
1

Implementing a Production-Rule-Based Programming System
through a General-Purpose Data-Flow VL

Mauro Mosconi - Marco Porta
Dipartimento di Informatica e Sistemistica – Università di Pavia

Via Ferrata, 1 – 27100 – Pavia – Italy
mauro@vision.unipv.it - porta@vision.unipv.it

Technical Report - 2000

Abstract
The main aim of this paper is to investigate how the pro-
duction-rule-based computational paradigm can be im-
plemented through visual data-flow techniques. Since
building production rules solving a problem may be a
difficult task for an unskilled beginner programmer and a
textual-only rule representation may not turn out to be
very intuitive, we propose a simple yet effective system for
visually composing rule preconditions and actions,
through a general purpose data-flow visual language.
This system, which is primarily intended as a learning
tool, can greatly simplify the programmer’s task and
speed up the implied reasoning process. Moreover, it
allows production-rule-based programs to be easily inte-
grated within more general applications.

1. Introduction

Although the debate about the usefulness of visual
programming languages compared with textual ones is
quite far from being over, it is indisputable that, at least
for certain applications, interacting with objects placed in
a two-dimensional space may be extremely worthwhile
[1]. In fact, graphic elements have the advantage of being
characterized by shape, dimension, position and possibly
color, all attributes which may help better understand the
meaning of what is displayed on the screen. Thus, for ex-
ample, in [2] it is claimed that pictures are superior to
text, since they are abstract, instantly comprehensible and
universal and in [3] it is argued that diagrams can support
and optimize reasoning thanks to their ability to model
whole-part relations.

As far as we are concerned, we think that visual pro-
gramming (VP), if properly exploited, holds very great
potential and can speed up reasoning processes. By VP
system we mean one which satisfies the two following
criteria [4]: 1) it executes, and 2) it allows specification of
programs to be modified within the visual environment.
Functional and logic programming has also taken advan-
tage of the visual approach: for example, GARDEN [5] is
a visual system based on Lisp, while VLP [6] and VPP [7]
are visual implementations of Prolog-like reasoning.

Among general purpose VP systems, data-flow ones
(such as LabView [8]) are very widespread, certainly also
thanks to their simple and intuitive functioning mecha-
nism. Essentially, a data-flow visual program is a graph in
which the data tokens travel along arcs between nodes
(graphic elements representing functions) which in turn
transform the data tokens themselves.

It is very interesting to note that the data-flow model
may be viewed as a generalization of the event-driven
programming model [4]: each node waits for data (events)
to arrive and then fires. Hence, production-rule systems
can also be viewed as data-flow systems, in which rule
conditions act as demons awaiting the arrival of certain
data elements before executing their conclusion.

Production systems are the basis for many expert sys-
tems. However, their functioning mechanism may be es-
pecially difficult to understand for those who are used to
programming according to the control-flow (imperative)
paradigm. Building correct productions to solve a par-
ticular problem is a task which may require many attempts
by an unskilled programmer (addition and elimination of
conditions and/or actions). Very often, different rules hold
the same preconditions, and comprehension of the way
they affect the global system may depend on just such a
sharing.

A textual-only rule representation may turn out to be
very unintuitive. For example, confirming the importance
of a bidimensional transposition of rules for their easy
understanding, Gaines and others tackle the problem of
transforming the knowledge base of rule-based expert
systems into comprehensible knowledge structures,
through graphic representations [9]. We may also quote,
among other works, Cartoonist [10], a rule-based visual
programming environment used to build simulations,
which are described in terms of combinations of simple
behavioral patterns of the objects in the simulations them-
selves.

This paper will show how it is possible to easily im-
plement the production-rule-based computational para-
digm by using visual data-flow techniques. The simple but
effective system we will describe, which is based on VI-
PERS [11], a general-purpose data-flow visual language,

2

is primarily intended as a learning tool and can greatly
simplify the task of the novice production-rule program-
mer. In fact, visual combination of preconditions and ac-
tions, by allowing productions to be graphically assem-
bled, ensures greater intuitiveness and simplicity during
the phases of creating rules and testing their influence on
the whole program. Even though we are aware that the
visual system we are proposing becomes difficult to use
when more than five or six productions are involved, be-
cause of the several links necessary to connect VIPERS
components, we think it can anyway be very useful at the
very beginning of the learning stage. Moreover, we be-
lieve that our approach is particularly interesting from a
theoretical point of view.

