
VISPS, a Visual System for Plan Specification
Marco Porta

Dipartimento di Informatica e Sistemistica
Università di Pavia

Via Ferrata, 1 – 27100 – Pavia – Italy

porta@vision.unipv.it

ABSTRACT
In various circumstances, it is possible to arrive at the need to
specify sequences of operations that a “machine” has to perform
to achieve a purpose. This paper will present VISPS, a visual
system originally designed to specify mission plans for the SARA
autonomous submarine robot. Although this is the particular set-
ting for which the system had been initially devised, thanks to its
flexibility it can be easily configured to adjust to different con-
texts and situations, even if it is always based on the same simple
basic visual mechanism.

Keywords
Visual plan, planning, plan specification, task specification.

1. INTRODUCTION
In many circumstances, it is possible to run into the need to spec-
ify sequences of operations that a technological device has to
perform to achieve some purpose. For example, industrial activi-
ties more and more often require computerized machineries or
plants to be programmed, whose working is not determined a pri-
ori but can be fixed according to the particular task to be carried
out. Very often, however, what such programming activities need
is only the specification of a series of “elementary” operations to
be completed sequentially. On the other hand, each elementary
operation may be characterized by a certain number of parameters,
which need to be specified for it to be correctly carried out.

Or also, in a different context, consider a robot which has to
autonomously complete a “mission” composed of several objec-
tives. Even if, as is most likely, the low-level activities determin-
ing the robot’s “intelligence” do not require interventions by those
who have defined the mission, there will almost certainly be the
need to specify the high-level objectives characterizing its salient
phases. This paper will present VISPS, a visual system to specify
mission plans for the SARA autonomous submarine robot [1][3],
developed as part of the Antarctic Research National Program
(PNRA) promoted by ENEA (the Italian corporate body for en-
ergy, environment and new technologies). Although this is the

particular setting for which the system had been originally de-
vised, thanks to its great flexibility it can be easily configured to
adjust to different contexts and situations, even if it is always
based on the same simple basic mechanism.

The main idea underlying VISPS is that integration of the con-
cepts of visual language and graphic interface can create synergies
thanks to which planning the execution of a certain set of opera-
tions becomes more immediate. In a world where information
technology is gaining an ever greater share of everyday life, the
need to specify sequences of operations, of whatever kind, will
become more and more frequent within various areas, ranging
from industrial plant control to office automation. Even if the end
user may not be experienced at using computers, he or she will
have ever increasing freedom in defining the working modes of
technological devices. VISPS has been designed just with the
purpose of facilitating specification tasks, through very simple
graphic formalisms, which can be easily comprehended.

2. PRELIMINARY CONSIDERATIONS
VISPS (acronym of VIsual System for Plan Specification) is con-
ceived as a visual system for specifying plans, where by plan we
mean any sequence of elementary operations necessary to achieve
one or more objectives, of whatever kind. Here, the adjective ele-
mentary is used with a relative meaning, that is, it depends on the
degree of conceptual abstraction we want to confer on the plan.

Generally, “high-level” elementary operations will have corre-
sponding “low-level” textual commands associated with them, to
be sent to the specific device that will execute the plan. These
commands, which are characteristic of the elementary operations
making up the plan itself, represent the “program” that the device
will have to really interpret and execute. The purpose of VISPS is
to facilitate choosing and organizing high-level elementary opera-
tions, by associating them with visual elements which allow their
parameters to be easily specified.

In particular, as already mentioned, VISPS has been devised as a
system to specify mission plans for the SARA autonomous sub-
marine robot (where SARA stems from the Italian words Sotto-
marino Autonomo Robotizzato Antartico). Therefore, a plan will
be a sequence of operations necessary to carry out a mission of the
robot. This, for example, might be composed of the following
high-level elementary steps: (1) Select the constant-depth type of
navigation and reach position P1; (2) Arrange yourself according
to orientation O1; (3) Switch the lights on; (4) Repeat the fol-
lowing operation sequence for ten times: [(a) Switch the camera
on; (b) Shoot the scene for fifteen seconds; (c) Switch the camera
off; (d) Wait three minutes]; (5) Switch the lights off; (6) Arrange
yourself according to orientation O2; (7) Switch the CTD sensor
on; (8) Select the constant-distance-from-seabed type of naviga-
tion and reach position P2; (9)

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AVI 2000, Palermo, Italy.

