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Abstract 
 

In this paper we introduce two different representation 
approaches and propose two techniques to estimate the 
position of vanishing points in an image, one based on a 
probabilistic strategy and the other focused on a determi-
nistic analysis. Unlike most of the methods so far devel-
oped, which exploit the Gaussian sphere, the new tech-
niques operate in the (ρ, θ) polar parameter space and in 
the (x, y) image plane coordinate space. Both the solu-
tions will be described and compared, also through the 
discussion of the results obtained from their application 
to real images. 

 
 

1.  Introduction 
 

As one can easily note, most real images show some 
kind of perspective distortion. Given a set of parallel lines 
in the three-dimensional (3D) space, they will converge to 
a single point on the image plane, called vanishing point. 
The knowledge of vanishing points is an important step 
toward 3D interpretation, allowing meaningful informa-
tion to be obtained about the real scene (such as depth, 
object dimensions, etc.). Although this approach may suf-
fer from several problems due to the irregularity of natural 
settings, it turns out to be especially useful for man-made 
environments, where many regular structures and parallel 
lines are present.  

Essentially, it is possible to distinguish three kinds of 
approaches for finding vanishing points in an image. Even 
though they all are based on the concept of Hough Trans-
form [1] [2], they differ in the parameter space where 
votes are accumulated. Most of the methods so far devel-
oped exploit the Gaussian sphere to represent orientations, 
i.e. they operate in the space of spherical coordinates (θ, 
ϕ). In this paper, we will describe two alternative tech-
niques which work, respectively, in the (ρ, θ) polar pa-
rameter space and in the (x, y) image plane coordinate 
space. 

The paper is structured as follows. Section 2 briefly 
describes the main characteristics of methods based on the 
Gaussian sphere. Section 3 introduces the bases for ap-

proaches in the polar space. Sections 4 and 5 discuss our 
proposals in detail. Section 6 presents experimental re-
sults. Section 7, at last, draws some conclusions and gives 
hints for future work. 

 
2.  Gaussian-sphere-based approaches 
 

Techniques based on the Gaussian sphere, first intro-
duced by Barnard [3], use a unit radius sphere centered in 
the optical center as an accumulation space. For each line 
segment detected on the image plane, the interpretation 
plane identified by the segment and by the optical center 
is considered. This plane will intersect the Gaussian 
Sphere to form a great circle, i.e. a circumference on 
which votes are accumulated. Since circumferences result-
ing from line segments representing parallel lines in the 
real scene intersect each other, the points on the sphere 
which, at the end of the accumulation process, have more 
votes, can be considered as those corresponding to vanish-
ing points� directions. On the image plane, such points are 
then identified by finding the intersections of direction 
straight lines with the image plane itself. 

Barnard�s method has the main advantage of being able 
to represent both the finite and infinite vanishing points. 
However, it has also several limitations. Since a regular 
quantization in θ and ϕ does not generate cells of equal 
surface, the count of votes on the Gaussian sphere must 
rely on some form of statistical approach which considers 
the different areas. To solve this problem, in [4], for ex-
ample, the sphere is sampled from a coarse resolution to a 
fine resolution, using a hierarchical Hough Transform. 
Another possible solution, proposed in [5], is to use a 
quantization in �semiregular� rectangular cells, based on a 
regular quantization in ϕ and an irregular quantization in 
θ. 

In general, however, for the results obtained through 
the Barnard�s method to be reliable, it is necessary that 
orientations of interest in the 3D space correspond to main 
groups of converging line segments in the image [6], and 
this depends on the viewing angle and on the distance to 
the scene. Moreover, textural effects caused by natural 
patterns and artifacts of digital image geometry can com-
bine to produce spurious maxima (i.e. a sort of noise). 
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Since lines assumed parallel in the 3D space have their 
images only approximately concurrent in the image plane, 
techniques have been developed to model the orientation 
error [6], as well as fully statistical approaches for manag-
ing uncertainty (such as those described in [7] and [8]). 
Improvements can also be obtained when the geometry of 
objects of interest in the scene is known, by exploiting 
primitive-based techniques [6]. In such case, the search 
for vanishing points is carried out by imposing constraints 
on objects shapes, which can be easily translated into ori-
entation constraints on the Gaussian sphere. 

