
Binary Logic and Gates 

Binary variables take on one of two values. 

Logical operators operate on binary values and 
binary variables. 

Basic logical operators are the logic functions 
AND, OR and NOT. 

Logic gates implement logic functions. 

Boolean Algebra: a useful mathematical system for 
specifying and transforming logic functions. 

We study Boolean algebra as a foundation for 
designing and analyzing digital systems! 
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Binary Variables 

 Recall that the two binary values have different 
names: 
• True/False 
• On/Off 
• Yes/No 
• 1/0 

 We use 1 and 0 to denote the two values. 
 Variable identifier examples: 

• A, B, y, z, or X1 for now 
• RESET, START_IT, or ADD1 later 
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Boolean functions 

 Basic logical operators are the boolean functions 

f(x1,…,xn):       {0,1}n
                {0,1} 

arguments domain  codomain 



 B = { 0,1} 

 B2 = {0,1} X {0,1} = {00, 01, 10, 11}  

 Arrangement of function table on a hypercube 
• The function value fj is adjacent in each dimension of the 

hypercube to fk where K is obtained from j by 
complementing one and only one input variable: 
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The Boolean n-cube Bn 
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Boolean Functions 
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Logical Operations 

 The three basic logical operations are: 

• AND  

• OR 

• NOT 

 AND is denoted by a dot ().  

 OR is denoted by a plus (+). 

 NOT is denoted by an overbar ( ¯ ), a single quote mark (') 
after, or (~) before the variable. 

 The order of evaluation in a Boolean expression is: 

 

 

 

 Consequence: Parentheses appear around OR expressions 

 Example: F = A(B + C)(C + D) 
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1. Parentheses 
2. NOT 
3. AND 
4. OR 



Fundamentals of Boolean Algebra 

 Basic Postulates 
• Postulate 1 (Definition): A Boolean algebra is a closed 

algebraic system containing a set K of two or more elements 
and the operators  , + and    . 

• Postulate 2 (Existence of 1 and 0 element):  

 a) a + 0 = a (identity for +), b) a 1 = a (identity for ) 

• Postulate 3 (Commutativity): 

 a) a + b = b + a   b) a b = b a 

• Postulate 4 (Associativity): 

 a) a + (b + c) = (a + b) + c  b) a  (b c) = (a b) c 

• Postulate 5 (Distributivity): 

 a) a + (b c) = (a + b) (a + c) b) a  (b + c) = a b + a c 
• Postulate 6 (Existence of complement): 

• a) a + a = 1   b) a a = 0   
 

Normally is omitted.       A switching algebra is a BA with K={0,1} 



 Examples: 
•  Y = A · B      is read “Y is equal to A AND B” 

•  z = x + y       is read “z is equal to x OR y” 

•  X = A           is read “X is equal to NOT A”  

Notation Examples 

 Note: The statement:  
1 + 1 = 2 (+ is an algebraic operator, read “one plus one equals 
two”) 

   is not the same as 
1 + 1 = 1 (+ is a logic operator, read “1 or 1 equals 1”). 
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Operator Definitions 

 

Operations are defined on the values "0" and "1" for 
each operator: 

AND 

0 · 0 = 0 
 

0 · 1 = 0 
 

1 · 0 = 0 

 1  · 1 =  1 
 

OR 

0 + 0 = 0 

 0 + 1 = 1 
 

1 + 0 = 1 

 1 + 1  = 1 

 

NOT 

1 0 = 

0 1 = 



1. 

3. 

5. 

7. 

9. 

11. 

13. 

15. 

17. 

Commutative 

Associative 

Distributive 

De Morgan  ‘s 

2. 

4. 

6. 

8. 

X . 1 X = 

X  . 0 0 = 

X . X X = 

0 = X . X 

Boolean Algebra 

• An algebraic structure defined on a set of at least two 
elements, B, together with three binary operators (denoted 
+,   and    ) that satisfies the following basic identities: 

10. 

12. 

14. 

16. 