© 2000 ACM 1-58113-252-2/00/0005..$5.00

2

The various elementary steps which compose the mission nearly
always involve a certain number of parameters. For example,
switching the lights on may require their intensity to be specified.
Or, in a more complex case, setting up a constant-depth naviga-
tion type may require specifying depth, direction and speed, as
well as the latitude and longitude of the arrival point.

VISPS is based on the idea of defining both the various kinds of
elementary operations and their parameters through particular
graphic elements, which we will call visual blocks.

3. VISUAL BLOCKS
In VISPS, the elementary actions SARA has to perform (which
may also involve on-board instrumentation) are defined through
visual blocks. Substantially, a block is a rectangular-shaped
graphic element, characterized by the following parameters:

• a title, that is, a name univocally identifying its functionality;

• a possible icon, which may make it more easily recognizable;

• possible controls, which are “instruments” that the user can ex-
ploit to supply inputs to the block (and hence, to specify pa-
rameters relative to the elementary functionality the block repre-
sents). Seven kinds of controls are provided: Entries, Scales,
Checkbuttons, Menubuttons, “Clock-like” controls, “Semiclock-
like” controls and Increasable/decreasable entries.

For example, in Figure 1-a a block is shown which has, namely
(from top to bottom), the following controls: a menubutton, two
scales, an entry and a checkbutton. In Figure 1-b another block is
shown which has an entry, a clock-like control, a semiclock-like
control, another entry and an increasable/decreasable entry.

Blocks having at least one control also have a particular button
(the one directly below the block’s icon, characterized by a small
white circle in the center), which allows controls to be “hidden”.
Therefore, blocks can be closed at any moment, to occupy less
space, and re-opened when the value of some parameter needs to
be modified. For example, the block in Figure 1-b, when closed,
appears as shown in Figure 1-c.

Block characteristics are defined on file, according to a very sim-
ple format. The different kinds of controls can easily be config-
ured to adapt themselves to different types of parameters, from
those requiring totally general inputs (strings) to those in which
choices are imposed within predefined sets of values, both dis-
crete and not.

3.1 Actions Associated with Blocks
Every block has certain actions associated with it. In principle,
actions may be thought of as simple character strings. In the spe-
cific case of setting up missions for SARA, such strings will cor-
respond to commands to be sent to the robot. These commands,
whose syntax and semantics depend on the particular communi-
cation protocol used, are defined on file, for each block, and, as
parameters, get the inputs specified by the user through the
block’s controls (as will be discussed in the following).

As already said, by plan we mean a sequence of elementary op-
erations that SARA has to perform to complete a mission. There-
fore, a visual plan for SARA will be a sequence of graphically in-
terconnected blocks. However, since some operations might need
to be executed several times, a special iterative construct is pro-
vided which makes it possible to specify cyclical behavior.

4. GENERAL DESCRIPTION OF VISPS
VISPS is totally written in Tcl [2]. The interface for specifying
SARA plans appears to the user as shown in Figure 2. As can be
seen, it is characterized by a canvas (that is, a main work area) on
which the plan blocks are placed. Blocks, by means of the mouse
cursor, are taken from the choice bar located low (which shows
their titles and icons) and dragged onto the canvas, in the desired
positions. Still through the mouse cursor, they can subsequently
be moved directly.

The choice bar displays names and icons of the currently loaded
library. However, at any time, by pressing a special button, it is
possible to select new libraries to be loaded from all the available
ones. Far down there is an “informative bar”, which acts as a
contextual help.

4.1 Using Blocks
When a block is taken from the choice bar and placed on the can-
vas, a link (a line with an arrow at one end) is automatically cre-
ated between the previous block, in the sequence, and the just in-
serted one (unless it is the first block of a new plan which is being
created). This way, the plan block chain is built. Single blocks or
groups can also be inserted before or after other blocks in the
plan, by means of simple cut/copy and paste operations. By
pressing the right mouse button when the cursor is over a block, a
contextual menu is opened containing various items, through
which several actions can be undertaken.