The article is structured as follows: Section 2 presents
a brief overview of the VIPERS environment. Section 3
explains the basic assumptions on which our system is
based. Section 4 describes the proposed visual approach
and its main characteristics. Section 5 discusses how con-
ditions and actions can be implemented through VIPERS
blocks. Section 6 presents some comments about the pro-
posed approach. Section 7 formalizes block functionali-
ties. Section 8 shows a simple practical example of rule
visually assembling. Section 9, at last, concludes the pa-
per with final considerations.

2. Overview of the VIPERS Environment

The system we use for building production-rule-based
applications is VIPERS [11], a general-purpose visual
programming environment based on an augmented data-
flow model and developed at the University of Pavia.

VIPERS uses a single interpretive language (Tcl [12])
to define the elementary functional blocks (the nodes of
the data-flow graph). Each block corresponds to a Tcl
command (or procedure).

VIPERS elementary modules have a square shape and
present connection points, or ports, on their lateral sides;
programs are assembled in a direct manipulation fashion,
by positioning and properly connecting the available
modules. Entire programs may therefore be built without
typing any line of code: after having found in a certain
window the needed functions (the nodes of the graph),
which are represented by special icons, the programmer
simply drags and drops them into the main workspace: a
couple of simple mouse-clicks are then sufficient to create
an arc between two nodes. The particular box-line repre-
sentation allows proper viewing monitors to be easily in-
serted at various points of the program to show partial
results to the user.

3. Basic Assumptions

The system we are describing also uses some textual

information, which has to be written: indeed, it is reason-
able to combine visual and textual languages to exploit
the best from each [13]. In the remainder of this section,
the basic data representation assumptions on which the
system is based will be discussed.

An associative system for symbolic computing is basi-
cally composed of a working memory, a production mem-
ory and an interpreter. Briefly, we may consider working
memory (WM) as an ordered collection of pairs: tag :
symbolic structure, where tag is an integer number de-
fining order and symbolic structure is any constant sym-
bolic list (such as, for instance: “goal a 4 ” or
“position {b1 b2} ”). For our system, we denote
WM’s elements by means of Tcl lists of the kind: { tag {
symbolic structure } }.

Production memory (PM) is a non-ordered collection
of computational structures of the type:

preconditions
⇒

 actions

Preconditions, which are logically ANDed, are ex-
pressed by symbolic list patterns, possibly containing
variables. To denote variables we choose, for example, to
place a question mark before them, like in ?x. We identify
preconditions by means of lists of the kind: { symbolic
structure } or { ?t { symbolic structure } }, where ?t is a
generic variable designating the tag of that WM’s element
which matches symbolic structure (this variable is nec-
essary when it is important to distinguish between differ-
ent elements satisfying the same condition). Moreover, we
admit test expressions, that is ordinary Tcl logical expres-
sions (possibly containing variables and Tcl commands,
like for action ADD, which will be discussed later) placed
in list structures of the form: { test { test expression } }.
Actions can be:

ADD symbolic structure: adds symbolic structure
to WM;

DEL symbolic structure: deletes symbolic struc-
ture from WM;

DEL n: deletes from WM that ele-
ment matched by the nth

condition of the activated
production;

ACTION: executes an action which is
independent of WM;

where symbolic structure may contain variables, in
whose place the respective values are substituted, ac-
cording to the bond environment created during precon-
dition analysis. In the case of the ADD, moreover, sym-
bolic structure may contain Tcl commands as well, en-
closed in braces. In order to distinguish lists representing

3

Tcl commands, we choose to place the character # before
them, like, for example, in:

“cur_state #{list #{expr ?x+?y*2} 1} ” .