 
3.  Approaches in the polar space 
 

In a polar parameter space, points in the image plane 
are mapped to sinusoids, according to the following equa-
tion: 

     θθρ ysinx += cos  (1) 

where x and y are the coordinates of a point P in the image 
plane, while ρ and θ describe the straight line passing 
through P and oriented according to the phase of the local 
gradient (Figure 1). 
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Figure 1.  Characterization of a straight line 
through polar parameters 

 
Several methods use an approach based on the Hough 

Transform accumulation space in the polar plane. Na-
katami [9], for example, determines the straight lines on 
the image plane and then uses a deterministic approach to 
find the points of convergence. Precision problems arising 
in case of thick edges, however, limit its practical applica-
bility. 

The main advantage of using a polar space is that pa-
rameters ρ and θ are limited (for an LxL image, ρ is 
within the range [0, √2L), while θ takes values in the 
range [0,2π[). Points belonging to the same straight line in 
the image plane have corresponding sinusoids which in-
tersect in a single point in the polar space. Since in a van-
ishing point several straight lines converge, its sine curve 
will be given by the sum of all the sinusoids of the points 

on the lines. This characteristic will be exploited in the 
method we are going to describe in the next section. 

 
4. First proposal 
 

This technique [10] uses a statistical approach to 
search for the sine curve corresponding to the vanishing 
point in the polar parameter space. Essentially, the pair of 
parameters (x0, y0) representing the point is estimated 
through a least square method. 

The approach consists in a minimization of the follow-
ing functional: 
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In expression (3), vi is the number of times that a pair 
(ρi, θi) is observed, while V is the total number of votes 
(points) in the polar diagram. Practically, expression (2) 
does nothing but searching for that point P0(x0, y0) in the 
image plane which minimizes the distance from all the 
straight lines observed on it. 

Setting ai = cosθi, bi = sinθi and deriving with respect 
to x0 and y0, we get the following couple of equations: 
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Then, we can call: 

∑
=

=
n

i
ii aWA

1

2 ; ∑
=

=
n

i
iibWB

1

2 ; i

n

i
ii baWC ∑

=

=
1

 

∑
=

=
n

i
iii aWD

1

ρ ; ∑
=

=
n

i
iiibWE

1

ρ  
(5) 

Since A, B, C, D and E are constants, x0 and y0 can be 
simply found by solving the following linear system: 
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which is straightforward. 
After the first estimation of the vanishing point, the 

process is repeated by suppressing the outliers. Letting: 

iii ρρε −=  (7) 

be the residual error, where ρi is the value of the ρ  pa-
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rameter for the ith point in the polar plane (ρ, θ) and ρi is 
the corresponding value on the sine curve representing the 
vanishing point, the variance of the residuals is: 
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All those points satisfying the following condition are 
then considered outliers: 

σρρ kii >−  (9) 

where k is generally between 2 and 3. 
The analysis just described is applied recursively until 

the Marshall distance between two successive estimations 
of the vanishing point is less than the desired precision 
(i.e., according to disequation (9), until no more outliers 
can be found). Figure 2 shows the polar space before (a) 
and after (b) the outliers elimination process has been 
carried out in an example image. 

 
(a) (b) 

Figure 2. (a) Original parameter space containing 
outliers; (b) Parameter space after the outliers 
removal 

 

5.  Second proposal 
 

This second technique works directly in the image 
plane, which is used as an accumulation space for a par-
ticular version of the Hough Transform. 

The algorithm is composed of the following steps. 
First, an edge detection operation is performed on the 
original image through an isotropic operator, which is 
composed of the following two 3x3 masks (one for the 
horizontal and one for the vertical component):  

The result image is then normalized and thresholded 
against a very high value, to eliminate redundant informa-

tion. This way, a binary image is obtained. For each point 
P within it, the tangent is calculated, by means of the fol-
lowing expression: 

x

y

D

D
tgm == θ  (10)

where Dx and Dy are the x and y components resulting 
from the application of the isotropic operator in the point. 
Now that θ  is known, it can be used to draw a straight 
line, with slope m, passing through P. Such line is then 
accumulated in the (x, y) parameter space. At the end of 
the process, those points having the greatest numbers of 
votes will be marked as candidates. 

Images of both indoor and outdoor scenes are often full 
of (nearly) vertical and horizontal lines. Since, for the 
most part, they would identify vanishing points at the infi-
nite (which are not useful for our investigation), we intro-
duce the following constraint: 

qtg
p

<< θ1  (11)

where p and q have values greater than one and are chosen 
according to the particular needs (for example, p = q = 
64). Without the limitation imposed by condition (11), 
false detections would result from intersections between 
lines actually converging to vanishing points and (nearly) 
horizontal or vertical lines. 