4.1.1 The FOR Block
To allow specification of iterative behavior (that is, repeated
“execution” of one or more blocks over a certain number of
times), VISPS provides a special predefined block, which we will
call FOR block. The FOR block is characterized by four control
ports, whose purpose is to make clear which blocks pertain to the
cycle and which, instead, are its input and output. Referring to
Figure 2, a FOR block can be noted. In particular, block CD
Navigation is at the input of the cycle, i.e. it is the block executed
immediately before the iteration. Block Lights ON, instead, is at
the output of the cycle, i.e. it is executed after the iteration. Lastly,
blocks Wait and Data Acquisition are executed three times, as
many as the value specified in the FOR block’s entry.

Control ports automatically arrange themselves on the FOR
block’s sides, in the most “suitable” positions, depending on the
positions of the blocks connected to them; this way, the plan
graph turns out to be more readable.

Figure 1: Examples of visual blocks

 (a) (b) (c)

3

Figure 2: The VISPS interface

4.1.2 Block Selection
By keeping the left mouse button pressed and dragging the cursor
on the main canvas, a selection rectangle is created: consecutive
blocks within this rectangle are said to be selected (and graphi-
cally distinguish themselves, compared with others, thanks to a
colored outline).

4.1.3 Macro Blocks
Since a mission plan composed of many blocks may turn out to be
unclear, the VISPS system allows groups of consecutive blocks to
be embodied within macro blocks.

Macro blocks represent an abstraction mechanism thanks to which
several elementary operations can be composed to form more
complex operations. To create a macro starting from a set of
blocks, the set must be first selected. Afterwards, from the selec-
tion rectangle’s contextual menu (or from menu Edit or through a
special button) item Create macro must be chosen. Then, a dialog
window will appear in which the name of the macro to be created
must be entered. The previously selected blocks are thus substi-
tuted with a single block, whose title is the macro name one has
just specified.

The menu of a macro block also contains item Expand. By se-
lecting it, blocks in the main canvas are deleted and the sub-plan
contained in the macro is displayed. “Expansion” is accompanied
by a graphic effect giving the impression that the macro block is
dilating. This animation effect reinforces the concept of macro
block, by highlighting its meaning of “container” block. The sub-
plan contained in a macro, once the expansion process has oc-
curred, can be modified as if it were a main plan. To come back to
the main plan (or to the sub-plan at the previous level, if a macro
block contained in another macro block has been expanded) it is
sufficient to press a special button. “Compression” too is accom-
panied by a graphic effect, identical but opposite to the expansion
one. Recursively, macro blocks can contain other macro blocks, at
any level, so that the user can enter into increasing levels of detail

when building plans.

Moreover, a macro block can be inserted in
any of the available libraries, so that it can be
used also for building other plans. This way,
the user can create, in a simple and direct man-
ner, new functionalities, starting from the ex-
isting ones.

5. LOW LEVEL COMMANDS
Every block has a file associated with it. Its
function is to define textual commands (which
may depend on the block’s controls) that will
be generated when the visual plan is translated
into the corresponding low-level textual plan.
As already stated, the format of this file can be
totally arbitrary and will depend on the actual
device (in our case, the SARA submarine ro-
bot) which will perform the plan, and also on
the particular high-level command represented
by the block.

In the file, controls are referred to by means of
their names, enclosed within a pair of delimit-
ing strings (defined in the VISPS general con-

figuration file), so that the system can unequivocally “understand”
that it is managing controls. For example, we may choose to use
the strings ‘<<’ and ‘>>’. Thus:

<<North latitude>>

will refer, for instance, to the value of the parameter whose name
is ‘North latitude ’ in block CD Navigation (Constant-
Depth navigation) in Figures 1-b and 2. In addition, as it may be
necessary to perform some kind of processing on parameters, files
associated with blocks can also contain Tcl scripts, they too en-
closed within a pair of delimiting strings (still defined in the sys-
tem configuration file). For example, we may decide to use the
strings ‘SCRIPT{ ’ and ‘}END’. Then, an hypothetical low-level
textual command defined as:

COM p SCRIPT{expr <<North latitude>> * 2}END

would be translated into ‘COM p 90 ’, assuming that the value
specified for parameter ‘North latitude ’ in the block is
equal to 45 (expr is the Tcl command for executing arithmetic
calculations). The complexity and the length of Tcl scripts can be
totally arbitrary, therefore allowing, if necessary, even procedures
to be defined. This means that behind a block there may also lie
very complex processing activities, performed on its inputs (con-
trols). However, the user interacts solely with the visual abstrac-
tion of these processings, that is, with the interface represented by
the block.

