
Binary Logic and Gates

Binary variables take on one of two values.

Logical operators operate on binary values and
binary variables.

Basic logical operators are the logic functions
AND, OR and NOT.

Logic gates implement logic functions.

Boolean Algebra: a useful mathematical system for
specifying and transforming logic functions.

We study Boolean algebra as a foundation for
designing and analyzing digital systems!

3

George Boole (1815-1864)

4

An Investigation of the Laws

of Thought, on Which are

founded the Mathematical

Theories of Logic and

Probabilities (1854)

Claude Shannon (1916-2001)

5

A Symbolic Analysis of Relay and

Switching Circuits (1938)

ENIAC (1946)

Electronic

Numerical

Integrator
And

Calculator

Binary Variables

 Recall that the two binary values have different
names:
• True/False
• On/Off
• Yes/No
• 1/0

 We use 1 and 0 to denote the two values.
 Variable identifier examples:

• A, B, y, z, or X1 for now
• RESET, START_IT, or ADD1 later

6

7

Boolean functions

 Basic logical operators are the boolean functions

f(x1,…,xn): {0,1}n
 {0,1}

arguments domain codomain

 B = { 0,1}

 B2 = {0,1} X {0,1} = {00, 01, 10, 11}

 Arrangement of function table on a hypercube
• The function value fj is adjacent in each dimension of the

hypercube to fk where K is obtained from j by
complementing one and only one input variable:

8

The Boolean n-cube Bn

B
1

B
2

B
3

B
4

X0 X1 . . . Xn

is adjacent to

X0 X1 . . . Xn

X0 X1 . . . Xn

 . . .

X0 X1 . . . Xn

9

Boolean Functions





  

    

1 2

1 2

1 1 2 2

1 2 1 2

Boolean Function: () :

{0,1}

(, ,...,) ;

- , ,... are

- , , , ,... are

- essentially: maps each vertex of to 0 or 1

Exampl

vari

e:

{((0, 0),0),((0,

ables

literals

1

n

n

n i

n

f x B B

B

x x x x B x B

x x

x x x x

f B

f x x x x

   1 2 1 2

),1),

 ((1, 0), 1),((1, 1),0)}x x x x 1x

2x

0

0
1

1
x2

x1

10

Boolean Functions




  

  

 

   

 

1 1

1 0

1

0 1

- The of is { | () 1} (1)

- The of is { | () 0} (0)

- if , is the i.e. 1

- if (), is

Onset

Offset

tautology.

not satisfyabl , i.e. 0

- if () () , t

e

hen a

n

n

n

f x f x f f

f x f x f f

f B f f

f B f f f

f x g x for all x B f
1

nd

- we say

are equiva

 instea

le

nt

d of

g

f f

- literals: A is a variable or its negation , and represents a logic l functioniteral x x

x3

x1

x2

f = x1 f = x1

x3

x1

x2

Logical Operations

 The three basic logical operations are:

• AND

• OR

• NOT

 AND is denoted by a dot ().

 OR is denoted by a plus (+).

 NOT is denoted by an overbar (¯), a single quote mark (')
after, or (~) before the variable.

 The order of evaluation in a Boolean expression is:

 Consequence: Parentheses appear around OR expressions

 Example: F = A(B + C)(C + D)

11

1. Parentheses
2. NOT
3. AND
4. OR

Fundamentals of Boolean Algebra

 Basic Postulates
• Postulate 1 (Definition): A Boolean algebra is a closed

algebraic system containing a set K of two or more elements
and the operators  , + and .

• Postulate 2 (Existence of 1 and 0 element):

 a) a + 0 = a (identity for +), b) a 1 = a (identity for )

• Postulate 3 (Commutativity):

 a) a + b = b + a b) a b = b a

• Postulate 4 (Associativity):

 a) a + (b + c) = (a + b) + c b) a  (b c) = (a b) c

• Postulate 5 (Distributivity):

 a) a + (b c) = (a + b) (a + c) b) a  (b + c) = a b + a c
• Postulate 6 (Existence of complement):

• a) a + a = 1 b) a a = 0

Normally is omitted. A switching algebra is a BA with K={0,1}

 Examples:
• Y = A · B is read “Y is equal to A AND B”

• z = x + y is read “z is equal to x OR y”

• X = A is read “X is equal to NOT A”

Notation Examples

 Note: The statement:
1 + 1 = 2 (+ is an algebraic operator, read “one plus one equals
two”)

 is not the same as
1 + 1 = 1 (+ is a logic operator, read “1 or 1 equals 1”).

