The Exact (ρ, θ)-Hough Transform -- Definition and Performance

a presentation by Dimo T. Dimov
(dtdim@iinf.bas.bg)
Institute of Information and Communication Technologies at Bulgarian Academy of Science (IIT-BAS)

Sofia, Bulgaria
at Computer Vision and Multimedia Lab
University of Pavia
Nov. 15, 2016

Acknowledgements

This lecture is partially sponsored by the Erasmus+ Programme Key Action 1 - Mobility for learners and staff - Higher Education Student and Staff Mobility, Inter-institutional agreement 2014-2021 between
Bulgarian Academy of Sciences (BG SOFIA30), and University of Pavia (I PAVIA01)

The lecture is based (but not limited) on the results published the same title paper by: D. Dimov, and A. Dimov, in Rachev B., and A. Smrikarov (Eds.), Proceedings of CompSysTech'16, Palermo, Italy, 23-24 June 2016 (ACM Int. Conf. Proc. Series, ACM PRESS, NY, USA, 2016, pp.198-205).
http://dl.acm.org/citation.cfm?id=2983523\&CFID=865067031\&CFTOKEN=54232689

The research is partially sponsored (i) by the ETN-FETCH project, an Erasmus TN 539461-LLP-1-2013-1-BG-ERASMUS-ENW, coordinated by the University of Ruse, BG, as well as (ii) by the National Astroinformatics project, Grant DO-02275/2008 of the National Science Fund at Bulgarian Ministry of Education and Science.

ACM DLGITAL LIBRARY

The Exact ($\rho, \&$ \&thetas;)-Hough Transform: Definition and Performance

Full Text: 园PDF Get this Article
Authors: Dimo Dimov Inst. of Information \& Communication Technologies at Bulgarian Academy of Sciences (IICT-BAS)
Aleksandar Dimov Software Engineering Dep., Faculty of Mathematics and Informatics, Sofia University

Published in:

Proceeding
CompSysTech '16 Proceedings of the 17th International Conference on Computer Systems and Technologies 2016 Pages 198-205
Palermo, Italy - June 23-24, 2016
ACM New York, NY, USA ©2016
table of contents ISBN: 978-1-4503-4182-0
doi>10.1145/2983468.2983523

Tools and Resources
F. Buy this ArticleRecommend the ACM DL to your organization

* Request Permissions

Save to Binder
Citation Count: 0
Downloads (cumulative): 0
Downloads (12 Months): : 0
Downloads (6 Weeks): 0
$\mathbb{I F}^{*}$ Contact Us | Switch to single page view (no tabs)

Abstract	Authors	References	Cited By	Index Terms	Publication	Reviews	Comments	Table of Contents

The (ρ, \& thetas;)-interpretation of Hough Transform (HT) is a well-known projective technique that is often used in image processing considering its facilities to localize long stretched objects in a given image. In our earlier work, a definition of "exact HT" has been introduced for both given grids (XsizexYsize) and (PsizexӨsize) of the input image and of the HT result, respectively, considering the ($\rho, \&$ thetas;)-HT like a Radon transform (RT). A few iterative approaches have been also proposed there to approximate the exact HT for reducing the performance complexity to not much bigger one than cubic. However, these approaches become less acceptable with increasing of the input image grid as in the case of astronomical images, e.g. when HT is applied for identification of flare stars in archive images of stellar chains. In this work an analytic solution is proposed for distribution of the exact ($p, \&$ thetas; $)$-HT model into the chosen HT-qrid of the output.

Contents

1. Hough transform can stress on elongated objects in an image
2. (ρ, θ) modification of HT ; it is equal to a Radon transform

- (ρ, θ) HT applied for text slope evaluation
- (ρ, θ) HT applied for astro-images of interest