Command files associated with blocks are simple textual files and,
hence, can be created through any editor. However, for them to be
more easily written and modified, a special editor is also provided,
which is contextual to each block.

6. FROM VISUAL TO TEXTUAL PLANS
Once a visual plan has been built by composing blocks repre-
senting the various elementary steps of a mission, the corre-
sponding low-level textual plan can be generated. This textual
plan (or program) will be made up of commands defined in the
files associated with each one of its blocks, and will also take into
account the presence of iterations and macro blocks. After being

4

Figure 3: An example plan

Figure 4: Content of macro block Filmings of Figure 3

generated, the textual plan will be sent, in some
way, to the device that will have to execute it.
SARA, for example, will receive commands via
radio. Afterwards, typically, an interpreter will in-
terpret and execute the low-level commands, thus
producing the desired “actions”.

6.1 An Example Plan
To better illustrate the process of building a visual
plan and generating the corresponding textual
plan, we will consider the simple example shown
in Figure 3.

It is to be noted that, because of the generality of VISPS, the par-
ticular blocks presented in this example do not necessarily corre-
spond to real functions of SARA, which, at the moment, cannot
yet be precisely defined. Instead, they should be considered as ex-
amples of possible blocks to be used to build possible plans. Here
we will assume that: the hypothetical block Batteries selects what
kind of batteries to activate on the robot (supposing that there are
more than one) and sets up their parameters; block CTD ON acti-
vates the CTD sensor to get data about physical properties of wa-
ter; block CD Navigation sets up parameters for a constant-depth
navigation and makes the robot reach a certain position; block
CTD OFF deactivates the CTD sensor (which remains on for all
the distance covered by the robot during its movements); block
Hovering allows parameters to be set for a particular position to
be reached and for a particular orientation according to which the
robot must arrange itself; macro block Filmings allows a scene to
be shot through a video camera at fixed intervals; block FP Navi-
gation, lastly, sets up the coordinates of a final point the robot has
to reach.

Then, suppose that the content of macro block Filmings is that
shown in Figure 4. We will assume that: block Lights ON
switches the lights on, according to a certain intensity; for three
times, as many as specified in the FOR block’s entry, the follow-
ing sequence of operations is executed: the camera is turned on
(block Camera ON), the robot waits one minute (block Wait), the
camera is turned off (block Camera OFF) and the robot waits five
minutes (block Wait); at last, once the iteration is over, block
Lights OFF switches the lights off.

Now, again for illustrative purposes, suppose that low-level com-
mand files associated with each block contain simply the name of
the block with which they are associated, followed by the se-
quence of the values specified for its parameters. This means, for
example, that for block FP Navigation the structure of the file is:

FP Navigation: <<North latitude>>,
 <<East longitude>>, <<Depth (m)>>

Then, the textual plan generated for the visual plan in Figure 3
will be the following:

Batteries: Silver-Zinc, 629, 50, 1, 1
CTD ON: 5
CD Navigation: 80, -30, 1.3, 71, 165
CTD OFF
Hovering: 71, 153, 80, 15, 10, 0
Lights ON: 83
Camera ON
Wait: 1
Camera OFF
Wait: 5
Camera ON
Wait: 1
Camera OFF

Wait: 5
Camera ON
Wait: 1
Camera OFF
Wait: 5
Lights OFF
FP Navigation: 50, 140, 30

7. CONCLUSIONS
We think that the choice to associate a graphic control with every
parameter, which can be directly manipulated within the block, is
very interesting. In fact, the visual block in itself represents an
interface within the interface, that is, a communication means
between the user and the single step of the mission. We hold that
this aspect, together with the possibility to create macro blocks
from elementary blocks, allowing new functionalities to be easily
added to the existing ones, can greatly facilitate the task of those
who have to specify mission plans, independently of their par-
ticular type.

8. REFERENCES
[1] Bono, R., Caccia, M., and Veruggio, G., Simulation

and Control of an Unmanned Underwater Vehicle.
IEEE International Conference on Robotics and Auto-
mation, Nagoya, Aichi, Japan, 21-27 May 1995.

[2] Ousterhout, J. K., Tcl and the Tk Toolkit. Addison
Wesley, 1994.

[3] Papalia, B., Work in progress on the antarctic under-
water robot SARA; problems of navigation below the
ice cover. International Workshop Ross Sea Ecology,
Taormina, Italy, 14-16 May 1996.