X + Y Y + X = 

(X + Y ) Z  +  X + (Y Z ) + = 
X (Y +  Z ) XY XZ  +  = 

X + Y X . Y = 

XY YX = 

(X Y )  Z X (Y  Z )  = 

X + YZ (X + Y) (X + Z ) = 

X . Y X + Y = 

X  + 0 X = 

+ X    1 1 = 

X + X X = 

1 = X + X 

 X = X 

Existence of 0 and 1 

Idempotence 

Existence of complement 

Involution 
 



Generalized De Morgan’s theorems 

 Proof Generalized De Morgan’s theorems by general 
induction: 

 Two steps: 
•  Show that the statement is true for two variables 

• Show that if is true for n variable , than is also true for n+1 
variables: 
 Let Z= X1 + X2 +…+ Xn 

  (X1 + X2 +…+ Xn + Xn+1) = (Z + Xn+1) = (Z  Xn+1) = 

  (X1  X2 … Xn )  Xn+1 by induction hypothesis 
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 X1+X2+…+Xn =  X1 X2 … Xn 

X1 X2 … Xn  =  X1+X2+…+Xn 



Example 1: Boolean Algebraic Proof 

 A + A·B = A                           Absorption Theorem 
Proof Steps            Justification 
    A + A·B 

 = A · 1 + A · B  X = X · 1   
 = A · ( 1 + B)            X · Y + X · Z = X ·(Y + Z)    Distributive Law 

 = A · 1    1 + X = 1 

 = A    X · 1 = X 
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 Unless it happens to be self-dual, the dual of an 
expression does not equal the expression itself. 

 Example: F = (A + C) · B + 0 

           dual F = ((A · C)+ B) · 1 = A · C  + B 

 Example: G = X · Y + (W + Z) 

           dual G = (X+Y) · (W · Z) = (X+Y) ·(W+ Z) 

 Example: H = A · B + A · C + B · C 

   dual H = (A + B)(A + C)(B + C) = (A + AC + BA + BC) (B + C) 

          = (A +BC) (B+C) = AB + AC + BC. So H is self-dual. 

 Are any of these functions self-dual? 

 

Some Properties of Identities & the Algebra 
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 The dual of an algebraic expression is obtained by 
interchanging + and  and interchanging 0’s and 1’s.  



 There can be more that 2 elements in B, i. e., 
elements other than 1 and 0. What are some 
common useful Boolean algebras with more than 
two elements?  

1. 

2. 

 3.  Quantified Boolean Algebra (QBA) 

 If B contains only 1 and 0, then B is called the 
switching algebra which is the algebra we use 
most often. 

Some Properties of Identities & the Algebra 

Algebra of Sets 

Algebra of n-bit binary vectors 
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Quantified Boolean formulas (QBFs) 

 Generalize (quantifier-free) Boolean formulas with the additional 
universal and existential quantifiers:  and , respectively.  

 In writing a QBF, we assume that the precedences of the 
quantifiers are lower than those of the Boolean connectives.  

 In a QBF, variables being quantified are called bound variables, 
whereas those not quantified are called free variables. 

 Any QBF can be rewritten as a quantifier-free Boolean formula 
through quantifier elimination by formula expansion (among other 
methods), e.g., 

 x:f(x; y) = f(0; y) · f(1; y) 
and 

 x:f(x; y) = f(0; y) + f(1; y) 

 Consequently, for any QBF , there exists an equivalent quantifier-
free Boolean formula that refers only to the free variables of .  

 QBFs are thus of the same expressive power as quantifier-free 
Boolean formulas, but can be more succinct. 

 

 



 AB + AC + BC = AB + AC               Consensus Theorem 
Proof Steps   
    AB + AC + BC 
 = AB + AC + 1 · BC                          
 = AB +AC + (A + A) · BC             
 = AB +AC + ABC + ABC 
 = AB · (1 + C) + AC · (1 + B) 
 = AB + AC 
 
 (A+B) · (A+C) · (B+C) = (A+B) · (A+C)     dual identity 

Example 2: Boolean Algebraic Proofs 
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Example 3: Boolean Algebraic Proofs 

                                                       
Proof Steps   Justification 

 
  

 

 = X’ Y’ Z + X Y’  (A + B)’ = A’ . B’              De Morgan’s Law 

 = Y’ X’ Z + Y’ X  A . B = B . A                   Commutative Law 

 = Y’ (X’ Z + X)   A(B + C) = AB + AC        Distributive Law 

 = Y’ (X’ + X)(Z + X)  A + BC = (A + B)(A + C)  Distributive Law 

 = Y’ . 1 . (Z + X)         A + A’ = 1 

 = Y’ (X + Z)  1 . A = A, A + B = B + A   Commutative Law 

   