13

Operator Definitions

Operations are defined on the values "0" and "1" for
each operator:

AND

0 · 0 = 0

0 · 1 = 0

1 · 0 = 0

 1 · 1 = 1

OR

0 + 0 = 0

 0 + 1 = 1

1 + 0 = 1

 1 + 1 = 1

NOT

1 0 =

0 1 =

1.

3.

5.

7.

9.

11.

13.

15.

17.

Commutative

Associative

Distributive

De Morgan ‘s

2.

4.

6.

8.

X . 1 X =

X . 0 0 =

X . X X =

0 = X . X

Boolean Algebra

• An algebraic structure defined on a set of at least two
elements, B, together with three binary operators (denoted
+,  and) that satisfies the following basic identities:

10.

12.

14.

16.

X + Y Y + X =

(X + Y) Z + X + (Y Z) + =
X (Y + Z) XY XZ + =

X + Y X . Y =

XY YX =

(X Y) Z X (Y Z) =

X + YZ (X + Y) (X + Z) =

X . Y X + Y =

X + 0 X =

+ X 1 1 =

X + X X =

1 = X + X

 X = X

Existence of 0 and 1

Idempotence

Existence of complement

Involution

Generalized De Morgan’s theorems

 Proof Generalized De Morgan’s theorems by general
induction:

 Two steps:
• Show that the statement is true for two variables

• Show that if is true for n variable , than is also true for n+1
variables:
 Let Z= X1 + X2 +…+ Xn

 (X1 + X2 +…+ Xn + Xn+1) = (Z + Xn+1) = (Z  Xn+1) =

 (X1  X2 … Xn)  Xn+1 by induction hypothesis

16

 X1+X2+…+Xn = X1 X2 … Xn

X1 X2 … Xn = X1+X2+…+Xn

Example 1: Boolean Algebraic Proof

 A + A·B = A Absorption Theorem
Proof Steps Justification
 A + A·B

 = A · 1 + A · B X = X · 1
 = A · (1 + B) X · Y + X · Z = X ·(Y + Z) Distributive Law

 = A · 1 1 + X = 1

 = A X · 1 = X

17

 Unless it happens to be self-dual, the dual of an
expression does not equal the expression itself.

 Example: F = (A + C) · B + 0

 dual F = ((A · C)+ B) · 1 = A · C + B

 Example: G = X · Y + (W + Z)

 dual G = (X+Y) · (W · Z) = (X+Y) ·(W+ Z)

 Example: H = A · B + A · C + B · C

 dual H = (A + B)(A + C)(B + C) = (A + AC + BA + BC) (B + C)

 = (A +BC) (B+C) = AB + AC + BC. So H is self-dual.

 Are any of these functions self-dual?

Some Properties of Identities & the Algebra

18

 The dual of an algebraic expression is obtained by
interchanging + and  and interchanging 0’s and 1’s.

 There can be more that 2 elements in B, i. e.,
elements other than 1 and 0. What are some
common useful Boolean algebras with more than
two elements?

1.

2.

 3. Quantified Boolean Algebra (QBA)

 If B contains only 1 and 0, then B is called the
switching algebra which is the algebra we use
most often.

Some Properties of Identities & the Algebra

Algebra of Sets

Algebra of n-bit binary vectors

19

Quantified Boolean formulas (QBFs)

 Generalize (quantifier-free) Boolean formulas with the additional
universal and existential quantifiers:  and , respectively.

 In writing a QBF, we assume that the precedences of the
quantifiers are lower than those of the Boolean connectives.