3. The exact (ρ, θ) HT definition
4. The exact (ρ, θ) HT performance
5. Discussion \& Conclusion

References

[1] Aniol, R., H. W. Duerbeck, W. C. Seitter, and M. K. Tsvetkov: An automatic search for flare stars in southern stellar aggregates of different ages. In L.V. Mirzoyan, B.R. Pettersen and M.K. Tsvetkov (Eds.), IAU Symp. 137, Kluwer Acad. Publish., London, pp.85-94, 1990.
[2] Chou, N., J. A. Izatt, S. Farsiu: Generalized pseudo-polar Fourier grids and applications in registering ophthalmic optical coherence tomography images, 43rd Asilomar Conf. on Signals, Systems and Computers, 2009, pp.807-811, Nov. 2009, doi: 10.1109/ACSSC. 2009.5469972
[3] Dimov, D.: Using an Exact Performance of Hough Transform for Image Text Segmentation. In Proceedings of ICIP'2001, Oct. 7-10, 2001, Thessaloniki, Greece, vol. I, pp.778-781, 2001.
[4] Dimov, D., and A. Dimov: Cumulative Approach Using Hough Transform to Segmentation of Star Chains in Multi-Exposure Wide-Field Plate Images. In: Proc. of CompSysTech'10, ACM Int. Conf. Proc. Series, vol. 471, ACM PRESS, NY, USA, pp.478-484, 2010.
[5] Duda, R. O., and P. E. Hart: Use of the Hough transformation to detect lines and curves in pictures. Communication ACM, 15, (1972) 11-15.
[6] Hart P. E.: How the Hough Transform Was Invented. IEEE Signal Processing Magazine, 18, Nov. 2009, Elsevier,

References

[7] Illingworth J., J. Kittler: A Survey of the Hough Transform. Computer Vision, Graphics, and Image Proc., 44 (1988) 87-116.
[8] Keller, Y., A. Averbuch, M. Israeli: Pseudopolar-Based Estimation of Large Translations, Rotations, and Scalings in Images. IEEE Trans. on Image Processing, 14(1) (2005) 12-22.
[9] Mukhopadhyay, P., B. B. Chaudhuri: A Survey of the Hough Transform. Pattern Recognition, Elsevier, 48 (2015) 993-1010.
[10] Pavlidis, T.: Algorithms for Graphics and Image Processing. Computer Sci. Press, Inc., 1982.
[11] Press, W. H.: Discrete Radon transform has an exact, fast inverse and generalizes to operations other than sums along lines. PNAS of USA, vol. 103 no. 51, 19249-19254, 2006.
[12] Shi, D., L. Zheng, J. Liu: Advanced Hough transform using a fractional Fourier method. IEEE Transactions on Image Processing, 19(6) (2010) 1558-1566.
[13] Averbuch, A., R.R. Coifmanb, D.L. Donoho, M. Elad, M. Israeli: Fast and accurate Polar Fourier transform. Appl. Comput. Harmon. Anal. 21 (2006) 145-167

Hough transform to stress on elongated objects in images

[2,7, 8, 9, 12]
The original HT, by Hough (1961):
a line $L(x, y \mid k, b)$: $(y=k x+b)$ in the object (input image) space \Leftrightarrow the point $L_{\mathrm{HT}}(\mathrm{k}, \mathrm{b})$ of the HT parameter space;
A line (as a continuum of points) <=> a point (as a continuum of lines crossing it)
Troubles with HT representation of vertical lines $(\mathrm{k} \rightarrow \pm \infty)$

- \quad The (ρ, θ) HT, a modification of HT by Duda \& Hart (1982): based on the normal equation of a line: $L(x, y \mid \rho, \theta): x \cdot \cos (\theta)+y \cdot \sin (\theta)=\rho$ A line (as a continuum of points) < $=>$ a point (as a continuum of sinusoids crossing it) ($|\mathrm{\rho}| \leq \operatorname{Diag}$ (image), $-\pi / 2<\theta \leq \pi / 2$)

(ρ, θ) HT to recognize the slope of text rows in an image (the most popular application of HT) $[3,5,6,7,9]$

 promising pockayps. Site Hefty dot
 way st example. or fatima Yer tad

 nowordiog to fire format of your paten

Our case: (ρ, θ) HT to recognize stellar chains in an image

 $[1,4]$

Segmentation of stellar chains, obtained by a specific astronomical method: multiple photo expositions (combined over one and the same photo plate) of the observed sky quadrant.