Y X Z ) Y X ( + + 

) Z X ( X Z ) Y X ( + = + + Y Y 
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Useful Theorems 

 X · Y + X · Y = Y    (X + Y) · (X + Y) = YMinimization 

 

 X + X · Y = X     X · (X + Y) = X   Absorption 

 

 X + X · Y = X + Y    X · (X + Y) = X · Y   Simplification 

 

 X · Y + X · Z + Y · Z = X · Y + X · Z    Consensus 

    (X + Y) · (X + Z) · (Y + Z) = (X + Y) · (X + Z)  

 

 X + Y = X · Y  X · Y = X + Y    De Morgan’s Law 
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Boolean Function Evaluation 

x y z F1 F2 F3 F4 

0 0 0 0 0   

0 0 1 0 1   

0 1 0 0 0   

0 1 1 0 0   

1 0 0 0 1   

1 0 1 0 1   

1 1 0 1 1   

1 1 1 0 1   

 

z   x    y x      F4 
x     z    y x     z y x     F3 

  x      F2 
xy      F1 

+ = 
+ = 

= 
= z 

y z + 
y + 
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Expression Simplification 

An application of Boolean algebra   

Simplify to contain the smallest number of 
literals (complemented and un-complemented 
variables):  

   AB+ACD+ABD+ACD+ABCD 
 
= AB+ABCD+ACD+ACD+ABD 
= AB+AB(CD)+AC(D+D)+ABD 
= AB+AC+ABD = B(A+AD)+AC 
= B(A+D)+AC 
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Complementing Functions 

Use DeMorgan's Theorem to complement a 
function: 
1. Interchange AND and OR operators 
2. Complement each constant value and literal    

Example: Complement F = 

   F = (x + y + z)(x + y + z) 
Example: Complement G = (a + bc)d + e  

   G = 
   ((a (b + c))+ d ) e =  (a (b + c) + d) e 

x + z y z y x 
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Shannon Expansion 

 Let f : Bn  B be a Boolean function, and x = (x1, x2, 
…, xn) the variables in the support of f. The cofactor 
(residual) fa of f by a literal a=xi or a=xi is: 

fxi
 (x1, x2, …, xn) = f (x1, …,  xi-1, 1, xi+1,…, xn) 

fxi
 (x1, x2, …, xn) = f (x1, …,  xi-1, 0, xi+1,…, xn)  

 Shannon theorem: 

  f=xifxi 
+ xifxi 

 We say that f is expanded about xi. xi is called the 
splitting variable. 

 

  

 



Example  
 

 F = ab + ac + bc 

 F = a Fa + a Fa 

 F = ab + ac + abc + abc 

 

 

     

 

 

 

 

Cube bc got split into two cubes 

 

 

c 

a 

b 

ac 

ab 

abc abc 
_ 

c 

a 

b 

bc 

ac 

ab 
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Representation of Boolean Functions 

 We need representations for Boolean Functions 
for two reasons: 
• to represent and manipulate the actual circuit we are 

“synthesizing” 

• as mechanism to do efficient Boolean reasoning 

 Forms to represent Boolean Functions 
• Truth table 

• List of cubes (Sum of Products, Disjunctive Normal Form 
(DNF))  

• List of conjuncts (Product of Sums, Conjunctive Normal 
Form (CNF)) 

• Boolean formula 

• Binary Decision Tree, Binary Decision Diagram 

• Circuit (network of Boolean primitives) 
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Truth Table 

 Truth table (Function Table): 

 The truth table of a function f : Bn  B is a tabulation of its value 
at each of the 2n vertices of Bn.  

 

 In other words the truth table lists all minterms 

 Example: f = abcd + abcd + abcd +  

                     abcd + abcd + abcd +  

                     abcd + abcd 
The truth table representation is 

 - intractable for large n 

 - canonical 

abcd f 

0 0000 0 

1 0001 1 

2 0010 0 

3 0011 1 

4 0100 0 

5 0101 1 

6 0110 0 

7 0111 0 

    abcd f 

 8 1000 0 

 9 1001 1 

10 1010 0 

11 1011 1 

12 1100 0 

13 1101 1 

14 1110 1 

15 1111 1 



0 1 

1 0 

X 

NOT 

Truth Tables 

 Truth table  a tabular listing of the values of a function 
for all possible combinations of values on its arguments 

 Example: Truth tables for the basic logic operations: 

1 1 1 

0 0 1 

0 1 0 

0 0 0 

Z=X·Y Y X 

      AND 

Z=X 

1 1 1 

1 0 1 

1 1 0 

0 0 0 

Z=X+Y Y X 

       OR 
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Set of Boolean Functions 

 There are 2n vertices in input space Bn 

 There are 22
n
 distinct logic functions.  