 In a QBF, variables being quantified are called bound variables,
whereas those not quantified are called free variables.

 Any QBF can be rewritten as a quantifier-free Boolean formula
through quantifier elimination by formula expansion (among other
methods), e.g.,

 x:f(x; y) = f(0; y) · f(1; y)
and

 x:f(x; y) = f(0; y) + f(1; y)

 Consequently, for any QBF , there exists an equivalent quantifier-
free Boolean formula that refers only to the free variables of .

 QBFs are thus of the same expressive power as quantifier-free
Boolean formulas, but can be more succinct.

 AB + AC + BC = AB + AC Consensus Theorem
Proof Steps
 AB + AC + BC
 = AB + AC + 1 · BC
 = AB +AC + (A + A) · BC
 = AB +AC + ABC + ABC
 = AB · (1 + C) + AC · (1 + B)
 = AB + AC

 (A+B) · (A+C) · (B+C) = (A+B) · (A+C) dual identity

Example 2: Boolean Algebraic Proofs

21

Example 3: Boolean Algebraic Proofs


Proof Steps Justification

 = X’ Y’ Z + X Y’ (A + B)’ = A’ . B’ De Morgan’s Law

 = Y’ X’ Z + Y’ X A . B = B . A Commutative Law

 = Y’ (X’ Z + X) A(B + C) = AB + AC Distributive Law

 = Y’ (X’ + X)(Z + X) A + BC = (A + B)(A + C) Distributive Law

 = Y’ . 1 . (Z + X) A + A’ = 1

 = Y’ (X + Z) 1 . A = A, A + B = B + A Commutative Law

Y X Z) Y X (+ +

) Z X (X Z) Y X (+ = + + Y Y

22

Useful Theorems

 X · Y + X · Y = Y (X + Y) · (X + Y) = YMinimization

 X + X · Y = X X · (X + Y) = X Absorption

 X + X · Y = X + Y X · (X + Y) = X · Y Simplification

 X · Y + X · Z + Y · Z = X · Y + X · Z Consensus

 (X + Y) · (X + Z) · (Y + Z) = (X + Y) · (X + Z)

 X + Y = X · Y X · Y = X + Y De Morgan’s Law

 23

Boolean Function Evaluation

x y z F1 F2 F3 F4

0 0 0 0 0

0 0 1 0 1

0 1 0 0 0

0 1 1 0 0

1 0 0 0 1

1 0 1 0 1

1 1 0 1 1

1 1 1 0 1

z x y x F4
x z y x z y x F3

 x F2
xy F1

+ =
+ =

=
= z

y z +
y +

24

Expression Simplification

An application of Boolean algebra

Simplify to contain the smallest number of
literals (complemented and un-complemented
variables):

 AB+ACD+ABD+ACD+ABCD

= AB+ABCD+ACD+ACD+ABD
= AB+AB(CD)+AC(D+D)+ABD
= AB+AC+ABD = B(A+AD)+AC
= B(A+D)+AC

25

Complementing Functions

Use DeMorgan's Theorem to complement a
function:
1. Interchange AND and OR operators
2. Complement each constant value and literal

Example: Complement F =

 F = (x + y + z)(x + y + z)
Example: Complement G = (a + bc)d + e

 G =
 ((a (b + c))+ d) e = (a (b + c) + d) e

x + z y z y x

26

27

Shannon Expansion

 Let f : Bn  B be a Boolean function, and x = (x1, x2,
…, xn) the variables in the support of f. The cofactor
(residual) fa of f by a literal a=xi or a=xi is:

fxi
 (x1, x2, …, xn) = f (x1, …, xi-1, 1, xi+1,…, xn)

fxi
 (x1, x2, …, xn) = f (x1, …, xi-1, 0, xi+1,…, xn)

 Shannon theorem:

 f=xifxi
+ xifxi

 We say that f is expanded about xi. xi is called the
splitting variable.