This is a problems to be solved in
 our project on Astroinformatics

...Hough transform to stress on elongated objects in images

The traditional algorithm for (ρ, θ) HT performance: it transforms each image pixel and accumulate its HT representation (a cosinusoid) into HT space. To increase the representation precision you have to increase the HT space (i.e. array) size. And the processing complexity is ~ $X_{\max } \cdot Y_{\max } . \theta_{\max } \sim N^{3}(!)$ A new approach is obviously necessary to speed up but to make more precise too [3, 8, 9, 11, 12, 13]
An exact HT can be defined using the fact that:

- The (ρ, θ) HT is equivalent to the transform of Radon (1917): [7, 9, 11, 13]

$$
\begin{gathered}
h(\rho, \theta)=\iint_{\text {RoI }} f(x, y) \delta(x \cos (\theta)+y \sin (\theta)-\rho) \mathrm{d} x \mathrm{~d} y \\
\quad(\rho, \theta) \in \boldsymbol{R o} \boldsymbol{H} \boldsymbol{T} \boldsymbol{T}
\end{gathered}
$$

where RoI is the definition domain of the image $f=f(x, y),(x, y) \in \boldsymbol{R o I} ; \boldsymbol{R o H T}$ is the definition domain for HT of the image, i.e. for $h=h(\rho, \theta)$; and $\delta($.$) is the Dirac's$ function.

- Image processing uses direct (ρ, θ) HT (i.e. RT), while computer tomography - the inverse RT (i.e. $\left.(\rho, \theta) \mathrm{HT}^{-1}\right)$

Exact HT performance for the both given grids:

(the input grid and the chosen grid for HT output)

Geometric interpretation of the correspondence:

$$
\begin{aligned}
& \left(x_{0}, y_{0}\right) \in \boldsymbol{R o I} \boldsymbol{I} \Leftrightarrow \\
& \Leftrightarrow\left\{(\rho, \theta) \in \boldsymbol{R o} \boldsymbol{H} \boldsymbol{T} \mid \rho=\rho_{0} \cos \left(\theta_{0}-\theta\right)\right\}
\end{aligned}
$$

The HT-image of a "real" pixel $P\left(x_{0}, y_{0}\right)$ of dimensions $[n x, n \Delta y]$, (n positive integer) relatively to the HT-image of its centre $\left(x_{0}, y_{0}\right)$, i.e. to a "real" point of dimensions [$\Delta x, \Delta y$].
...Exact HT performance: representation of an image pixel

A real pixel, a projection of it, and
its Generalised Cosinusoide (GC):
i.e. the Cosine-shape representing a given real pixel and the 3 basic types for the shape edges (cut vertically in the HT space)

The shape edges are Cosinusoides.

...Exact HT performance: the Cosine-shape by regular parts (been cut by vertical strips of HT accumulation space)

(a) Views on GC from above

The "Trapezium-like Cosineshaped Hexahedron" (TC6) that is cut by a vertical strip of a HTpixel width.

Each TC6 vertical section is a symmetrical trapezium (ST) of constant area $(=f(x, y) . \Delta x \cdot \Delta y / \Delta \rho)$.

The general case of TC6 edges' co-location is illustrated.

Exact HT performance: TC6 contribution to HT pixels

(approximated and analytical solution)

Each TC6 of given Cosine-shape contributes for the HT value of the HT-pixels covered by this TC6 (they are 5 in the illustration).

Respective sub-volumes of TC6 have to be calculated for to obtain the "exact HT" (pixel by pixel in the HT space).

Possible ways of calculation: -(approximating solution): dividing the TC6 vertically by K strips of equal width for each HT-pixel covered by this TC6.
processing complexity $\sim\left(X_{\max } \cdot Y_{\max } . \theta_{\max }\right) K \sim K . N^{3}$

- (analytical solution): ? cases of calculus processing complexity $\sim X_{\text {max }} \cdot Y_{\text {max }} \cdot \theta_{\text {max }} \sim N^{3}$ programming complexity is higher (comparatively to approximated solution)

The exact HT performance: an analytical solution

(5 HT-pixels are covered by the TC6 in this illustration)

3 main vertical components (counted topdown):

- upper pentahedron $\mathbf{U p p}=\left\{R_{1}, R_{2}, L_{1}, L_{2}\right\}$,
- middle hexahedron Mid $=\left\{R_{2}, R_{3}, L_{2}, L_{3}\right\}$, and
- bottom pentahedron Dwn $=\left\{R_{3}, R_{4}, L_{3}, L_{4}\right\}$.

