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Abstract In this paper we present two tracks based on the exploitation of protein struc-
ture comparison in 3D: the first for retrieving a structural block (small subset or
even an entire macromolecule) from a protein data base, and the second for pro-
tein supervised classification. The first track is based on the Generalized Hough
Transform (GHT) which is applied adopting two different strategies. The former
algorithm uses exhaustive matching of all possible subsets of the macromolecule
having the same cardinality of the structural block model with the model itself.
The second strategy exploits the retrieval of co-occurrences of two (but may be
extended to three, or more) basic components for contributing to the motif recog-
nition. The later approach is based on a protein peculiar representation through
an Extended Gaussian Image (EGI). In the EGI the histogram of the orientations
of an object surface is mapped on the unitary sphere. We propose to adopt a
similar data-structure named Protein Gaussian Image (PGI) for representing the
orientation of the protein Secondary Structures (SSs) (helices and sheets), stor-
ing the features of the SS. For the taxonomy of proteins into given classes, on
the basis of the PGI representation, a neural network implementing the Kohonen
self-organizing feature maps is adopted. We consider both these approaches very
effective for a preliminary screening in looking on the PDB and for confirming
the SCOP classification.

Keywords: Kohonen maps, Generalized Hough transform, Protein classification, Protein
motif retrieval, Protein structure comparison, Self organizing maps for struc-
tured data.
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Introduction
Structural biology is a branch of life science concerned with the study of the

structure of biological macromolecules like proteins and nucleic acids. Note
that, the structure of a protein gives much more insights in the function of the
protein than its amino acid sequence. To look for patterns among the diverse
sequences that give rise to particular shapes many strategies have been devel-
oped by the bioinformatics community. Proteins functions are conditioned by
their spatial structures, so protein structure comparison is important for un-
derstanding the evolutionary relationships among proteins, predicting protein
functions, and predicting protein structures from amino acid sequences.

Proteins are formed by two basic regular 3D structural patterns called SSs:
helices and sheets [1]. A structural motif is a compact three-dimensional pro-
tein structure referring to a small specific combination of secondary structural
elements which appears in a variety of molecules. These elements are often
called super SSs. Note that, while the spatial sequence of elements is the same
in all instances of a motif, they may be encoded in any order: in this sense
sequence is sometimes misleading and the structure analysis may give much
more insights [2]. The segmentation of the protein backbone in SSs is achieved
through common packages such as DSSP and STRIDE [3,4,5]. On the average
4.8% of the residues are differently assigned.

Several motifs are packed together to form compact, local, semi-independent
units called domains, i.e. with more interactions within them than with the rest
of the protein. Therefore, a structural domain forms a compact 3D structure,
independently stable, and can be determined by two characteristics: its com-
pactness and its extent of isolation.

Many proteins consist of several structural domains to form multi-domain
and multifunctional molecules in which each domain may fulfill its function
independently, or concurrently with its neighbors. Many domains could have
once existed as independent proteins. Multi-domain proteins are likely to have
emerged from a selective pressure during evolution to create new functions.
Various proteins have diverged from common ancestors by different combina-
tions and associations of domains.

This hierarchical makeup of macromolecules is quite explicit in the F. Ja-
cob’s aphorism: Nature is a tinkerer and not an inventor [6], that is new se-
quences are adapted from pre-existing ones rather than invented, in fact mo-
tifs and domains are the common material used by nature to generate new
sequences.

A structural motif is a 3D structural element and usually consists of just
a few SSs, each one with an average of approximately 5 and 10 residues for
sheets and helices, respectively. Several motifs are packed together to form
domains, the size of individual structural domains varies from between about
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25 up to 500 amino acids, but the majority, 90%, has less than 200 residues
with an average of approximately 100 residues. Note that, it is often used the
term super-*, where * can stand for motif, or domain, or family, or fold, or
class.

1. Structural Blocks Retrieval
In recent years we have developed starting from traditional pattern recogni-

tion techniques new approaches for retrieving a model (motif, or domain, or ...,
or an entire protein) within a protein or in the entire Protein Data Base (PDB)
[7], by using structure comparison in 3D.