• Each subset of vertices is a distinct logic function:  
    f  Bn 

x1 

x2 

x3 

Truth Table or Function table: 
 
 
 
 
 
 
 

x1x2x3 
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Cubes 

 A cube is defined as the AND of a set of literals 
(“conjunction” of literals). 
 

 Example: 

  C = x1x2x3 

 represents the following function 

   f = (x1=0)(x2=1)(x3=0) 

 

x1 

x2 

x3 

f = x1x2x3 

x1 

x2 

x3 

f = x1 

x1 

x2 

x3 

f = x1x2 
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Cubes 

 If C  f, C a cube, then C is an implicant of f. 

 

 If C  Bn, and C has k literals, then |C| covers  2n-k 
vertices. 

 

 Example: 

  C = xy  B3 

  k = 2 , n = 3   =>  |C| = 2 = 23-2. 

  C = {100, 101} 

 

 An implicant with n literals is a minterm. 



List of Cubes 

 Sum of Products (SOP): 
• A function can be represented by a sum of cubes (products): 

   f = ab + ac + bc 

 Since each cube is a product of literals, this is a “sum of 
products” (SOP) representation 

 

• A SOP can be thought of as a set of cubes F 

   F = {ab, ac, bc}  
• A set of cubes that represents f is called a cover of f.  

   F1={ab, ac, bc}  and F2={abc,abc,abc,abc} 

   are covers of         

   f = ab + ac + bc.  

 

c 

a 

b 

bc 

ac 

ab c 

a 

b 

abc abc 
_ 

abc 
_ abc 

_ 
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Sum Of Products - SOP 

 

 

 

 

 

 Two-level minimization seeks the minimum size 
cover (least number of cubes) 

bc 

ac ab 
c 

a 

b 

  = onset minterm 

Note that each onset minterm is 
“covered”  by at least one  

of the cubes, and these do not 

covers offset minterm. 
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Irredundant 

 Let F = {c1, c2, …, ck} be a cover for f: 

f = i
k
=1 ci 

    A cube ci F is irredundant if F\{ci}  f 

 

Example 2: f = ab + ac + bc 

bc 

ac 
ab 

c 

a 

b 

bc 

ac 
Not covered 

F\{ab}  f 



Prime 

 A literal j of cube ci  F  (=f ) is prime if 

(F \ {ci })  {c’i }  f 
  where c’i is ci  with literal j of ci deleted. 

 A cube of F is prime if all its literals are prime. 

Example 3 

f = ab + ac + bc 

ci = ab; c’i = a (literal b deleted) 

F \ {ci }  {c’i } = a + ac + bc  
bc 

ac 
a 

c 

a 

b 
Not equal to f since 

offset vertex is covered 

F=ac + bc + a = 

F \{ci }  {c’i }  
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Prime and Irredundant Covers 

 

 

 Definition 1 A cover is prime (irredundant) if all 
its cubes are prime (irredundant).  

 

 Definition 2 A prime of f is essential (essential 
prime) if there is a minterm (essential vertex) in 
that prime but in no other prime.  
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Prime and Irredundant Covers 

Example 4 
f = abc + bd + cd is prime and irredundant. 

abc is essential since abcdabc, but not in bd or cd 

 

 

 

 

 

abc 

bd 

cd d a 

c 
b 
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Binary Decision Diagram (BDD) 

f = ab+ac+abd 

1 

0 

c 

a 

b b 

c c 

d 

0 1 

c+bd b 

root  
node 

c+d 

d 

 Graph representation of a Boolean 
function f 

•  vertices represent decision nodes 
for variables 

•  two children represent the two 
subfunctions 

 f(x = 0) and f(x = 1) (cofactors) 

•  restrictions on ordering and 
reduction rules can make a BDD 
representation canonical 
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Logic Functions 

 However, there are infinite number of logic 
formulas and each one can have various forms:  

 f = x + y 

   = xy + xy + xy 

   = xx + xy + y 

   = (x + y)(x + y) + xy 
 

 

 Synthesis = Find the best formula (or 
“representation”) 

x y f 

0 0 0 

0 1 1 

1 0 1 

1 1 1  



Using Switches 
• For inputs:  

 logic 1 is switch closed  
 logic 0 is switch open 

 
• For outputs: 

 logic 1 is light on  
 logic 0 is light off. 

