
Sequential Code Converter BCD-Excess-3

Equivalent State Definitions

 Two states are equivalent if their response for each
possible input sequence is an identical output
sequence.

 Alternatively, two states are equivalent if their
outputs produced for each input symbol is identical
and their next states for each input symbol are the
same or equivalent.

 Two states that are not equivalent are distinguishable

 The checking of each pair of states for possible
equivalence in a table with a large number of states
can be done systematically on an Implication Table.

 The Implication Table is a chart that consists of
squares, one for every possible pair of states.

Implication Table (Example):

 Place a cross in any square corresponding to a pair whose outputs are not
equal

 Enter in the remaining squares the pairs of states that are implied by the
pair of states representing the squares. (Start form the top square in the
left column and going down and then proceeding with the next column to
the right).

 Make successive passes through the table to determine whether any
additional squares should be marked with a ‘x’.

 Finally, all the squares that have no crosses are recorded with check
marks.

Implication Table (Example):
 Its clear that (e,d) are equivalent. And

this leads (a,b) and (e,g) to be equivalent
too.

 Finally we have [(a,b) , c , (e,d,g) , f] so
four states.

 So the original flow table can be reduced
to:

A

B C

D E F G

H I

0/0 1/0

0/0

0/0

0/0 1/0

0/0

0/0 1/0 1/0 1/0

1/0

1/0 0/0

0/0

1/0

0/0 1/1

Elimination of Redundant States
 When first setting up the state table, we will not be overly concerned with inclusion of

extra states, and when the table is complete, we will eliminate any redundant states.

 Design a binary checker that has in input a sequence of BCD numbers and for every
four bits (LSB order) has output 0 if the number is 0≤N≤9 and 1 if 10≤N≤15

State diagram

{B,C}, {D,F}, {E,G}

Elimination of Redundant States

State table

A

B

D E

H I

0/0 1/0

0/0

0/0

0/0 1/0

1/0

1/0

1/0 0/0

0/0 1/1

Elimination of Redundant States

State diagram

Elimination of Redundant States

/0 /0 /0 /0

/0 /0 /0 /0

/0

/1 /1 /1 /1

/1

/0 /0 /0 /0 /0 /0 /0 /0

/0 /0 /0 /0

/0 /0

State diagram

/0

Elimination of Redundant States

 When first setting up the state table, we will not be overly concerned with inclusion of
extra states, and when the table is complete, we will eliminate any redundant states.

Synchronous Sequential Circuit

 The change of internal state occurs in response to the
synchronized clock pulses.

 Input changes occur between clock pulses

 Data are read during the clock pulse

 It is supposed to wait long enough after the external input
changes for all flip-flop inputs to reach a steady value
before applying the new clock pulse

 Unsuitable Situations:
• Inputs change at any time and cannot be synchronized with a

clock

• Circuit is large, Clock skew can not be avoided

• High performance design

Asynchronous Circuits

 Not synchronized by a common clock

 States change immediately after input changes

 The circuit reaches a steady‐state condition when yi = Yi for
all i.

 For a given value of input variables, the system is stable if
the circuit reaches a steady state condition.

 A transition from one stable state to another occurs only in
response to a change in an input variable

 Fundamental‐mode operation
• The input signals change only when the circuit is in a stable condition

• The input signals change one at a time

 The time between two input changes must be longer than the
time it takes the circuit to reach a stable state.

 Timing is a Major Problem because of
• Unequal delays through various paths in the circuit

Asynchronous Sequential Circuits
Asynchronous sequential circuits basics
 No clock signal is required
 Internal states can change at any instant of time when there is a change

in the input variables
 Have better performance but hard to design due to timing problems

Why Asynchronous Circuits?
 Accelerate the speed of the machine (no need to wait for the next clock

pulse).

 Simplify the circuit in the small independent gates.

 Necessary when having multi circuits each having its own clock.

Analysis Procedure
 The analysis consists of obtaining a table or a diagram that describes the

sequence of internal states and outputs as a function of changes in the
input variables.

Example Circuit

 Construction of Asynchronous
Circuits:
• using only gates

• with feedback paths

 Analysis:
• Lump all of the delay associated

with each feedback path into a
“delay” box

• Associate a state variable with
each delay output

• Construct the flow table

 Network equations

 Q1
+ = X1X2’+ X1’X2Q2+X2Q1Q2’

 Q2
+ = X1’X2Q1’+ X1Q2+ X2Q2

 Z = X1⊕Q1⊕Q2

Example Circuit: Output Table

 1.Starting in total state
 X1X2Q1Q2=0000

 2.Input changes to 01
• Internal state changes to 01 and then

to 11.
 3.Input changes to 11.