Example

 F = ab + ac + bc

 F = a Fa + a Fa

 F = ab + ac + abc + abc

Cube bc got split into two cubes

c

a

b

ac

ab

abc abc
_

c

a

b

bc

ac

ab

30

Representation of Boolean Functions

 We need representations for Boolean Functions
for two reasons:
• to represent and manipulate the actual circuit we are

“synthesizing”

• as mechanism to do efficient Boolean reasoning

 Forms to represent Boolean Functions
• Truth table

• List of cubes (Sum of Products, Disjunctive Normal Form
(DNF))

• List of conjuncts (Product of Sums, Conjunctive Normal
Form (CNF))

• Boolean formula

• Binary Decision Tree, Binary Decision Diagram

• Circuit (network of Boolean primitives)

31

Truth Table

 Truth table (Function Table):

 The truth table of a function f : Bn  B is a tabulation of its value
at each of the 2n vertices of Bn.

 In other words the truth table lists all minterms

 Example: f = abcd + abcd + abcd +

 abcd + abcd + abcd +

 abcd + abcd
The truth table representation is

 - intractable for large n

 - canonical

abcd f

0 0000 0

1 0001 1

2 0010 0

3 0011 1

4 0100 0

5 0101 1

6 0110 0

7 0111 0

 abcd f

 8 1000 0

 9 1001 1

10 1010 0

11 1011 1

12 1100 0

13 1101 1

14 1110 1

15 1111 1

0 1

1 0

X

NOT

Truth Tables

 Truth table  a tabular listing of the values of a function
for all possible combinations of values on its arguments

 Example: Truth tables for the basic logic operations:

1 1 1

0 0 1

0 1 0

0 0 0

Z=X·Y Y X

 AND

Z=X

1 1 1

1 0 1

1 1 0

0 0 0

Z=X+Y Y X

 OR

32

33

Set of Boolean Functions

 There are 2n vertices in input space Bn

 There are 22
n
 distinct logic functions.

• Each subset of vertices is a distinct logic function:
 f  Bn

x1

x2

x3

Truth Table or Function table:

x1x2x3

35

Cubes

 A cube is defined as the AND of a set of literals
(“conjunction” of literals).

 Example:

 C = x1x2x3

 represents the following function

 f = (x1=0)(x2=1)(x3=0)

x1

x2

x3

f = x1x2x3

x1

x2

x3

f = x1

x1

x2

x3

f = x1x2

36

Cubes

 If C  f, C a cube, then C is an implicant of f.

 If C  Bn, and C has k literals, then |C| covers 2n-k
vertices.

 Example:

 C = xy  B3

 k = 2 , n = 3 => |C| = 2 = 23-2.

 C = {100, 101}

 An implicant with n literals is a minterm.

List of Cubes

 Sum of Products (SOP):
• A function can be represented by a sum of cubes (products):

 f = ab + ac + bc

 Since each cube is a product of literals, this is a “sum of
products” (SOP) representation

• A SOP can be thought of as a set of cubes F

 F = {ab, ac, bc}
• A set of cubes that represents f is called a cover of f.

 F1={ab, ac, bc} and F2={abc,abc,abc,abc}

 are covers of

 f = ab + ac + bc.

c

a

b

bc

ac

ab c

a

b

abc abc
_

abc
_ abc

_

38

Sum Of Products - SOP

 Two-level minimization seeks the minimum size
cover (least number of cubes)

bc

ac ab
c

a

b

 = onset minterm

Note that each onset minterm is
“covered” by at least one

of the cubes, and these do not

covers offset minterm.

39

Irredundant

 Let F = {c1, c2, …, ck} be a cover for f:

f = i
k
=1 ci

 A cube ci F is irredundant if F\{ci}  f

Example 2: f = ab + ac + bc

bc

ac
ab

c

a

b

bc

ac
Not covered

F\{ab}  f

Prime

 A literal j of cube ci  F (=f) is prime if

(F \ {ci })  {c’i }  f
 where c’i is ci with literal j of ci deleted.

 A cube of F is prime if all its literals are prime.