We indicate an exemplar of a production P with the list
{ P tag1 ... tagn }, where tag1 ... tagn are those WM ele-
ments’ tags matching conditions 1 ... n of the production.

Conflict set (CS) is the set of all those production ex-
emplars which, at a certain time, can be activated.

The interpreter (inferential engine) determines system
evolution. During every computational cycle it constructs
CS, chooses a production exemplar according to a par-
ticular selection strategy and executes those actions con-
cerning the selected production. Computation ends when
CS is empty.

4. System Description

We propose two substantially equivalent ways to visu-
ally build productions. The former is shown in Figure 1
and better highlights distribution of conditions being
shared by different rules. The latter, which will be shown
afterwards, gives up this opportunity but is probably more
readable.

As can be seen from Figure 1, each input/output port in
VIPERS is characterized by a special icon indicating the

corresponding data type. Icons for data types used in our
system are [...] (which represents a list, that is any se-
quence of characters) and Î (which represents an integer
value).

The MERGE block fires when either of its two input
ports receives a new data item, which is then emitted as an
output. Block START gives out initial data .

To achieve correct synchronization, VIPERS exploits
control signals (thin arcs without arrows) connecting
blocks control ports (those with the lightning symbol). If a
signal exists between an output control port (on the right)
of block A and the input control port (on the left) of block
B, then block B cannot be executed before the execution
of block A. For example, with reference to Figure 1,
blocks C and T are activated by execution of block
MERGE. All block functionalities are implemented in
Tcl.

4.1. A first method for building productions

Figure 1 shows an example scheme composed of three
productions. Condition blocks C and Test blocks T repre-
sent rule preconditions and, when activated, limit them-
selves to giving out symbolic lists that denote them. The
way conditions, tests and actions can be specified will be
described in Section 5.

START
MERGE

C

C

C

C

T

CC

CC

CC

CSS

DEL Elm

DEL Expr

ADD

ADD

ADD ADD

LM

signals

list L

list L'

First production's actions

Second production's action

Third production's actions

activated at the
end of the computation

Refers to the
first production

Refers to the
second production

Refers to the
third production

Preconditions

Figure 1: first scheme for building productions

4

There is a Condition Collector block CC for every
rule. CC blocks analyze the respective input conditions to
determine whether the rule is applicable or not (that is,
whether at least one production exemplar exists relative to
the rule). Every CC block has another list as input, which
we will call L. It is the data structure which is propagated
to CC blocks outputs, after being “filled” with informa-
tion deriving from precondition analysis. During the next
computational cycles, it will return to the same blocks,
with some changes (unless the program is finished). The
structure of list L is:

L = { ok WM ENVs TAGs ActExs n_cond n_test
max_t }

where the various elements have the following meanings:

ok : is a flag indicating whether list data is to be
considered valid or not;

WM: is a list of the type { wm_el1 ... wm_eln },
where wm_eli represents the ith working
memory’s element (we remind that wm_eli
= {tagi { symbolic structure } });

ENVs : is a list of the kind { { e1 }...{ em } }, where
ei is the bond environment relative to the
ith exemplar which can be built with the
specific production (several matching pos-
sibilities may exist between a production’s
preconditions and working memory ele-
ments). ei is simply a sequence var1i val1i

... varsi valsi , var being the variable’s
name and val its value;

TAGs : is a list in the form { { tags1 }...{ tagsm } },
where tagsi is the sequence of tags of those
working memory elements matching the
specific production conditions, with regard
to the ith exemplar which can be built with
it. The ith tag sequence corresponds to the
ith environment in ENVs;

ActExs : is the list of all those production exemplars
which have been already activated in pre-
vious computational cycles and serves to
allow block CSS to exclude them from the
conflict set, when the lex selection strategy
is chosen, as will be discussed later. The
structure of this list is of the type { { pn t1
... tpn_cn }1 ... { pn t1 ... tpn_cn }q }, where pn
is an integer number identifying the pro-
duction and t1 ... tpn_cn the sequence of the
exemplar’s tags (which are the same num-
ber as the number pn_cn of production
pn’s conditions);

n_cond : indicates the number of the specific pro-
duction’s conditions;

n_test : indicates the number of the specific pro-
duction’s test conditions;

max_t : indicates the maximum tag value present in
working memory.