• Go to unstable total state 1111 and
then to 1101.

 4.Input changes to 10.
• Go to unstable total state 1001 and

then to 1011.
 The output sequence:
 0 (0) (1) 0 (1) 0 (0) 1

• Condensed to the form
 0 (1) 0 (1) 0 1.
• Two transient 1 outputs can be

eliminated by proper design.

Transition Table

 Transition table is useful to analyze an asynchronous circuit
from the circuit diagram. Procedure to obtain transition table:

1. Determine all feedback loops in the circuits

2. Mark the input (yi) and output (Yi) of each feedback loop

3. Derive the Boolean functions of all Y’s

4. Plot each Y function in a map and combine all maps into one table (flow
table)

5. Circle those values of Y in each square that are equal to the value of y in
the same row

Asynchronous Sequential Circuit

 The excitation variables: Y1 and Y2
• Y1 = xy1+ xy2

• Y2 = xy1 + xy2

 CUT

CUT

Transition Table

 Combine the internal state with input variables
• Stable total states:

 y1y2x = 000, 011, 110 and 101

Transition Table

 In an asynchronous sequential circuit, the
internal state can change immediately after
a change in the input.

 It is sometimes convenient to combine the
internal state with input value together and
call it the Total State of the circuit. (Total
state = Internal state + Inputs)

 In the example , the circuit has
• 4 stable total states: (y1y2x= 000, 011,

110, and 101)

• 4 unstable total states: (y1y2x= 001, 010,
111, and 100)

Transition Table

 If y=00 and x=0 Y=00 (Stable state)

 If x changes from 0 to 1 while y=00,
the circuit changes Y to 01 which is
temporary unstable condition (Yy)

 As soon as the signal propagates to
make Y=01, the feedback path causes a
change in y to 01. (transition form the
first row to the second row)

 If the input alternates between 0 and
1, the circuit will repeat the sequence
of states

Flow Table

 A flow table is similar to a transition table except that
the internal state are symbolized with letters rather
than binary numbers.

 It also includes the output values of the circuit for each
stable state.

Flow Table

 In order to obtain the
circuit described by a flow
table, it is necessary to
convert the flow table into
a transition table from
which we can derive the
logic diagram.

 This can be done through
the assignment of a
distinct binary value to
each state.

Race condition
 Two or more binary state variables will change value when one input

variable changes.

 Cannot predict state sequence if unequal delay is encountered.

 Non-critical race: The final stable state does not depend on the
change order of state variables

 Critical race: The change order of state variables will result in
different stable states. Must be avoided !!

Race Solution

 It can be solved by making a proper binary assignment to the
state variables.

 The state variables must be assigned binary numbers in such a
way that only one state variable can change at any one time
when a state transition occurs in the flow table.

Stability Check

 Asynchronous sequential circuits may oscillate between
unstable states due to the feedback
• Must check for stability to ensure proper operations

 Can be easily checked from the transition table
• Any column has no stable states unstable

 Ex: when x1x2=11 in (b), Y and y are never the same

Y=x2(x1y)’=x’1x2+x2y’

Latches in Asynchronous Circuits

 The traditional configuration of asynchronous
circuits is using one or more feedback loops
• No real delay elements.

 It is more convenient to employ the SR latch as a
memory element in asynchronous circuits
• Produce an orderly pattern in the logic diagram with the

memory elements clearly visible.

 SR latch is an asynchronous circuit
• So will be analyzed first using the method for asynchronous

circuits.

SR Latch with NOR Gates

Constraints on Inputs

SR Latch with NOR Gates

S=1, R=1 (SR = 1)

should not be used

⇒ SR = 0 is

normal mode

should be carefully

checked first

SR Latch with NAND Gates

S=0, R=0 (S+R=0)

should not be used

⇒ S+R=1 is

normal mode

(eq. S’R’=0)

should be carefully

checked first, so it is

obtained

Y = S’ + Ry

Analysis Example

Analysis Example

 The procedure for analyzing an asynchronous
sequential circuit with SR latches can be summarized
as follows:
• Label each latch output with Yi and its external feedback

path with yi for i=1,2,…,k

• Derive the Boolean functions for the Si and Ri inputs in each
latch.

 S1 = x1 y2 S2 = x1 x2

 R1 = x1‘x2‘ R2 = x2‘ y1

Analysis Example

• Check whether SR =0 for each NOR latch or whether S’R’ =
0 for each NAND latch. (if either of these two conditions is
not satisfied, there is a possibility that the circuit may not
operate properly)

 S1 R1 = x1y2x1‘x2‘= 0

 S2 R2 = x1x2x2‘y1= 0

• Evaluate Y = S + R’y for each NOR latch or Y = S’ + Ry for

each NAND latch.