The General Hough Transform Approach
Our approach for structural block retrieval exploits the GHT [8,9]. A first

method implements a peculiar exhaustive matching and the second one directly
uses co-occurrences of two SSs for block retrieving. Both these approaches
use three parameters for comparison [10]. These are midpoint distance, axis
distance and angle related to two SSs in 3D. Midpoint distance (Md) is the
Euclidean distance between middle points of two SSs, axis distance (Ad) is the
shortest distance between the axis of two SSs and the angle is the angle (φ)
between the two SSs translated to present a common extreme (see Fig. 1).

Figure 1. RP parameter terns for the GHT approaches: Md, Ad and φ.

In both methods the barycenter of the model is assigned as Reference Point
(RP) and in order to find the RP in the macromolecule a GHT voting process
is performed. These methods are similar for what refers to the basic process
and adopt the same parameter space but differ in the voting process. The first
method compares the model with all the possible model instances in the macro-
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molecule or protein and for every correspondence a weighted contribution is
given to the candidate barycenter. The second one is based directly on the
GHT and compares every SS couple of the model with all the possible couples
in the macromolecule. For every compatible correspondence a vote is given
to the point which is figured out with a special mapping rule [11,12]. In both
methods, after the voting process, the point which has the maximum number of
votes is candidate as RP (it is obviously known the expected number of model
co-occurrences).

As an example in the sequel are shown some results with the two approaches
for a known protein and a common typical four SS motif (the Greek Key one)
(see Figs. 2 and 3). The experimental results show that the RP was deter-
mined with efficiency and precision in both the GHT approaches. We consider
this representation very effective for a preliminary screening in looking on the
PDB.
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Figure 2. SSs of the 4GCR protein. On the right a picture generated by PyMOL on PDB
file 4GCR. Blue lines are β-sheets and red lines are α-helices. Bold lines correspond to the
searched Greek Key Motif formed by four SSs (residues from 34 to 62). The result refers to the
exhaustive matching, the RP and the maximum vote coordinates are almost coincident.

2. Protein Gaussian Images and Neural Network
Approach

A second approach for model retrieval applies the Extended Gaussian Image
(EGI) [13,14] which maps on the unitary sphere the histogram of the orienta-
tions of the object surface. We propose to adopt a similar "abstract" data-
structure named Protein Gaussian Image (PGI) [15] for representing the ori-
entation of the protein SSs (helices and sheets). The "concrete" data structure
is the same as for the EGI, however, in this case the points of the Gaussian
sphere do not contain the area of the patches having that orientation, but fea-
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Figure 3. SSs of the 4GCR protein. Blue lines are β-sheets and red lines are α-helices. Bold
lines correspond to the searched Greek Key Motif formed by four SSs. The result refers to the
co-occurrence of SS couple, the RP and the max. vote coordinates are coincident.

tures of the SSs having that direction. Among the features we may include the
versus (origin versus surface or vice versa), the length of the structure (number
of amino acids), biochemical properties, and even the sequence of the amino
acids (such as in a list). Moreover the chain sequence of SSs is recorded as
a list which is mapped on the sphere surface. In Figure 4, an example of a
protein (4GCR) is represented as a PGI.

Figure 4. Left Protein Gaussian Image of protein 4GCR. Red arrows represent the Greek Key
motif. Right SSs of the 4GCR protein. Blue lines are β-sheets and red lines are α-helices.
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The proposed data structure is complete (no information is lost for an ana-
lytic analysis) and effective from the computational viewpoints (only two ref-
erence coordinates are needed), but also supports effectively the structural per-
ception. In order to validate the effectiveness of the PGI representation of the
protein structure, we propose to employ the Self Organizing Maps–Structured
Data (SOM-SD) [16] framework for structured data in a practical structural
learning problem, where each protein is represented by a PGI. The aim of the
SOM learning algorithm [17] is to learn a feature map which, given a vector
in the input space returns a point in the output space. This is obtained in the
SOM by associating each point in the output space to a different neuron. Given
an input vector v, the SOM returns the coordinates, within the output space, of
the neuron with the closest weight vector. Thus, the set of neurons induces a
partition of the input space, where input vectors that are close to each other
will activate neighbor neurons. SOM-SD represents an extension of the SOM
framework, where the input space is a structured domain and the computational
framework is similar to that defined for recursive neural networks [18].