 
• NOT uses a switch such 
   that: 

 logic 1 is switch open 
 logic 0 is switch closed 

Logic Function Implementation 

Switches in series  AND 

Switches in parallel  OR 

C 

Normally-closed switch  NOT 
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 Example: Logic Using Switches  
 
 

 
 

 
 

 Light is on (L = 1) for  
  L(A, B, C, D) = AD+ABC 
  and off (L = 0), otherwise. 

 Useful model for relay circuits and for CMOS gate 
circuits, the foundation of current digital logic 
technology 

Logic Function Implementation (Continued) 

B 

A 

D 

C 
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Logic Gates 

 In the earliest computers, switches were opened 
and closed by magnetic fields produced by 
energizing coils in relays. The switches in turn 
opened and closed the current paths. 

 Later, vacuum tubes that open and close current 
paths electronically replaced relays. 

 Today, transistors are used as electronic switches 
that open and close current paths. 
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Logic Gate Symbols and Behavior 

 Logic gates have special symbols: 
 

 

 

 And waveform behavior in time as follows: 

(b) Timing diagram 

X 0 0 1 1 

Y 0 1 0 1 

X · Y (AND) 0 0 0 1 

 X + Y (OR) 0 1 1 1 

(NOT) X 1 1 0 0 

(a) Graphic symbols 

OR gate 

X 

Y 

Z = X +  Y 

X 

Y 

Z = X · Y 

AND gate 

X  Z = X 

NOT gate or inverter 
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Gate Delay 

 In actual physical gates, if one or more input 
changes causes the output to change, the output 
change does not occur instantaneously.   

 The delay between an input change(s) and the 
resulting output change is the gate delay denoted 
by tG: 

  tG   tG 

Input 

Output 

Time (ns) 

0 

0 

1 

1 

0 0.5 1 1.5 

tG = 0.3 ns 
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Logic Diagrams and Expressions 

 Boolean equations, truth tables and logic diagrams describe the 
same function! 

 Truth tables are unique; expressions and logic diagrams are not. 
This gives flexibility in implementing functions. 

X 

Y F 

Z 

Logic Diagram 

Truth Table 

1 

1 

1 

1 

0 

0 

1 

0 
F = X +  Y Z 

1 1 1 

1 1 0 

1 0 1 

1 0 0 

0 1 1 

0 1 0 

0 0 1 

0 0 0 

X Y Z 
Equation 

 
F = X +  Y Z F = X +  Y Z 
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Boolean Circuits 

Definition: 

 A Boolean circuit is a directed graph C(G,N) where 
G are the gates and N GG is the set of 
directed edges (nets) connecting the gates. 

 

 Some of the vertices are designated: 

 Inputs:   I G 

 Outputs:  O G, I O = 



 Each gate g is assigned a Boolean function fg which 
computes the output of the gate in terms of its 
inputs.      


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Definitions 

 The fanin FI(g) of a gate g are all predecessor vertices of g: 

   FI(g) = {g’ | (g’,g) N} 

 

 The fanout FO(g) of a gate g are all successor vertices of g:

   FO(g) = {g’ | (g,g’) N} 

 

 The cone CONE(g) of a gate g is the transitive fanin of g and g 
itself. 

 

 The support SUPPORT(g) of a gate g are all inputs in its cone: 

   SUPPORT(g) = CONE(g) I 
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Example 

I 

O 

6 

FI(6) = {2,4} 

FO(6) = {7,9} 

CONE(6) = {1,2,4,6} 

SUPPORT(6) = {1,2} 

1 

5 

3 

4 

7 

8 

9 

2 



Canonical Forms 

 It is useful to specify Boolean functions in a form 
that: 
• Allows comparison for equality. 