Example 3

f = ab + ac + bc

ci = ab; c’i = a (literal b deleted)

F \ {ci }  {c’i } = a + ac + bc
bc

ac
a

c

a

b
Not equal to f since

offset vertex is covered

F=ac + bc + a =

F \{ci }  {c’i }

41

Prime and Irredundant Covers

 Definition 1 A cover is prime (irredundant) if all
its cubes are prime (irredundant).

 Definition 2 A prime of f is essential (essential
prime) if there is a minterm (essential vertex) in
that prime but in no other prime.

42

Prime and Irredundant Covers

Example 4
f = abc + bd + cd is prime and irredundant.

abc is essential since abcdabc, but not in bd or cd

abc

bd

cd d a

c
b

43

Binary Decision Diagram (BDD)

f = ab+ac+abd

1

0

c

a

b b

c c

d

0 1

c+bd b

root
node

c+d

d

 Graph representation of a Boolean
function f

• vertices represent decision nodes
for variables

• two children represent the two
subfunctions

 f(x = 0) and f(x = 1) (cofactors)

• restrictions on ordering and
reduction rules can make a BDD
representation canonical

44

Logic Functions

 However, there are infinite number of logic
formulas and each one can have various forms:

 f = x + y

 = xy + xy + xy

 = xx + xy + y

 = (x + y)(x + y) + xy

 Synthesis = Find the best formula (or
“representation”)

x y f

0 0 0

0 1 1

1 0 1

1 1 1

Using Switches
• For inputs:

 logic 1 is switch closed
 logic 0 is switch open

• For outputs:

 logic 1 is light on
 logic 0 is light off.

• NOT uses a switch such
 that:

 logic 1 is switch open
 logic 0 is switch closed

Logic Function Implementation

Switches in series  AND

Switches in parallel  OR

C

Normally-closed switch  NOT

45

 Example: Logic Using Switches

 Light is on (L = 1) for
 L(A, B, C, D) = AD+ABC
 and off (L = 0), otherwise.

 Useful model for relay circuits and for CMOS gate
circuits, the foundation of current digital logic
technology

Logic Function Implementation (Continued)

B

A

D

C

46

Logic Gates

 In the earliest computers, switches were opened
and closed by magnetic fields produced by
energizing coils in relays. The switches in turn
opened and closed the current paths.

 Later, vacuum tubes that open and close current
paths electronically replaced relays.

 Today, transistors are used as electronic switches
that open and close current paths.

47

Logic Gate Symbols and Behavior

 Logic gates have special symbols:

 And waveform behavior in time as follows:

(b) Timing diagram

X 0 0 1 1

Y 0 1 0 1

X · Y (AND) 0 0 0 1

 X + Y (OR) 0 1 1 1

(NOT) X 1 1 0 0

(a) Graphic symbols

OR gate

X

Y

Z = X + Y

X

Y

Z = X · Y

AND gate

X Z = X

NOT gate or inverter

48

Gate Delay

 In actual physical gates, if one or more input
changes causes the output to change, the output
change does not occur instantaneously.

 The delay between an input change(s) and the
resulting output change is the gate delay denoted
by tG:

 tG tG

Input

Output

Time (ns)

0

0

1

1

0 0.5 1 1.5

tG = 0.3 ns

49

Logic Diagrams and Expressions

 Boolean equations, truth tables and logic diagrams describe the
same function!

 Truth tables are unique; expressions and logic diagrams are not.
This gives flexibility in implementing functions.

X

Y F

Z

Logic Diagram

Truth Table

1

1

1

1

0

0

1

0
F = X + Y Z

1 1 1

1 1 0

1 0 1

1 0 0

0 1 1

0 1 0

0 0 1

0 0 0

X Y Z
Equation

F = X + Y Z F = X + Y Z

50

51

Boolean Circuits

Definition:

 A Boolean circuit is a directed graph C(G,N) where
G are the gates and N GG is the set of
directed edges (nets) connecting the gates.

 Some of the vertices are designated:

 Inputs: I G

 Outputs: O G, I O = 



 Each gate g is assigned a Boolean function fg which
computes the output of the gate in terms of its
inputs. 