Each component will appear in 3 possible types according to the vertical position of the respective pairs of vertices, $\left(L_{i}, L_{i+1}\right)$ and (R_{i}, $\left.R_{i+1}\right), i=1,2,3$, and each type will have 4 possible appearances (2 horizontally symmetric and 2 vertically symmetric):

- a (HalfAltern) type: ${ }_{(\mathrm{i})}(R L R L)_{(\mathrm{i}+1)}$ and ${ }_{(\mathrm{i})}(L R L R)_{(\mathrm{i}+1)}$, also ${ }_{(\mathrm{i}+1)}(R L R L)_{(\mathrm{i})}$ and ${ }_{(\mathrm{i}+1)}(L R L R)_{(\mathrm{i})}$;, - a (Alternative) type: $\left({ }_{(\mathrm{i})}(R R L L)_{(\mathrm{i}+1)}\right.$ and ${ }_{(\mathrm{i})}(L L R R)_{(\mathrm{i}+1)}$, also ${ }_{(\mathrm{i}+1)}(R R L L)_{(\mathrm{i})}$ and ${ }_{(\mathrm{i}+1)}(L L R R)_{(\mathrm{i})}$; - a (Central) type: ${ }_{(\mathrm{i})}(R L L R)_{(\mathrm{i}+1)}$ and ${ }_{(\mathrm{i})}(L R R L)_{(\mathrm{i}+1)}$, also ${ }_{(\mathrm{i}+1)}(R L L R)_{(\mathrm{i})}$ and ${ }_{(\mathrm{i}+1)}(L R R L)_{(\mathrm{i})}$.

Combining the 3 components (Upp, Mid, Dwn) and their 12 appearances (see them above) we have a total of 36 possible cases; 9 of them (basic varieties) are illustrated in Table 1, and the remaining 27 can be got by horizontal and/or vertical symmetries among these 9 basic varieties. I.e. we need only 9 basic computing modules for the integration of all TC6-s.

... The exact HT performance: an analytical solution

(5 HT-pixels are covered by the TC6 in this illustration)

How to integrate:
-(a) "horizontal plane-cut \leftrightarrow vertical integration", bad choice (many non-linearities)

- (b) "vertical plane-cut \leftrightarrow horizontal
integration" that we chose (!)

The exact HT performance:

Table 2. Volume calculus for the 3 basic types of TC6 (Upper) components

(halfAltern) RLRL		
RL	$V(b)=\left(b^{2} I_{U 1}(q)-2 b I_{U 2}(q)+\left.I_{U 3}(q)\right\|_{q=\alpha} ^{q=\theta_{R}}\right.$	$\begin{aligned} & R_{1} \geq b>L_{1}, \quad \theta_{L} \leq \alpha(b)<\theta_{R}, \\ & \theta_{R}-\theta_{L}=\Delta_{\theta} \end{aligned}$
LR	$V(b)=\left(b-L_{1}\right)\left(\left(b+L_{1}\right) I_{U 1}(q)-2 I_{U 2}(q)\right)_{q=\theta_{L}}^{q=\theta_{R}}$	$L_{1} \geq b>R_{2}, \theta_{R}-\theta_{L}=\Delta_{\theta}$
RL	$\begin{aligned} & V(b)=\left(b-R_{2}\right)\left(\left(b+R_{2}\right) I_{U 1}(q)-\left.2 I_{U 2}(q)\right\|_{q-e_{1}} ^{q-\alpha}+\right. \\ & +\left(R_{2} I_{U 4}(q)-I_{U 5}(q)+I_{U 6}(q)-R_{2} I_{U 7}(q)-R_{2}^{2} I_{U 1}(q)+\left.R_{2} I_{U 2}(q)\right\|_{q-\alpha} ^{q-\varepsilon_{2}}\right. \end{aligned}$	$\begin{aligned} & R_{2} \geq b>L_{2}, \quad \theta_{L} \leq \alpha(b)<\theta_{R}, \\ & \theta_{R}-\theta_{L}=\Delta_{\theta} \end{aligned}$
(Alternative) RRLL		
RR	$V(b)=\left.\left(b^{2} I_{U 1}(q)-2 b I_{U 2}(q)+I_{U 3}(q)\right)\right\|_{q-\alpha} ^{q-\theta_{l}}$	$\begin{aligned} & R_{1} \geq b>R_{2}, \quad \theta_{L} \leq \alpha(b)<\theta_{R} \\ & \theta_{R}-\theta_{L}=\Delta_{\theta} \end{aligned}$
RL	$\begin{aligned} V(b) & =\left(b^{2} I_{U 1}(q)-2 b I_{U 2}(q)+\left.I_{U 3}(q)\right\|_{q-\alpha} ^{q-\beta}+\left(I_{U 6}(q)-\left.I_{U 8}(q)\right\|_{q-\beta} ^{q-\varepsilon_{x}}\right.\right. \\ & -\left(R_{2}^{2} I_{U 1}(q)-2 R_{2} I_{U 2}(q)+\left.I_{U 3}(q)\right\|_{q-\theta_{s a 1}} ^{q-\theta_{z}}\right. \end{aligned}$	$\begin{aligned} & R_{2} \geq b>L_{1}, \quad \theta_{L} \leq \alpha(b) \leq \beta(b)<\theta_{R}, \\ & \theta_{L} \leq \theta_{R 12}<\theta_{R}, \quad \theta_{R}-\theta_{L}=\Delta_{\theta} \end{aligned}$
LL	$\begin{aligned} & V(b)=\left(b-L_{1}\right)\left(\left(b+L_{1}\right) I_{U 1}(q)-\left.2 I_{U 2}(q)\right\|_{q-\sigma_{2}} ^{a-\alpha}+\right. \\ & +\left(L_{1} I_{U 4}(q)-I_{U 5}(q)+I_{U 6}(q)-L_{1} I_{U 7}(q)-L_{1}^{2} I_{U 1}(q)+\left.L_{1} I_{U 2}(q)\right\|_{q-\alpha} ^{q-\omega_{12}}\right. \end{aligned}$	$\begin{aligned} & L_{1} \geq b>L_{2}, \quad \theta_{L} \leq \alpha(b)<\theta_{R}, \\ & \theta_{L} \leq \theta_{L 12}<\theta_{R}, \quad \theta_{R}-\theta_{L}=\Delta_{\theta} \end{aligned}$
(Central) RLLR		
RL	$V(b)=\left(b^{2} I_{U 1}(q)-2 b I_{U 2}(q)+I_{U 3}(q)\right)_{q=\alpha}^{q=\theta_{R}}$	$\begin{aligned} & R_{1} \geq b>L_{1}, \quad \theta_{L} \leq \alpha(b)<\theta_{R}, \\ & \theta_{R}-\theta_{L}=\Delta_{\theta} \end{aligned}$
LL	$V(b)=\left(b-L_{1}\right)\left(\left(b+L_{1}\right) I_{U 1}(q)-2 I_{U 2}(q)\right)_{q=\theta_{L}}^{q=\theta_{R}}$	$\begin{aligned} & L_{1} \geq b>L_{2}, \quad \theta_{L}<\theta_{R}, \\ & \theta_{R}-\theta_{L}=\Delta_{\theta} \end{aligned}$
LR	$\begin{aligned} & V(b)=\left(b-L_{2}\right)\left(\left(b+L_{2}\right) I_{U 1}(q)-\left.2 I_{U 2}(q)\right\|_{q-\alpha} ^{q-\theta_{s}}+\right. \\ & \quad+\left(L_{2} I_{U 4}(q)-I_{U 5}(q)+I_{U 6}(q)-L_{2} I_{U 7}(q)-L_{2}^{2} I_{U 1}(q)+\left.L_{2} I_{U 2}(q)\right\|_{q-\sigma_{2}} ^{q-\alpha}\right. \end{aligned}$	$\begin{aligned} & L_{2} \geq b>R_{2}, \quad \theta_{L} \leq \alpha(b)<\theta_{R}, \\ & \theta_{R}-\theta_{L}=\Delta_{\theta} \end{aligned}$

... The exact HT performance:

Table 2a. Solutions of basic integrals used in Table 2.