• Has a correspondence to the truth tables  

  Canonical Forms in common usage: 
• Sum of Minterms (SOM) 

• Product of Maxterms (POM) 
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Minterms 

 Minterms are AND terms with every variable 
present in either true or complemented form.   

 Given that each binary variable may appear normal 
(e.g., x) or complemented (e.g.,   ), there are 2n 
minterms for n variables. 

 Example: Two variables (X and Y)produce 
2 x 2 = 4 combinations: 
          (both normal) 
          (X normal, Y complemented) 
          (X complemented, Y normal) 
          (both complemented) 

 Thus there are four minterms of two variables. 
 

Y X 
X Y 

Y X 

Y X 

x 
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Maxterms 

 Maxterms are OR terms with every variable in 
true or complemented form. 

 Given that each binary variable may appear normal 
(e.g., x) or complemented (e.g., x), there are 2n 
maxterms for n variables.  

 Example: Two variables (X and Y) produce 
2 x 2 = 4 combinations: 
                  (both normal) 
                (x normal, y complemented) 
                (x complemented, y normal) 
                (both complemented) 
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 Examples: Two variable minterms and maxterms. 
 
 
 
 
 
 
 

 
 

 The index above is important for describing which 
variables in the terms are true and which are 
complemented. 

Maxterms and Minterms 

Index Minterm Maxterm 

0      00 x y x + y 

1      01 x y x + y 

2     10 x y x + y 

3     1 1 x y x + y 
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Standard Order 

 Minterms and maxterms are designated with a subscript  
 The subscript is a number, corresponding to a binary 

pattern  
 The bits in the pattern represent the complemented or 

normal state of each variable listed in a standard order. 
 All variables will be present in a minterm or maxterm and 

will be listed in the same order (usually alphabetically)  
 Example: For variables a, b, c: 

• Maxterms:  (a + b + c),   (a + b + c) 
• Terms:   (b + a + c), a c b, and (c + b + a) are NOT in 

standard order. 
• Minterms:    a b c,  a b c, a b c 
• Terms:    (a + c), b c, and (a + b) do not contain all 

variables 
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Purpose of the Index 

 The index for the minterm or maxterm, expressed 
as a binary number, is used to determine whether 
the variable is shown in the true form or 
complemented form. 

 For Minterms: 
• “1” means the variable is “Not Complemented” and  

• “0” means  the variable is “Complemented”. 

 For Maxterms: 
• “0” means  the variable is “Not Complemented” and  

• “1” means the variable is “Complemented”.  
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Index Example in Three Variables 

Example (for three variables): 

Assume the variables are called X, Y, and Z. 

The standard order is X, then Y, then Z. 

The Index 0 (base 10) = 000 (base 2) (for three 
variables). All three variables are complemented for 
minterm 0 (          ) and no variables are 
complemented for Maxterm 0 (X,Y,Z). 

• Minterm 0, called m0 is           .  

• Maxterm 0, called M0 is (X + Y + Z). 

• Minterm 6 ?   
X Y Z 

• Maxterm 6 ? 

(X + Y + Z) 

 

Z Y X 

Z Y, X, 
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Index Examples – Four Variables 

 Index  Binary  Minterm       Maxterm 
     i     Pattern       mi                 Mi 

     0      0000      abcd a + b + c + d 
     1       0001      abcd a + b + c + d  
     3        00 1 1         ?          ? 
     5       010 1      abcd  a + b + c + d  
     7       0 1 1 1         ?  a + b + c + d  
    10      10 10      abcd        a + b + c + d  
    13       1 101      abcd          ? 
    15      1 1 11      abcd         a + b + c + d   
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 Review:  De Morgan's Theorem 
                      and     
 Two-variable example:  
                      and  
 Thus M2 is the complement of m2 and vice-

versa. 
 Since De Morgan's Theorem holds for n 

variables, the above holds for terms of n 
variables  giving: 
 

                                    and   
    Thus Mi is the complement of mi. 