 Y1 = S1 + R1‘ y1 = x1y2 + x1y1 + x2y1

 Y2 = S2 + R2‘ y2 = x1x2 + x2y2 + y1’y2

Analysis Example

• Construct a map, with the y’s representing the rows and the x inputs
representing the columns.

• Plot the value of Y=Y1Y2…Yk in the map.

• Circle all stable states such that Y=y. The result is then the
transition table.

Transition Table

• The transition table shows that the circuit
is stable

• Race Conditions: there is a critical race
condition when the circuit is initially in
total state y1y2x1x2 = 1101 and x2 changes
from 1 to 0.

• The circuit should go to the total state
0000.

• If Y1 changes to 0 before Y2, the circuit
goes to total state 0100 instead of 0000.

Implementation Procedure

 Procedure to implement an asynchronous sequential
circuits with SR latches:
• Given a transition table that specifies the excitation

function Y = Y1Y2…Yk, derive a pair of maps for each Si and
Ri using the latch excitation table

• Derive the Boolean functions for each Si and Ri (do not to
make Si and Ri equal to 1 in the same minterm square)

• Draw the logic diagram using k latches together with the
gates required to generate the S and R (for NAND latch,
use the complemented values in step 2)

Implementation Example
 Given a transition table that specifies the excitation function Y=Y1Y2…Yk, then

the general procedure for implementing a circuit with SR latches can be
summarized as follows:
• Given a transition table

• Determine the Boolean functions for the S and R inputs of each latch (This

is done by using the latch excitation table)

Implementation Example
• From maps: the simplified Boolean functions are

• Check whether SR=0 for each NOR latch or whether S'R'=0 for each NAND latch:
 SR = x1x'2x'1 = 0 S’R’ = (x1x'2)'x1 = 0
• Draw the logic diagram, using k latches together with the gates required to generate

the S and R Boolean functions obtained in step1 (for NAND latches, use the
complemented values)

NOR latch

NAND latch

Primitive Flow Table

 Primitive flow table - has exactly one stable total
state (internal state + input) per row
• Can be further reduced

 To avoid the timing problems:
• Only one input variable changes at a time

• Networks reach a stable total state between input
changes (Fundamental Mode)

 Every change in input changes the state

Design procedure

1. Obtain a primitive table from specifications

2. Reduce flow table by merging rows in the
primitive flow table

3. Assign binary state variables to each row of
reduced table

4. Assign output values to dashes associated with
unstable states to obtain the output map

5. Simplify Boolean functions for excitation and
output variables;

6. Draw the logic diagram

Design Example 1:

 Problem Statement:
• Design a gated latch circuit (memory element) with two

inputs, G(gate) and D(Data) and one output Q.

• The Q output will follow the D input as long as G=1. When
G goes to 0, the information that was present at the D
input at the time of transition is retained at the Q output.
 Q = D when G =1

 Q retains its value when G goes to 0

Design Example 1:

1-Primitive Flow Table
 A primitive flow table is a flow table with only one stable total state

(internal state + input) in each row.

 In order to form the primitive flow table, we first form a table with all
possible total states, combinations of the inputs and internal states,
simultaneous transitions of two input variables are not allowed

Design Example 1

1-Primitive Flow Table
• First, we fill in one square in each row

belonging to the stable state in that row.

• Next we note that both inputs are not
allowed to change at the same time, we enter
dash marks in each row that differs in two or
more variables from the input variables
associated with the stable state.

• All outputs associated with unstable states
are marked with a dash to indicate don’t care
conditions for the next state and output.

• Next it is necessary to find values for two
more squares in each row. The comments
listed in the previous table may help in
deriving the necessary information.

Design Example 1

2-Reduction of the Primitive
Flow Table

• Two or more rows can be
merged into one row if
there are non-conflicting
states and outputs in
every columns.

• After merged into one
row:
• Don’t care entries are

overwritten

• Stable states and output
values are included

• A common symbol is given to
the merged row

Design Example 1
3-Transition Table and Logic Diagram

 In order to obtain the circuit described by the reduced flow table,
it is necessary to assign a distinct binary value to each state.

 This converts the flow table to a transition table.

 A binary state assignment must be made to ensure that the circuit
will be free of critical race.

 a=0, b=1 in this example

Transition table and

output map for gated

Latch

Gated-latch logic diagram