Elements WM, ActExs and max_t are not modified
by CC blocks, while the others reflect the analysis carried
out for the specific production.

The choice of placing data represented by the just de-
scribed elements into a single list is particularly advanta-
geous for the programmer, who, during visual program
construction, can restrict him/herself to connecting only a
few outputs with few inputs.

The task of block CSS (Conflict Set Solver) is to
choose which production exemplar, among the possible
ones, is to be activated, according to a certain selection
strategy. Several CSS blocks will be put at the program-
mer’s disposal, so that he/she can easily select the desired
strategy. Among feasible ones, we remind the following:

• the so-called lex strategy (lexicographical strategy),
which is used by the production-rule-based language
OPS5 [14]. It relies on the following principles,
each of which will be applied if previous ones have
not created a unit conflict set: 1) exclusion from
conflict set of all the already activated production
exemplars; 2) choice of those exemplars which
contain the greatest tag values (which, in other
words, refer to elements that have been most re-
cently added to working memory) and, under the
same maximal tags, of those exemplars having the
greatest number of conditions; 3) choice of those
exemplars whose productions contain the greatest
number of test conditions; 4) random choice among
the remaining exemplars;

• strategy which relies exclusively on the number-of-
conditions principle. Exemplars whose productions
have a greater number of conditions are considered
as being more specific and therefore more suitable
to be activated. Also in this case, if conflict set con-
tains more than one exemplar after the principle ap-
plication, a random choice is made;

• strategy which relies simply on pre-assigned pro-
duction priorities. In our visual system, we may de-
cide that productions which are placed upper (refer-
ring to inputs of block CSS) have greater priorities.

Block CSS receives the various L lists emitted by CC
blocks as inputs. According to the value of flag ok which
is present in such lists, it realizes whether the corre-
sponding productions have created exemplars, that is
whether lists’ data are to be considered or not. On the
basis of data contained in valid lists, CSS applies the

5

selection strategy it represents and activates only that out-
put signal relative to the chosen production action se-
quence or, in case of null conflict set, the last one, which
powers up one or more end blocks (in Figure 1, block
ShowWM, showing the WM’s contents). Moreover, CSS
gives a list L’ out with the same structure as L, except for
the fact that elements ENVs and TAGs have been sub-
stituted with that environment and that tag sequence refer-
ring only to the sole selected exemplar, which has been
added to ActExs. List L’ provides actions with the data to
act on.

The programmer can use three different kinds of stan-
dard action blocks (one for ADD and two for DEL), plus
an arbitrary number of blocks relative to actions not
modifying working memory and definable according to
the particular sort of application. Every action block re-
ceives L’ as input list and, at most modifying elements
WM and/or max_t, then gives it out. The output of the
last action block executed enters block LM (Lists Merge),
comes out of it without any change, goes into the initial
block MERGE and, at last, submits itself to the CC
blocks again. CC blocks and block CSS can be built with
as many input ports as one likes so that there is no fixed
limit to the number of preconditions pertaining to a pro-
duction or to the total number of productions.

4.2. A second method for building productions

As mentioned earlier, another way to visually specify

production preconditions is possible. The resulting
equivalent alternative scheme is shown in Figure 2.

In this case, CS blocks are no longer used, since list L
is analyzed and modified little by little by condition and
test blocks themselves. In a certain sense, we may say that
what was previously done by CC blocks is now accom-
plished in a distributed manner. Practically, as soon as a
condition or test block does not match working memory,
it gives a list with the ok field set to zero out. On the other
hand, every condition or test block simply emits the list it
receives as input (as it is) if the corresponding ok field is
null. In this manner, CSS receives the same lists as in the
previous scheme as inputs and system behavior is identi-
cal (although a RESET block reinitializing some ele-
ments of L is now necessary between the LM’s output and
the MERGE block’s input). While in this case common
conditions have to be repeated, it is probably simpler to
identify and possibly add or delete conditions pertaining
to a particular production.