52

Definitions

 The fanin FI(g) of a gate g are all predecessor vertices of g:

 FI(g) = {g’ | (g’,g) N}

 The fanout FO(g) of a gate g are all successor vertices of g:

   FO(g) = {g’ | (g,g’) N}

 The cone CONE(g) of a gate g is the transitive fanin of g and g
itself.

 The support SUPPORT(g) of a gate g are all inputs in its cone:

 SUPPORT(g) = CONE(g) I

53

Example

I

O

6

FI(6) = {2,4}

FO(6) = {7,9}

CONE(6) = {1,2,4,6}

SUPPORT(6) = {1,2}

1

5

3

4

7

8

9

2

Canonical Forms

 It is useful to specify Boolean functions in a form
that:
• Allows comparison for equality.

• Has a correspondence to the truth tables

 Canonical Forms in common usage:
• Sum of Minterms (SOM)

• Product of Maxterms (POM)

58

Minterms

 Minterms are AND terms with every variable
present in either true or complemented form.

 Given that each binary variable may appear normal
(e.g., x) or complemented (e.g.,), there are 2n
minterms for n variables.

 Example: Two variables (X and Y)produce
2 x 2 = 4 combinations:
 (both normal)
 (X normal, Y complemented)
 (X complemented, Y normal)
 (both complemented)

 Thus there are four minterms of two variables.

Y X
X Y

Y X

Y X

x

59

Maxterms

 Maxterms are OR terms with every variable in
true or complemented form.

 Given that each binary variable may appear normal
(e.g., x) or complemented (e.g., x), there are 2n
maxterms for n variables.

 Example: Two variables (X and Y) produce
2 x 2 = 4 combinations:
 (both normal)
 (x normal, y complemented)
 (x complemented, y normal)
 (both complemented)

60

Y X
X Y

Y X

Y X

 Examples: Two variable minterms and maxterms.

 The index above is important for describing which
variables in the terms are true and which are
complemented.

Maxterms and Minterms

Index Minterm Maxterm

0 00 x y x + y

1 01 x y x + y

2 10 x y x + y

3 1 1 x y x + y

61

Standard Order

 Minterms and maxterms are designated with a subscript
 The subscript is a number, corresponding to a binary

pattern
 The bits in the pattern represent the complemented or

normal state of each variable listed in a standard order.
 All variables will be present in a minterm or maxterm and

will be listed in the same order (usually alphabetically)
 Example: For variables a, b, c:

• Maxterms: (a + b + c), (a + b + c)
• Terms: (b + a + c), a c b, and (c + b + a) are NOT in

standard order.
• Minterms: a b c, a b c, a b c
• Terms: (a + c), b c, and (a + b) do not contain all

variables

62

Purpose of the Index

 The index for the minterm or maxterm, expressed
as a binary number, is used to determine whether
the variable is shown in the true form or
complemented form.

 For Minterms:
• “1” means the variable is “Not Complemented” and

• “0” means the variable is “Complemented”.

 For Maxterms:
• “0” means the variable is “Not Complemented” and

• “1” means the variable is “Complemented”.

63

Index Example in Three Variables

Example (for three variables):

Assume the variables are called X, Y, and Z.

The standard order is X, then Y, then Z.

The Index 0 (base 10) = 000 (base 2) (for three
variables). All three variables are complemented for
minterm 0 () and no variables are
complemented for Maxterm 0 (X,Y,Z).

• Minterm 0, called m0 is .

• Maxterm 0, called M0 is (X + Y + Z).

• Minterm 6 ?
X Y Z

• Maxterm 6 ?

(X + Y + Z)

Z Y X

Z Y, X,

64

Index Examples – Four Variables

 Index Binary Minterm Maxterm
 i Pattern mi Mi

 0 0000 abcd a + b + c + d
 1 0001 abcd a + b + c + d
 3 00 1 1 ? ?
 5 010 1 abcd a + b + c + d
 7 0 1 1 1 ? a + b + c + d
 10 10 10 abcd a + b + c + d
 13 1 101 abcd ?
 15 1 1 11 abcd a + b + c + d

65

 Review: De Morgan's Theorem
 and
 Two-variable example:
 and
 Thus M2 is the complement of m2 and vice-

versa.
 Since De Morgan's Theorem holds for n

variables, the above holds for terms of n
variables giving:

 and
 Thus Mi is the complement of mi.