Minterm and Maxterm Relationship 

y x    y ·   x + = y x· y x = + 

 y   x     M 2 + =  y x·     m 2 
= 

i m M = i i i M m = 
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Function Tables for Both 

 Minterms of           Maxterms of 
    2 variables                            2 variables 

 
 
 
 
 

 
 Each column in the maxterm function table is the 

complement of the column in the minterm function 
table since Mi is the complement of mi. 

x y   m 0   m 1   m 2   m 3   

0 0   1   0   0   0   

0 1   0   1   0   0   

1 0   0   0   1   0   

1 1   0   0   0   1   

  

x y M 0   M 1   M 2   M 3 

0 0   0   1   1   1   

0 1   1   0   1   1   

1 0 1   1   0   1   

1 1   1   1   1   0   
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Observations 

 In the function tables: 
• Each minterm has one and only one 1 present in the 2n  terms (a 

minimum of 1s).  All other entries are 0. 
• Each maxterm has one and only one 0 present in the 2n terms 

All other entries are 1 (a maximum of 1s).  

 We can implement any function by "ORing" the minterms 
corresponding to "1" entries in the function table. These are 
called the minterms of the function. 

 We can implement any function by "ANDing" the maxterms 
corresponding to "0" entries in the function table. These are 
called the maxterms of the function. 

 This gives us two canonical forms: 
• Sum of Minterms (SOM) 
• Product of Maxterms (POM) 

     for stating any Boolean function. 
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x y z   index   m1   +   m4   +   m7   = F1   

0 0 0   0   0   +   0   +   0   = 0   

0 0 1   1   1   +   0   +   0   = 1   

0 1 0   2   0   +   0   +   0   = 0   

0 1 1   3   0   +   0   +   0   = 0   

1 0 0   4   0   +   1   +   0   = 1   

1 0 1   5   0   +   0   +   0   = 0   

1 1 0   6   0   +   0   +   0   = 0   

1 1 1   7   0   +   0   +   1   = 1   

Minterm Function Example 

 Example:  Find F1 = m1 + m4 + m7  

 F1 = x  y  z + x  y  z  + x  y  z 
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Minterm Function Example 

  F(A, B, C, D, E) = m2 + m9 + m17 + m23 

  F(A, B, C, D, E) = 

A’B’C’DE’ + A’BC’D’E + AB’C’D’E + AB’CDE 
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Maxterm Function Example 

Example:  Implement  F1 in maxterms: 
    F1 =      M0  ·    M2    ·     M3    ·    M5    ·   M6 

  ) z     y     z)·(x     y     ·(x   z)      y   (x     F 1 + + + + + + = 

z)     y   x )·( z      y   x ·( + + + + 

  

      
x y z   i   M0  M2  M3  M5  M6 = F1   
0 0 0   0   0     1     1     1   = 0   
0 0 1   1   1     1     1    1     1   = 1   
0 1 0   2   1     0     1    1     1   = 0   
0 1 1   3   1     1     0    1     1   = 0   
1 0 0   4   1     1     1    1     1   = 1   
1 0 1   5   1     1     1    0     1   = 0   
1 1 0   6   1     1     1    1     0   = 0   
1 1 1   7   1   

 
 
 
 
 
 
 
   1     1    1     1   = 1   

  1    
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
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Maxterm Function Example 

   

   F(A, B,C,D) =  

 F = (A + B + C’ + D’) (A’ + B + C + D) 

              (A’ + B + C’ + D’) (A’ + B’ + C’ + D) 

 

  14   11   8  3  M  M  M M ) D , C , B , A ( F   . = . . 
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Canonical Sum of Minterms 

Any Boolean function can be expressed as a 
Sum of Minterms. 
• For the function table, the minterms used are 

the terms corresponding to the 1's 
• For expressions, expand all terms first to 

explicitly list all minterms.  Do this by “ANDing” 
any term missing a variable v with a term (        ). 

Example:   Implement                     as a sum 
of minterms. 
 First expand terms:  
 Then distribute terms:   
 Express as sum of minterms: f = m3 + m2 + m0  

y x x f + = 

y x ) y y ( x f + + = 
y x y x xy f + + = 

v   v + 
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Another SOM Example 

 Example: 
 There are three variables, A, B, and C which we 

take to be the standard order. 
 Expanding the terms with missing variables: 
 Collect terms (removing all but one of duplicate 

terms):  
 Express as SOM:  

 

 F = A(B + B’)(C + C’) + (A + A’) B’ C  

    = ABC + ABC’ + AB’C + AB’C’ + AB’C + A’B’C 

    = ABC + ABC’ + AB’C + AB’C’ + A’B’C 

    = m7 + m6 + m5 + m4 + m1 = m1 + m4 + m5 + m6 + m7  
 
 
 

C   B     A     F + = 



Shorthand SOM Form 

 From the previous example, we started with: 

 

 We ended up with: 

F = m1+m4+m5+m6+m7 

 This can be denoted in the formal shorthand: 

  F (A, B, C) = m (1, 4, 5, 6, 7) 

 Note that we explicitly show the standard 
variables in order and drop the “m” designators. 