5. Building Condition and Action Blocks

As regards building blocks, two cases can be distin-
guished: 1) the programmer already disposes of the blocks
to be used for program construction (provided by some-
one else); 2) the programmer has to build the particular
application’s blocks.

The first may be the case when the program is part of a
well-defined and possibly wide context, for which par-

First production's preconditions

Second production's preconditions

Third production's preconditions

First production's actions

Second production's actions

Third production's actions

DEL Elm ADDADD

ADD

LM

DEL Expr ADD ADD

CSS

START
MERGE

COND COND COND

COND COND

COND COND

TEST

Figure 2: second scheme for building productions

6

ticular conditions and actions --collected into a library--
have been foreseen. Otherwise when, for teaching pur-
poses, the beginner is required to build productions by
using pre-prepared conditions and actions (like for a puz-
zle). In those cases, blocks can reflect conditions or ac-
tions they represent through their titles or icons, properly
set up.

The second case --which is the most generic-- implies
an active but all in all limited programmer intervention for
block creation. The simplest way to achieve this purpose
is to specify, in the standard block, the default value for
the condition or action input. Such an operation can be
accomplished in a very simple manner, by opening the
block’s information window and typing the desired value
into the provided input field. Moreover, it is also possible
to build new blocks, starting from the standard ones, by
using the library creation program which is part of the
VIPERS project. In this case too, however, the program-
mer's task is very simple: it is enough to type the desired
condition or action instead of the one present in the vari-
able assignment at the first line of the Tcl script charac-
terizing the block (such a line is of the type: “set CON-
DITION ... ” or “set ELEMENT ... ”). In this
way, the block’s title and/or icon can be set up according
to what it is intended to mean.

6. Comments about the Proposed Approach

List L contains both past and present information and
may be viewed as in-motion knowledge. Working mem-
ory and the list of the activated exemplars could have
been represented by global static data in an ad-hoc sys-
tem. However, we preferred to use an existing general
purpose visual language as an implementation base. This
was due to two main reasons. First, we desired to explore
the potential of the data-flow paradigm in simulating
symbolic computing system behavior. Secondly, we
wanted to build our system in a quick and easy manner, by
exploiting VIPERS ready-made features. Moreover, it is
to be noted that through a system of such a type produc-
tion-rule-based programs can be easily integrated within
more general data-flow applications. For example, block
Show WM in Figures 1 and 2, which is activated at the
end of the computation, could be replaced with a block
extracting some results from working memory. These re-
sults could then become inputs for other program sub-
graphs (not based on the production-rule paradigm).

The various links connecting blocks represent the vis-
ual program’s data flow but also exert a computational
control (control flow) over the production program being
simulated. Thus, the inferential engine is implemented in
a distributed manner by the different block functionalities.

Had we used a pure data-flow visual language instead
of VIPERS, activation signals could not have been ex-

ploited by block CSS to activate the proper action se-
quence. However, we could also have used another type
of CSS block, in which each output signal is replaced
with a boolean output port. In this case, each action block
would receive and emit a boolean value as well, which
would be utilized to decide whether the corresponding
action is to be executed or not (in a similar way to pre-
condition analysis in the scheme shown in Figure 2). Only
that CSS port relative to the chosen sequence would be
set to true and system behavior, apart from a slight slow-
ing down in execution, would not change.

7. Formalization of Block Functionalities

Referring to the first method described for building
productions, we can formalize the functions represented
by the various types of blocks as follows:

(a) START: Æ Linit

(b) MERGE: Linit | Lprev Æ L

(c) C : Æ condition pattern

(d) T : Æ test pattern

(e) CCi : L X {set of condition and test patterns}i Æ
LNEW-i

(f) CSS : LNEW-1 X LNEW-2 X X LNEW-np Æ L’

(g) DEL Elmi,j : Li,j-1 X n Æ Li,j

(h) DEL Expri,j : Li,j-1 X pattern Æ Li,j

(i) ADDi,j : Li,j-1 X pattern Æ Li,j

(j) LM : L1 | L2 | | Lnp Æ Lprev

Function (a) relates to block START. It has no argu-
ments and as a result yields the initial data list, containing
the working memory initial state.