Expression (11), which has the implicit advantage of 
limiting the values assumed by parameter tgθ, is based on 
the assumption that the camera is perpendicular to the 
acquisition plane and horizontal lines are parallel to the x 
axis, as occurs in many real images. If such assumption 
fails, a different angle should be taken into account. 

In order to improve the precision of maxima detection 
in the (x, y) parameter space, a cumulative procedure is 
applied by averaging the values contained in an 11x11 
window around each pixel. Moreover, to improve their 
placement, vanishing points are considered in the bary-
centers of the pixels contained in neighborhoods of the 
maxima locations. 

Of course, a vanishing point may also lie outside the 
image window. In this case, the parameter space must be 
extended, so that points whose coordinates are greater 
than the image size can be represented, and the areas of 
neighborhoods used in the smoothing process must be 
enlarged. 

 
6.  Experimental results 
 

In this section we will present some experimental re-
sults obtained from the application of the proposed meth-
ods to real images. Such results, however, should not be 
considered per se, but rather as starting points for more 
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elaborate strategies able to combine the two approaches, 
to exploit the best from each. For example, the vanishing 
point search in the (x, y) parameter space could be used as 
a first stage to select �candidate� straight lines in the im-
age, which could then be considered by the technique op-
erating in the polar space. 

Figure 4 shows the straight lines obtained from the ap-
plication of the Hough Transform in the (ρ, θ) polar space 
to the image in Figure 3. Figure 5, instead, shows the ac-
cumulation parameter space obtained with the method 
operating in the (x, y) coordinate system.  

In Figures 6, 7 and 8 there are analogous results ob-
tained from a different image. 

The coordinates of the vanishing points found through 
the first and the second method for the image in Figure 3 
are, respectively, (305, 198) and (306, 200). 

Although in this case the first estimation is better than 
the second, for images in which more than one vanishing 
point can be identified or where more complex patterns 
are present (such as in Figure 6), the second technique 
turns out to be more reliable.  

The analysis proposed here, however, is only qualita-
tive. We will soon carry out more precise investigations to 
combine and quantitatively compare our techniques, both 
with each other and with the approaches described in Sec-
tion 2. 

 
7.  Conclusions 
 

In this paper we have summarized the representation 
approaches for estimating vanishing points. Two new 
techniques have been presented, which differ in the pa-
rameter space used to accumulate votes through the 
Hough Transform. While the first method, based on a 
probabilistic approach, operates in the (ρ, θ) polar space, 
the second, focused on a more deterministic analysis, 
works directly in the image plane (x, y) coordinate space. 
This second technique is computationally lighter than the 
first, since it does not require to iteratively solve a linear 
system, nor to compute variance values. Nevertheless, it 
often produces results of higher precision. It is also inter-
esting to note that the algorithms described could be used 
to detect the focus of expansion/contraction in motion 
analysis (for example, through the optical flow). 

Generally, in many real images, more than one vanish-
ing point is present. In these cases, our proposals find the 
vanishing point produced by the greater number of 
straight lines in the image. However, other vanishing 
points can be found in successive analyses by excluding 
the straight lines covered by the points already detected. 

The two approaches described could also be combined, 
to get more reliable results. For example, the second tech-
nique could be used to confirm the vanishing points statis-
tically found through the first one.  

 
 

Figure 3.  Original image for the first experiment 
 
 
 

 
 

Figure 4.  Straight lines found through the Hough 
Transform in the polar space applied to the 
image in Figure 3 

 
 
 

 
 
Figure 5.  Accumulation of votes in the (x, y) 

parameter space for the image in Figure 3 
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Figure 6.  Original image for the second 
experiment 

 

 
 

Figure 7.  Straight lines found through the Hough 
Transform in the polar space applied to the 
image in Figure 6 

 

 
 
Figure 8.  Accumulation of votes in the (x, y) 

parameter space for the image in Figure 6 
 

 
 

Or also, the first approach could be modified to take 
into account only straight lines selected through the sec-
ond strategy. Our work in the immediate future will be 
devoted to such analyses, as well as to a quantitative com-
parison of the proposed methods with those based on the 
Gaussian sphere. 
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