C   B     A     F + = 
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Canonical Product of Maxterms 

 Any Boolean Function can be expressed as a Product 
of Maxterms (POM). 
• For the function table, the maxterms used are the terms 

corresponding to the 0's. 
• For an expression, expand all terms first to explicitly list 

all maxterms.  Do this by first applying the second 
distributive law , “ORing” terms missing variable v with a 
term equal to          and then applying the distributive law 
again. 

 Example: Convert to product of maxterms: 
  

    Apply the distributive law: 
 
 Add missing variable z: 
 

 Express as POM:  f = M2 · M3 

y x x ) z , y , x ( f + = 

y x   ) y (x   1     ) y )(x x (x     y   x x + = + = + + = + 

( ) z y x ) z y x ( z z y x + + + + = + + 

v v . 

. 

. 
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Function Complements 

 The complement of a function expressed as a sum of 
minterms is constructed by selecting the minterms missing 
in the sum-of-minterms canonical forms. 

 Alternatively, the complement of a function expressed by a 
Sum of Minterms form is simply the Product of Maxterms 
with the same indices. 

 Example: Given 

 

 

 

 So, to convert between sum-of-minterms and product-of-
maxterms form (or vice-versa) we follow one of these steps: 
• Find the function complement by swapping terms in the list with 

terms not in the list. 

• Change from SOM to POM 

 

 

) 7 , 5 , 3 , 1 ( ) z , y , x ( F 
m S= 

) 6 , 4 , 2 , 0 ( ) z , y , x ( F 
m S = 

) 7 , 5 , 3 , 1 ( ) z , y , x ( F 
M P = 

78 



 Standard Sum-of-Products (SOP) form: equations 
are written as an OR of AND terms  

 Standard Product-of-Sums (POS) form: equations 
are written as an AND of OR terms 

 Examples: 
• SOP: 

• POS:    

 These “mixed” forms are neither SOP nor POS 
•   

•   

Standard Forms 

B     C   B A   C   B   A + + 
C   ·   ) C   B (A   ·   B)     (A + + + 

  C)     (A   C)     B   (A + + 
   B)     (A   C   A   C   B   A + + 
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Standard Sum-of-Products (SOP) 

 A sum of minterms form for n variables can be 
written down directly from a truth table. 
• Implementation of this form is a two-level network of 

gates such that: 
• The first level consists of n-input AND gates, and 

• The second level is a single OR gate (with fewer than 2n 
inputs). 

 This form often can be simplified so that the 
corresponding circuit is simpler. 
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 A Simplification Example: 

 F (A, B, C) = m (1, 4, 5, 6, 7) 
 Writing the minterm expression: 
    F = A B C + A B C + A B C + ABC + ABC 
 Simplifying: 

 F = A’ B’ C + A (B’ C’ + B C’ + B’ C + B C) 

    = A’ B’ C + A (B’ + B) (C’ + C) 

    = A’ B’ C + A.1.1 

    = A’ B’ C + A  

    = B’C + A 
 Simplified F contains 3 literals compared to 15 in 

minterm F  
 

Standard Sum-of-Products (SOP) 
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AND/OR Two-level Implementation of SOP Expression 

 The two implementations for F are shown below – it is quite 
apparent which is simpler! 

F

A
B
C

A
B
C

A
B
C

A
B
C

A
B
C

 

 

F

B

C

A
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SOP and POS observations 

 The previous examples show that: 
• Canonical Forms (Sum-of-minterms, Product-of-

Maxterms), or other standard forms (SOP, POS) differ 
in complexity 

• Boolean algebra can be used to manipulate equations into 
simpler forms. 

• Simpler equations lead to simpler two-level 
implementations  

 Questions: 
• How can we attain a “simplest” expression? 
• Is there only one minimum cost circuit?  
• The next part will deal with these issues. 
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