Function (b) relates to block MERGE. It has the initial
data list as an argument (if execution has just started) or
the list emitted by block LM and as a result yields the ar-
gument list.

Function (c) relates to condition blocks C. It has no
arguments and as a result yields the particular condition
pattern represented by the block.

Function (d) relates to test blocks T and has no argu-
ments. As a result, it yields the particular test pattern rep-
resented by the block.

Function (e) relates to condition collector blocks CC
(index i refers to the ith production rule). It has as argu-
ments the data list L and the set of condition and test pat-
terns relative to the production. As a result, it yields a new
list LNEW-i, where elements ok, ENVs, TAGs, n_cond
and n_test have been modified according to the analysis
carried out (see Section 4.1).

Function (f) relates to the Conflict Set Solver block
CSS. It has the various LNEW lists emitted by CC blocks
as arguments and as a result yields a list L’, already de-

7

scribed in Section 4.1 (np is the total number of produc-
tions).

Function (g) relates to action blocks DEL Elm (in-
dexes i and j refer to the jth action of the ith production). As
arguments it has list Li,j-1 emitted by the previous action
(or by block CSS if j = 1) and an integer number n indi-
cating that the working memory’s element which matches
the nth precondition of the production (according to the
bond environment created) is to be deleted. As a result it
yields a new list Li,j, whose WM component will lack the
element removed.

Function (h) relates to action blocks DEL Expr (in-
dexes i and j refer to the jth action of the ith production). As
arguments it has the list Li,j-1 emitted by the previous ac-
tion (or by block CSS if j = 1) and a pattern. The working
memory’s element matching this pattern will be deleted,
according to the bond environment created. As a result it
yields a new list Li,j, whose WM component will lack the
element removed.

Function (i) relates to action blocks ADD (indexes i
and j refer to the jth action of the ith production). As argu-
ments it has the list Li,j-1 emitted by the previous action (or
by block CSS if j = 1) and a pattern. Variables of this
pattern which have been bounded during preconditions
analysis will be substituted by the corresponding constant
values. As a result it yields a new list Li,j, whose WM
component will also hold the new element added.

Function (j) relates to the Lists Merge block LM. As an
argument it has the L list emitted by the last action of the
activated production and yields this list as a result (np is
the total number of productions).

Referring to the second described method for building
productions, we may formalize the functions represented
by blocks COND and TEST as follows:

(k) CONDi,j : Li,j-1 Æ Li,j

(l) TESTi,j : Li,j-1 Æ Li,j

Functions (k) and (l) relates to condition and test
blocks COND and TEST (indexes i and j refer to the jth

condition or test pattern of the ith production). As an ar-
gument they have list Li,j-1 emitted by the previous condi-
tion or test block (or by block MERGE if j = 1) and yield
as a result a new list Li,j, in which elements ok, ENVs,
TAGs, n_cond and n_test have been modified according
to the analysis carried out by the block (see Section 4.2).

8. Some Examples

Three simple examples will be now presented, to illus-
trate how the described visual system can be used to com-
pose productions in real situations. In the examples, titles
of condition and action blocks have been set to the condi-
tions or actions they stand for, to allow an unskilled be-

ginner programmer to easily compose the productions in a
puzzle-like fashion (which proves to be especially useful
at the very beginning of the learning stage).

8.1. Raising a number to a power

The solution to the problem requires the three rules
shown in Figure 3, based on the lex strategy (expr is the
Tcl command for executing arithmetic calculations).

START CALCULATE END

power ?x ?y
ÆÆ

add {sum 0}
add {prod 1}

power ?x ?y
sum ?s
prod ?p
ÆÆ

del 2
del 3
add {sum #{expr

?s + 1}}
add {prod #{expr

?p * ?x}}

power ?x ?y
sum ?s
prod ?p
test {?y == ?s}
ÆÆ

del 1
del 2
del 3
add {?x^?y=?p}

Figure 3: productions necessary to raise a
number to a power

The corresponding visual representation of these rules,
complying with the first scheme discussed, is shown in
Figure 4.

