image classification challenge is run annually since 2010
ImageNet Challenge

- The ImageNet Large Scale Visual Recognition Challenge

ILSVRC top-5 error on ImageNet

- AlexNet: 15.4% error rate

1,461,406 full resolution images
Complex and multiple textual annotation, hierarchy of 1000 object classes along several dimensions

The image classification challenge was run annually from 2010 to 2017
The ImageNet Large Scale Visual Recognition Challenge

How deep is a deep neural network, for a task like this?

GoogLeNet (Inception v4) winner of two out of three categories in 2014: 154 network layers
Game Playing with Reinforcement Learning
Playing Atari with Deep Reinforcement Learning

A software system only
- Runs on virtually any Linux-based system, it contains optional provisions for GPU

Sophisticated machine-learning techniques:
 - Deep Reinforcement Learning
 - Reinforcement learning (RL - see later in this course)
 - in combination with convolutional neural networks (CNN)

Same configuration, multiple games
- Same configuration applied to arcade games
- It learned to play 7 (2013) or 49 (2015) different games

It is autonomous
- It learns by itself; it receives no human expertise as input
- In many cases, it outperforms human players

It’s open source
Mastering the game of Go with deep neural networks and tree search, [2016, D. Silver, et al. (22 authors), http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html]

“The game of Go originated in China more than 2,500 years ago. The rules of the game are simple: Players take turns to place black or white stones on a board, trying to capture the opponent's stones or surround empty space to make points of territory. As simple as the rules are, Go is a game of profound complexity. There are more possible positions in Go than there are atoms in the universe.” [https://deepmind.com/research/alphago/]

Monte-Carlo Tree Search (MCTS)

Sophisticated machine-learning techniques

- Deep neural networks (trained on human matches) for selecting the moves in the ‘playouts’
- Subsequent autonomous self-training: playing again itself and improving via reinforcement learning (RL - see later in this course)

It is a very strong player

- On March 2016, AlphaGo won 4-1 against the legendary Lee Sedol, the top Go player in the world over the past decade
DeepBlue and AlphaGo were heavily reliant on the experience of human players

- **AlphaZero learns by itself**

 [2018, D. Silver, et al. (13 authors), https://science.sciencemag.org/content/362/6419/1140.full]

 Basic Knowledge Only
 - It just knows the basic rules of the games

 Learning via Self-Play
 - It plays against a (frozen) copy of itself

 MCTS and DCNN in a closed loop

Image from: https://nikcheerla.github.io/deeplearningschool/2018/01/01/AlphaZero-Explained/
GREETINGS PROFESSOR FALKEN

HELLO

A STRANGE GAME.
THE ONLY WINNING MOVE IS
NOT TO PLAY.

HOW ABOUT A NICE GAME OF CHESS?
Artificial Intelligence: short plan of this course
Reasoning with symbols

Propositional logic, first-order logic, logic programming (hints)

Representation: language and semantics (i.e. formulae and their meaning)
Inference: entailment among formulae
Automation: can machines compute entailment?
Plausible reasoning: beyond the scope of entailment
Reasoning with numbers

Machine learning *(the probabilistic way)*

Representation: probability, graphical models

Inference: answers to queries from joint probability distributions

Supervised learning: learning from *complete* and well-formed datasets

Unsupervised learning: when some of the data are either *missing* or *hidden*

Reinforcement learning: learning from experience (even *online*)