Integral	Pattern	Result formulae	A coefficient to multiply the final resultif $q \in \ldots$			
			$(-\pi / 2,-\pi / 4]$	(- $\pi / 4,0]$	$(0, \pi / 4]$	($\pi / 4, \pi / 2]$
$I_{U 1}(q)$	$\int \frac{d q}{\left(r_{2}-r_{1}\right) 2 M}$	$\ln \|\operatorname{tg}(q)\|$	$-\lambda \Delta_{\rho}$	$-\lambda \Delta_{\text {。 }}$	$\lambda \Delta_{\rho}$	$\lambda \Delta_{\text {。 }}$
$I_{U 2}(q)$	$\int \frac{r_{1} d q}{\left(r_{2}-r_{1}\right) 2 M}$	$x_{1} \ln \left\|\operatorname{tg} \frac{q}{2}\right\|+y_{1} \ln \left\|\left(1+\operatorname{tg} \frac{q}{2}\right) /\left(1-\operatorname{tg} \frac{q}{2}\right)\right\|$	- λ	- λ	λ	λ
$I_{U 3}(q)$	$\int \frac{r_{1}^{2} d q}{\left(r_{2}-r_{1}\right) 2 M}$	$x_{1}^{2} \ln \|\sin q\|-y_{1}^{2} \ln \|\cos q\|+x_{1} y_{1} q$	$-\lambda / \Delta_{\rho}$	$-\lambda / \Delta_{\rho}$	λ / Δ	λ / Δ
$I_{U 4}(q)$	$\int \frac{r_{2} d q}{\left(r_{2}-r_{1}\right) 2 M}$	$x_{2} \ln \left\|\operatorname{tg} \frac{q}{2}\right\|+y_{2} \ln \left\|\left(1+\operatorname{tg} \frac{q}{2}\right) /\left(1-\operatorname{tg} \frac{q}{2}\right)\right\|$	- λ	- λ	λ	λ
$I_{U 5}(q)$	$\int \frac{r_{2} r_{1} d q}{\left(r_{2}-r_{1}\right) 2 M}$	$\begin{aligned} x_{2} x_{1} \ln \|\sin q\|+\left(x_{2} y_{1}+\right. & \left.x_{1} y_{2}\right) q \\ & -y_{2} y_{1} \ln \|\cos q\| \end{aligned}$	$-\lambda / \Delta_{\rho}$	$-\lambda / \Delta_{\rho}$	λ / Δ	λ / Δ_{ρ}
$I_{U 6}(q)$	$\int \frac{r_{2} d q}{2 M}$	$x_{2} \ln \|\sin q\|+y_{2} q$	$\lambda \frac{\Delta_{x}}{\Delta_{\rho}}$	$-\lambda \frac{\Delta_{x}}{\Delta_{\rho}}$	$-\lambda \frac{\Delta_{y}}{\Delta_{\rho}}$	$-\lambda \frac{\Delta_{y}}{\Delta_{\rho}}$
		$x_{2} q-y_{2} \ln \|\cos q\|$	$-\lambda \frac{\Delta_{y}}{\Delta_{\rho}}$	$-\lambda \frac{\Delta_{y}}{\Delta_{\rho}}$	$\lambda \frac{\Delta_{y}}{\Delta_{\rho}}$	$\lambda \frac{\Delta_{y}}{\Delta_{\rho}}$
$I_{U 7}(q)$	$\int \frac{d q}{2 M}$	$\ln \left\|\operatorname{tg} \frac{q}{2}\right\|$	$\lambda \Delta_{*}$	$-\lambda \Delta_{*}$	$\lambda \Delta_{x}$	$\lambda \Delta_{*}$
		$\left.\ln \left(1+\operatorname{tg} \frac{q}{2}\right) /\left(1-\operatorname{tg} \frac{q}{2}\right) \right\rvert\,$	$-\lambda \Delta_{y}$	$-\lambda \Delta_{y}$	$\lambda \Delta_{y}$	$\lambda \Delta_{y}$
$I_{U 8}(q)$	$\int \frac{r_{1} d q}{2 M}$	$x_{1} \ln \|\sin q\|+y_{1} q$	$\lambda \frac{\Delta_{x}}{\Delta_{\rho}}$	$-\lambda \frac{\Delta_{x}}{\Delta_{\rho}}$	$\lambda \frac{\Delta_{x}}{\Delta_{\rho}}$	$\lambda \frac{\Delta_{x}}{\Delta_{\rho}}$
		$x_{1} q-y_{1} \ln \|\cos q\|$	$-\lambda \frac{\Delta_{y}}{\Delta_{\rho}}$	$-\lambda \frac{\Delta_{y}}{\Delta_{\rho}}$	$\lambda \frac{\Delta_{y}}{\Delta_{\rho}}$	$\lambda \frac{\Delta_{y}}{\Delta_{\rho}}$