Block START settles the initial content of working
memory (which can be set by opening the block’s infor-
mation window and which will be of the type: “power 3
4”).

At every computational cycle, monitor block Show-
Data displays the current contents of working memory
and other information contained in the data list (see Fig-
ure 6). Blocks of this type can be inserted everywhere in
the visual program, allowing system evolution to be prop-
erly understood. This feature too is particularly useful for
the beginner. In fact, by deciding which parts of the visual
program to debug, he or she can have a better control over
the system which is being built.

8.2. Factorial calculus

Including also the case in which the number whose
factorial is to be calculated is negative or equal to zero,
and assuming that the lex strategy will still be used, the
problem will be solved by the five productions shown in
Figure 5.

The corresponding visual program, which complies
with the second scheme described, is shown in Figure 7.
Initially, the content of the working memory, set by block
START, will be of the type: ‘CF 3 ’, which indicates that
the factorial of 3 must be calculated.

Figure 6 shows an example of pieces of information
which can be displayed by a monitor block during com-
putation.

8

Figure 4: raising a number to a power

START ZERO END CALCULATE NEGATIVE

CF ?n
ÆÆ

add {sum 0}
add {prod 1}

CF ?n
test {?n == 0}
ÆÆ

del 1
add {fact ?n 1}

CF ?n
sum ?s
prod ?p
test {?s == ?n}
ÆÆ

del 1
del 2
del 3
add {fact ?n ?p}

CF ?n
sum ?s
prod ?p
ÆÆ

del 2
del 3
add {sum #{expr ?s + 1}}
add {prod #{expr ?p *
 (?s + 1)}}

CF ?n
test {?n < 0}
ÆÆ

del 1
display
 "error !"

MERGE

power
?x ?y

sum
?s

prod
?p

?y==?s

CC

CC

CC

CSS
LM

sum
0

prod
1

sum
?s + 1

prod
?p * ?x

?x^?y
= ?p

2 3

2 31

Figure 5: productions necessary to calculate the factorial of a number

Figure 6: example of information displayed by a monitor block

9

8.3. Database contents analysis

Suppose to have a simple database containing tuples of
the type:

P <id> <price>

indicating that the price of a certain product identified by
a code <id> is <price>. Suppose that the database, which
makes up the working memory’s contents, is to be ana-
lyzed to:

• eliminate possible duplicated tuples;

• indicate possible inconsistencies (that is, the presence
of two or more identical codes with different prices);

• find the product with the highest price.

Figure 8 shows the three rules necessary to solve the
problem.

The corresponding visual program, complying with the
second scheme described, is shown in Figure 9. Suppos-
ing that the working memory’s initial contents, set by
block START, are the following:

0: P k1 1200

1: P k7 8400

2: P l2 2850

3: P k7 8400

4: P k1 1300

5: Pmax 0 0

at the end of the database analysis, the working memory’s
content, displayed by block Show WM, will be:

0: p k1 1200

1: p k7 8400

2: p 12 2850

7: Pmax k7 8400

8: ERR k1

9. Conclusions

In a conventional associative system for symbolic
computing, the programmer has to textually build (write)

Figure 7: factorial calculus

10

productions, by using a more or less sophisticated editor.
If program behavior is not what was expected, it becomes
necessary to add, delete or modify productions. Changes,
in turn, may imply additions, eliminations or transfers of
conditions and/or actions from one production to the
conditions and/or actions from one production to the
other. Thanks to the visual organization that the program
acquires once it has been built using the described system,
all these operations are considerably sped up. The pro-
grammer can easily delete or transfer condition, test and
action blocks, by a few clicks of the mouse.

However, it is important to emphasize that the de-
scribed system should not be thought of as something to

be utilized by a skilled programmer (also because of the
inefficiency that use of a list data structure would imply in
case of complex programs): of course, an ad-hoc visual
environment would be much more effective. Instead, be-
sides being the occasion for a theoretical investigation, it
aims at being a mechanism which allows the unskilled
beginner to easily try out principles and features of pro-
duction-rule-based programming.