Minterm and Maxterm Relationship

y x y · x + = y x· y x = +

 y x M 2 + = y x· m 2
=

i m M = i i i M m =

66

Function Tables for Both

 Minterms of Maxterms of
 2 variables 2 variables

 Each column in the maxterm function table is the

complement of the column in the minterm function
table since Mi is the complement of mi.

x y m 0 m 1 m 2 m 3

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1

x y M 0 M 1 M 2 M 3

0 0 0 1 1 1

0 1 1 0 1 1

1 0 1 1 0 1

1 1 1 1 1 0

67

Observations

 In the function tables:
• Each minterm has one and only one 1 present in the 2n terms (a

minimum of 1s). All other entries are 0.
• Each maxterm has one and only one 0 present in the 2n terms

All other entries are 1 (a maximum of 1s).

 We can implement any function by "ORing" the minterms
corresponding to "1" entries in the function table. These are
called the minterms of the function.

 We can implement any function by "ANDing" the maxterms
corresponding to "0" entries in the function table. These are
called the maxterms of the function.

 This gives us two canonical forms:
• Sum of Minterms (SOM)
• Product of Maxterms (POM)

 for stating any Boolean function.

68

x y z index m1 + m4 + m7 = F1

0 0 0 0 0 + 0 + 0 = 0

0 0 1 1 1 + 0 + 0 = 1

0 1 0 2 0 + 0 + 0 = 0

0 1 1 3 0 + 0 + 0 = 0

1 0 0 4 0 + 1 + 0 = 1

1 0 1 5 0 + 0 + 0 = 0

1 1 0 6 0 + 0 + 0 = 0

1 1 1 7 0 + 0 + 1 = 1

Minterm Function Example

 Example: Find F1 = m1 + m4 + m7

 F1 = x y z + x y z + x y z

69

Minterm Function Example

 F(A, B, C, D, E) = m2 + m9 + m17 + m23

 F(A, B, C, D, E) =

A’B’C’DE’ + A’BC’D’E + AB’C’D’E + AB’CDE

70

Maxterm Function Example

Example: Implement F1 in maxterms:
 F1 = M0 · M2 · M3 · M5 · M6

) z y z)·(x y ·(x z) y (x F 1 + + + + + + =

z) y x)·(z y x ·(+ + + +

x y z i M0  M2  M3  M5  M6 = F1
0 0 0 0 0 1 1 1 = 0
0 0 1 1 1 1 1 1 1 = 1
0 1 0 2 1 0 1 1 1 = 0
0 1 1 3 1 1 0 1 1 = 0
1 0 0 4 1 1 1 1 1 = 1
1 0 1 5 1 1 1 0 1 = 0
1 1 0 6 1 1 1 1 0 = 0
1 1 1 7 1








 1 1 1 1 = 1

 1 


























71

Maxterm Function Example



 F(A, B,C,D) =

 F = (A + B + C’ + D’) (A’ + B + C + D)

 (A’ + B + C’ + D’) (A’ + B’ + C’ + D)

 14 11 8 3 M M M M) D , C , B , A (F . = . .

72

Canonical Sum of Minterms

Any Boolean function can be expressed as a
Sum of Minterms.
• For the function table, the minterms used are

the terms corresponding to the 1's
• For expressions, expand all terms first to

explicitly list all minterms. Do this by “ANDing”
any term missing a variable v with a term ().