The dataset employed in the classification task is composed of 45 proteins
classified by SCOP (Structural Classification of Proteins) [19] as belonging
to the class Alpha and beta proteins (a/b). Three folds have been considered,
namely Flavodoxin-like, RibonucleaseH-likemotif and TIMbeta/alpha-barrel,
and for each fold, 15 proteins have been chosen. The task consists in grouping
proteins or side chains belonging to the same fold.

The first test has been conducted considering the whole protein as a pattern,
i.e., each protein is represented by a PGI. It can be observed in Table 1 that
the results are quite good in terms of clustering performance. Even though
this measure does not take into account the desired clustering outcome, the
result is supported by the good retrieval performance which reflects a reduced
confusion in the mapping of each pattern. The classification performance, re-
flecting the performance with respect to the desired clustering outcome, shows
less accurate results, but with an interesting peak at 74.82%.

Table 1. Performance of a 200× 200 SOM–SD considering the whole proteins.

Test Set
Learning Rate 1 1.25 1.5
Iterations 40 60 80 40 60 80 40 60 80
Retrieval 84.99 84.08 84.86 86.46 87.69 79.79 79.29 82.31 79.82
Classification 72.65 56.95 56.91 59.39 70.65 60.73 65.91 64.30 74.82
Clustering 0.79 0.85 0.83 0.82 0.81 0.85 0.83 0.79 0.80

The second test has been performed considering as patterns the single side
chains of each protein, i.e., each side chain is represented by a PGI. From Ta-
ble 2 it can be noted how this "reduced" representation yields better results
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Table 2. Performance of a 200 × 200 SOM–SD considering the single side chains of each
protein.

Test Set
Learning Rate 1 1.25 1.5
Iterations 40 60 80 40 60 80 40 60 80
Retrieval 74.39 81.67 79.63 92.72 92.35 93.40 92.36 92.34 93.85
Classification 75.58 76.37 77.64 85.11 84.14 84.17 85.03 85.78 86.42
Clustering 0.80 0.80 0.80 0.79 0.80 0.79 0.79 0.80 0.79

in terms of classification and retrieval performance while performing slightly
worst with respect to clustering performance. In particular, the clustering per-
formance is almost the same but with a higher confidence reflected by the
higher retrieval performance. The interesting result concerns the classification
performance that is much higher considering only the side chain.

We consider the PGI representation very effective for a fast protein classifi-
cation.

3. Conclusions
Protein functions are determined by their spatial structure, for this reason

it is important to learn structure-function relationship in the protein universe
by comparing their structures and retrieving similar motifs, domains, proteins.
This paper pursues two relevant goals: i) retrieving a structural block (com-
posed by a number of SSs ranging from four to tenth -the motif case-, up to
tenths to hundred -domain and entire protein case) from a macromolecule or
the PDB using two different approaches; ii) classifying proteins into different
known protein classes. The new proposed solutions appeared quite effective.

For blocks retrieval it can be concluded that GHT is a very efficient method
for protein motif matching. It is also worth to point out that the GHT is indeed
suited for parallel implementation (for example at the motif level - e.g. more
motifs can contribute concurrently - but also at the lower SS level - e.g. helices
and sheets can contribute in parallel), then the technique can be easily imple-
mented on parallel machines, so reducing consistently the computation time.
The data base under examination can contain all the about 80 thousand proteins
at present included in the PDB, and the objective is to return on-line the hy-
potheses of similarity for a specific structural element. Obviously, this method
can be speeded-up, because as described, the selected primitive is only the type
of SS, but other information can be exploited as well, such as for example, the
amino acid composition or/and the length in term of number of residues, etc.,
that up-to-now have not been considered. The results confirmed that, even in
this simple implementation, the candidate RP is located with a good precision.
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For the classification goal, these preliminary results demonstrate the quality
and the effectiveness of the PGI representation and that this solution supports
the efficient exploitation of neural network standard strategies such as the Ko-
honen maps. In this case, we have selected a supervised approach for testing:
a well known SCOP class and three of its folds (the three with the highest
cardinalities) also in this case the results look very promising.

We can conclude that both the proposed methods are simple to implement
and then computationally efficient, but for what refers robustness with respect
to the other approaches we need to experiment on more complex structures,
and with an extended statistical performance evaluation. In the future work
we will use these methods for more complex structures, adopting an extended
statistical performance evaluation, and we will compare these methods quanti-
tatively to other methods in terms of complexity, efficiency and speed.
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