References
[1] Larkin, J. H., Simon, H. A., “Why a Diagram is (Sometimes)

Worth Ten Thousand Words”. Cognitive Science, 1987, pp.
65-99.

DELETE DUPLI-
CATES

VERIFY INCONSIS-
TENCIES

FIND MAXIMUM
PRICE

?t1 {P ?i ?p}
?t2 {P ?i ?p}
test {?t1 != ?t2}
ÆÆ

del 2

P ?i ?p1
P ?i ?p2
test {?p1 != ?p2}
ÆÆ

add {ERR ?i}
del 2

Pmax ?i1 ?pm
P ?i2 ?p
test {?p > ?pm}
ÆÆ

del 1
add {Pmax ?i2 ?p}

Figure 8: productions necessary to analyze the contents
of the database

S TA RT M ERG E

?t1
{P ? i ?p}

?t2
{P ? i ?p} ?t1!=?t2

P ? i ?p1 P ? i ?p2 ?p1!=?p2

Pm ax
? i1 ?pm

P ? i2 ?p
?p>?pm

C S S

2

2ER R ?i

1 Pm ax
? i2 ?p

S how
W MS howD ata

LM

R E SE T

S howD ata

Figure 9: database contents analysis

11

[2] Hirakawa, M., Ichikawa, T., “Visual Language Studies - A
Perspective”, Software - Concepts and Tools, 1994, pp. 61-
67.

[3] Koedinger, K.R, “Emergent Properties and Structural Con-
straints: Advantages of Diagrammatic Representations for
Reasoning and Learning”, in Proceedings of the AAAI Sym-
posium on Diagrammatic Reasoning, Stanford University,
1992, March 25-27, pp. 154-159.

[4] Menzies, T., “Frameworks for Accessing Visual Lan-
guages”, Technical Report TR95-35, 1996, Dept. of Soft-
ware Development, Monash University, Melbourne, Austra-
lia.

[5] Reiss, S.P., “Working in the Garden Environment for Con-
ceptual Programming”, IEEE Software, November 1987, pp.
16-27.

[6] Ladret, D., Rueher, M., “VLP: a Visual Logic Programming
Language”, Journal of Visual Languages and Computing, 2,
1991, pp. 163-188.

[7] Pau, L, Olason, H., “Visual Logic Programming”, Journal of
Visual Languages and Computing, 2, 1991, pp. 3-15.

[8] Vose, G.M., “LabView: Laboratory Virtual Instrument En-
gineering Workbench”, BYTE, vol. 11, n. 9, 1986, pp. 82-84.

[9] Gaines, B.R. (Fayyad, U.M.; Piatetsky-Shapiro, G.; Smyth,
P.; and Uthurusamy, R. eds.), Transforming Rules and Trees
into Comprehensible Knowledge Structures. Advances in
Knowledge Discovery and Data Mining, 1996, pp. 205-226,
Cambridge, Massachussets: MIT Press.

[10] Hübscher, R., “Composing Complex Behavior from Simple
Visual Descriptions”, in Proceedings of the 12th IEEE
Symposium on Visual Languages, September 1996, Boul-
der, CO, USA, pp. 88-94.

[11] Bernini, M, Mosconi, M., “VIPERS: a Data-Flow Visual
Programming Environment Based on the Tcl Language”, in
Proceedings of the 1994 AVI Conference, ACM Press.

[12] Ousterhout, J., Tcl and the Tk Toolkit. Addison Wesley,
1994.

[13] Erwig, M., Meyer, B., “Heterogeneus Visual Languages -
Integrating Visual and Textual Programming-“, in Pro-
ceedings of the 1995 IEEE Symposium on Visual Lan-
guages, pp. 318-325.

[14] Brownston, L., Farrel, F., Kant, E., Martin, N., Program-
ming expert systems in OPS5: An introduction to rule-
based programming, Addison Wesley, 1985, Reading,
Massachussets.

