
A Data-Flow Visual Approach to Symbolic Computing:
Implementing a Production-Rule-Based Programming System

through a General-Purpose Data-Flow VL

Mauro Mosconi - Marco Porta
Dipartimento di Informatica e Sistemistica – Università di Pavia

Via Ferrata, 1 – 27100 – Pavia – Italy
mauro@vision.unipv.it - porta@vision.unipv.it

Abstract

The main aim of this paper is to investigate how the pro-
duction-rule-based computational paradigm can be im-
plemented through visual data-flow techniques. We pro-
pose a simple yet effective system for visually composing
rule preconditions and actions, through a general pur-
pose data-flow visual language.

1. Introduction
Among general purpose visual programming systems,

data-flow ones are very widespread, certainly also thanks
to their simple and intuitive functioning mechanism. It is
very interesting to note that the data-flow model may be
viewed as a generalization of the event-driven program-
ming model [1]: each node waits for data (events) to ar-
rive and then fires. Hence, production-rule systems can
also be viewed as data-flow systems, in which rule condi-
tions act as demons awaiting the arrival of certain data
elements before executing their conclusion.

Although production systems are the basis for many
expert systems, their functioning mechanism may be es-
pecially difficult to understand for those who are used to
programming according to the control-flow (imperative)
paradigm. Building correct productions to solve a par-
ticular problem is a task which may require many attempts
by an unskilled programmer (addition and elimination of
conditions and/or actions) and a textual-only rule repre-
sentation may turn out to be very unintuitive. Very often,
in fact, different rules hold the same preconditions, and
comprehension of the way they affect the global system
may depend on just such a sharing.

This paper will show how it is possible to easily im-
plement the production-rule-based computational para-
digm by using visual data-flow techniques. The simple but
effective system we will describe, which is based on VI-
PERS [2], a general-purpose data-flow visual language, is
primarily intended as a learning tool and can greatly sim-
plify the task of the novice production-rule programmer.
Moreover, we believe that our approach is particularly
interesting from a theoretical point of view.

2. System Description
We propose two substantially equivalent ways to visu-

ally build productions (see [3] for a detailed description).
The former is shown in Figure 1 and better highlights dis-
tribution of conditions being shared by different rules.
The latter, whose scheme cannot be shown here due to
lack of space, gives up this opportunity but is probably
more readable.

2.1. A first method for building productions

Figure 1 shows an example scheme composed of three
productions. Condition blocks C and Test blocks T repre-
sent rule preconditions and, when activated, give out
symbolic lists denoting them. To achieve correct synchro-
nization, VIPERS exploits control signals (thin arcs with-
out arrows) connecting blocks control ports1. There is a
Condition Collector block CC for every rule. CC blocks
analyze the respective input conditions to determine
whether the rule is applicable or not (that is, whether at
least one production exemplar exists relative to the rule).
Every CC block has another list as input, which we will
call L. It is the data structure which is propagated to CC
blocks outputs, after being “filled” with information de-
riving from precondition analysis. During the next com-
putational cycles, it will return to the same blocks, with
some changes (unless the program is finished). List L
contains both past and present information and may be
viewed as in-motion knowledge. The task of block CSS
(Conflict Set Solver) is to choose which production ex-
emplar, among the possible ones, is to be activated, ac-
cording to a certain selection strategy. Several CSS
blocks will be put at the programmer’s disposal, so that
he/she can easily select the desired strategy. Block CSS
receives the various L lists emitted by CC blocks as in-
puts. On the basis of data contained in valid lists, CSS
applies the selection strategy it represents and activates
only that output signal relative to the chosen production

1 If a signal exists between an output control port (on the right) of
block A and the input control port (on the left) of block B, then
block B cannot be executed before the execution of block A.

Copyright 2000 IEEE. Published in the Proceedings of VL 2000, 10-14 September 2000 at Seattle, WA, USA. Personal use of this material is per-
mitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale
or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE. Contact:
Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: +Intl.
732-562-3966.

action sequence or, in case of null conflict set, the last
one, which powers up one or more end blocks (in Figure
1, block ShowWM, showing the working memory’s con-
tents). Moreover, CSS gives a list L’ out which has al-
most the same structure as L and provides actions with the
data to act on. The programmer can use standard action
blocks (ADD and DEL, to add/delete a symbolic structure
to/from working memory), plus an arbitrary number of
blocks relative to actions definable according to the par-
ticular application. Every action block of the selected
production receives L’ as input list, properly modifies it
and then gives it out. The output of the last action block
executed enters block LM (Lists Merge), comes out of it
without any change, goes into the initial block MERGE
and, at last, submits itself to the CC blocks again. CC
blocks and block CSS can be built with as many input
ports as one likes.

2.2. A second method for building productions

As mentioned earlier, another way to visually specify
production preconditions is possible. In this case, com-
mon conditions are repeated for each production and CS
blocks are no longer used, since list L is analyzed and
modified little by little by condition and test blocks them-
selves. In a certain sense, we may say that what was pre-
viously done by CC blocks is now accomplished in a dis-
tributed manner. Although common conditions have to be

repeated, in this scheme it is probably simpler to identify
and possibly add or delete conditions pertaining to a par-
ticular production.

3. Conclusion
It is important to emphasize that the described system

should not be thought of as something to be utilized by a
skilled programmer: of course, an ad-hoc visual environ-
ment would be much more effective. Instead, besides be-
ing the occasion for a theoretical investigation, it aims at
being a mechanism which allows the unskilled beginner to
easily try out principles and features of production-rule-
based programming.

References
 [1] Menzies, T., “Frameworks for Accessing Visual Lan-

guages”, Technical Report TR95-35, 1996, Dept. of Soft-
ware Development, Monash University, Melbourne, Aus-
tralia.

[2] Ghittori, E., Mosconi, M., Porta, M., “Designing New Pro-
gramming Constructs in a Data-Flow VL”, in Proceedings
of the 14th IEEE Conference on Visual Languages (VL’98),
1-4 September 1998, Nova Scotia, Canada.

[3] Mosconi, M., Porta, M., “Implementing a Production-Rule-
Based Programming System through a General-Purpose
Data-Flow VL”. Technical Report, University of Pavia,
Pavia, Italy, 2000, URL: http://vision.unipv.it/research/
papers/00tr-prbdfvl.html.

START
MERGE

C

C

C

C

T

CC

CC

CC

CSS

DEL Elm

DEL Expr

ADD

ADD

ADD ADD

LM

signals

list L

list L'

First production's actions

Second production's action

Third production's actions

activated at the
end of the computation

Refers to the
first production

Refers to the
second production

Refers to the
third production

Preconditions

Figure 1: first scheme for building productions