... The exact HT performance:
where $r_{i}(q)=\rho_{i} \cos \left(q-\theta_{i}\right), \rho_{i}=\sqrt{x_{i}^{2}+y_{i}^{2}}, \theta_{i}=\operatorname{tg}\left(y_{i} / x_{i}\right),\left(x_{i}, y_{i}\right)=\left(x_{0} \pm \Delta_{x} / 2, y_{0} \pm \Delta_{v} / 2\right), i=1,2,3,4$; $2 M=r_{4}(q)+r_{3}(q)-r_{2}(q)-r_{1}(q) ; q \in\left[\theta_{I}, \theta_{R}\right), \quad \Delta_{x}=\Delta_{v}=1, \Delta_{\theta}=\pi / \Theta_{\max }, \Delta_{o}=\sqrt{X_{\max }^{2}+Y_{\max }^{2}} / P_{\max } ;$ $X_{\max }, Y_{\max }$ are the sizes of input image f, and $\Theta_{\max }, P_{\max }$ the output HT array size; $\lambda=\frac{f\left(x_{0}, y_{0}\right)}{2 \Delta_{x} \Delta_{y} \Delta_{\theta} \Delta_{\rho}}$
$f\left(x_{0}, y_{0}\right)$ is given pixel value, $\left(x_{0}, y_{0}\right) \in X_{\max } \times Y_{\max }$.

Each volume $V=V(b)$ is calculated from the beginning of the respective variety. Thus, the corresponding HT pixel accumulates a volume $\Delta V(b), b$ is the HT-pixel distance (lower side) to the beginning of the TC6.

Experiments

Comparison between both, iterative and precise, performances of $(\rho, \theta) \mathrm{HT}$:

- A test (image $65^{*} 65$ of a "white" pixel $(x, y)=(0,-$ 32) on a "black" background);
-Small vertical differences (mean ~3.53\%) between both Cosinusoide shapes (as expected);
- For better visibility the result is amplified to the maximal intensity;

Experiments

(a)

(b)

(c)

Comparison with a FRFT (Fractional FT) performance of (ρ, θ)-HT, on an example borrowed from [12]: a) and b) an image and their HT [12], and c) our exact HT .

It can be seen that at least 3 of the 6 corresponding peaks are damaged in FRFT approach, appearing fuzzy in twin peaks each.
This, of course, does not discredit the particular application [12] (of hieroglyph recognition), but it confirms the thesis - in quick implementations of HT there is still a lot to be desired, at least in terms of accuracy.

Where to apply

- Generally in images of small resolution, for example: - in relatively small images (for example, with reduced resolution) - in determining the slope of relatively small objects (i.e. on small portions of the image);
- Wherever accuracy of HT or its individual projections dominate the processing time:
- in test and setup of new algorithms and/or software for HT performance; - in a comparative analysis of experimental determination of error in other implementations of HT ;
- Like most other algorithms for image processing, the proposed method involves efficient parallel implementations.

Conclusion marks

- An analytic performance of the exact $(\rho, \theta) \mathrm{HT}$ has been proposed.
- The performance complexity is cubic $\sim X_{\text {size }} Y_{\text {size }} \Theta_{\text {size }}$, i.e. similar to the standard realizations of HT.
- Preciseness - maximal by definition (!)
- Consequently, at equal other conditions - the input image grid ($X_{\text {size }}, Y_{\text {size }}, \Delta_{x}, \Delta_{y}$) and the chosen grid for HT output ($P_{\text {size }}, \Theta_{\text {size }}, \Delta_{\rho}, \Delta_{\theta}$), there exists a limit of preciseness (i.e. a mean square error) which if be kept then our analytical approach will gain in processing speed.

Thank You

(for your questions ©)