Example: Implement as a sum
of minterms.
 First expand terms:
 Then distribute terms:
 Express as sum of minterms: f = m3 + m2 + m0

y x x f + =

y x) y y (x f + + =
y x y x xy f + + =

v v +

73

Another SOM Example

 Example:
 There are three variables, A, B, and C which we

take to be the standard order.
 Expanding the terms with missing variables:
 Collect terms (removing all but one of duplicate

terms):
 Express as SOM:

 F = A(B + B’)(C + C’) + (A + A’) B’ C

 = ABC + ABC’ + AB’C + AB’C’ + AB’C + A’B’C

 = ABC + ABC’ + AB’C + AB’C’ + A’B’C

 = m7 + m6 + m5 + m4 + m1 = m1 + m4 + m5 + m6 + m7

C B A F + =

Shorthand SOM Form

 From the previous example, we started with:

 We ended up with:

F = m1+m4+m5+m6+m7

 This can be denoted in the formal shorthand:

 F (A, B, C) = m (1, 4, 5, 6, 7)

 Note that we explicitly show the standard
variables in order and drop the “m” designators.

C B A F + =

75

Canonical Product of Maxterms

 Any Boolean Function can be expressed as a Product
of Maxterms (POM).
• For the function table, the maxterms used are the terms

corresponding to the 0's.
• For an expression, expand all terms first to explicitly list

all maxterms. Do this by first applying the second
distributive law , “ORing” terms missing variable v with a
term equal to and then applying the distributive law
again.

 Example: Convert to product of maxterms:

 Apply the distributive law:

 Add missing variable z:

 Express as POM: f = M2 · M3

y x x) z , y , x (f + =

y x) y (x 1) y)(x x (x y x x + = + = + + = +

() z y x) z y x (z z y x + + + + = + +

v v .

.

.

76

Function Complements

 The complement of a function expressed as a sum of
minterms is constructed by selecting the minterms missing
in the sum-of-minterms canonical forms.

 Alternatively, the complement of a function expressed by a
Sum of Minterms form is simply the Product of Maxterms
with the same indices.

 Example: Given

 So, to convert between sum-of-minterms and product-of-
maxterms form (or vice-versa) we follow one of these steps:
• Find the function complement by swapping terms in the list with

terms not in the list.

• Change from SOM to POM

) 7 , 5 , 3 , 1 () z , y , x (F
m S=

) 6 , 4 , 2 , 0 () z , y , x (F
m S =

) 7 , 5 , 3 , 1 () z , y , x (F
M P =

78

 Standard Sum-of-Products (SOP) form: equations
are written as an OR of AND terms

 Standard Product-of-Sums (POS) form: equations
are written as an AND of OR terms

 Examples:
• SOP:

• POS:

 These “mixed” forms are neither SOP nor POS
•

•

Standard Forms

B C B A C B A + +
C ·) C B (A · B) (A + + +

 C) (A C) B (A + +
 B) (A C A C B A + +

79

Standard Sum-of-Products (SOP)

 A sum of minterms form for n variables can be
written down directly from a truth table.
• Implementation of this form is a two-level network of

gates such that:
• The first level consists of n-input AND gates, and

• The second level is a single OR gate (with fewer than 2n
inputs).

 This form often can be simplified so that the
corresponding circuit is simpler.

80

 A Simplification Example:

 F (A, B, C) = m (1, 4, 5, 6, 7)
 Writing the minterm expression:
 F = A B C + A B C + A B C + ABC + ABC
 Simplifying:

 F = A’ B’ C + A (B’ C’ + B C’ + B’ C + B C)

 = A’ B’ C + A (B’ + B) (C’ + C)

 = A’ B’ C + A.1.1

 = A’ B’ C + A

 = B’C + A
 Simplified F contains 3 literals compared to 15 in

minterm F

Standard Sum-of-Products (SOP)

81

AND/OR Two-level Implementation of SOP Expression

 The two implementations for F are shown below – it is quite
apparent which is simpler!

F

A
B
C

A
B
C

A
B
C

A
B
C

A
B
C

F

B

C

A

82

SOP and POS observations

 The previous examples show that:
• Canonical Forms (Sum-of-minterms, Product-of-

Maxterms), or other standard forms (SOP, POS) differ
in complexity

• Boolean algebra can be used to manipulate equations into
simpler forms.

• Simpler equations lead to simpler two-level
implementations

 Questions:
• How can we attain a “simplest” expression?
• Is there only one minimum cost circuit?
• The next part will deal with these issues.

83

