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Motivation |

A living cell is a complex system

Genes and gene products interact in
complicated patterns

controlled by biochemical
Interactions and requlatory activities

Uncovering the interaction pictures]

Modelling functional interactions between
genes, proteins and transcriptional factors
in a Gene Regulatory Network (GRN)
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Motivation |

Complexity needs mathematical modelling

High-throughput technologies provide
huge amounts of data

Theoretical and computational approaches are
necessary to model gene regulatory networks

Stochastic tools: Graphical models]

Study and visualize the conditional
Independence structure between random
variables (e.g. microarray data)

R Anglani, PR PS BB 2011 - 13. Sept 2011 - A comparative study of GGM approaches for genomic data



Preliminary investigation on isoprenoid pathways in A. thaliana

n Compare different theoretical approachesl
for the study of the conditional
dependencies
E Infer a gene network |

for the i1soprenoid biosinthesis pathways
N A. thallana
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n Compare different theoretical approaches]

for the study of the conditional
dependencies
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1.0 Graphical models |

N P
N

O mm s-m
s o ’

O [EIEY  genes
AN O IEXX  conditional dependencies

ADVANTAGE powerful tool for small # of genes

(wrt # observations)

SHORTCOMING high-throughput data

# genes p >> # samples n

PROBLEM for any statistical inference

for the reliability of inferred GRNs
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1.1 GGMs with pairwise Markov property |

In this study we consider only
undirected Gaussian graphs

with pairwise Markov property

p-VARIATE X =(X1,Xs3,...,X,) €eR?
NORMAL
DISTRIBUTION (4,7) ¢ E <= X; 1L X | Xv\qin

<~
PigV\{i,j} =0
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1.2 Facing n<<p problem |

Partial correlation matrix Is then

crucial for study of the edge structure

HOW TO SOLVE n << p PROBLEM? |
Reducing # of genes or gene Hsts]

Toh & Horimoto (2002)

Evaluating only limited-order Corre\ation|

Wille & Bulhman (2004), Castelo & Roverato (20006), Gilbert & Dudoit (2009)

Regularized estimates of precision matrix]

Yuan & Lin (2007), Friedman & Tibshirani (2008), Witten & Tibshirani (2009)

Pseudoinv. estimates of precision matrix]

Schaffer & Strimmer (2005)
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1.3 Moore-Penrose Pseudoinverse |

11  L12 L1p
DATASET w/ To1 T2 T2y E?,mﬂf“g: =S
n SAMPLES DG A
p VARIABLES — O
INV. COVAR.
n<p Inlt Ln1 - Lnp
The precision matrix © is obtained
Moore-Penrose P

. as pseudoinverse of S, by using the
PSEUdOINVErSe| gingular Value Decomposition

by
'OZ]'V\{ZJ} o \/027,6)]]
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1.4 L2 penalization |

Cov-regularized The precision matrix © is obtained
from maximization of a log-likelinood

function with a L2 penalization
Witten & Tibshirani (2009)

L(®) =logdet ® — Tr(S®) — \||®O]% (A >0)

S, \/8?—|—8)\
AN 4\

G = g 6’i+u7;u,iT 19|12 = (7 O)
;

method

EIGENVALUE ~1 - + _
PROBLEM O  —-2)00=5 = 0§ =

CHOICE OF THE the dataset in a training and a validation sets and then we evaluate the log-
PARAMETER \ e T . O
likelihood over the validation set Friedman & Tibshirani (2008)

- A that maximizes penalized log-likelihood: we carry out 20 random splits of
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1.5 Regularized Least Squares |

Given RLS estimates of the variables
Xi and Xj, we evaluate Pearson
correlation between the residuals

Residual corr.
method

RE‘I"'““::::““ Xi = By, X)) + b X; = (B, Xviy) + b

CHOIGE OF THE minimization of the Leave-One-Out cross validation errors

1
REGULARIZED - . a 2 12
Jmin 1% = B X3 4+ Al
RESIDUAL _ Y. _¥%. r.=X._YX.
cov(r;,r;)
PARTIAL CORR y R ) = Ty
P VAL \/var(r;)var(r;) Trirg

PARAMETER A\
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1.6 A comparative study |

B ER EI B3 from multivariate Gaussian
LSO [ BN B B distribution N(O, Zgs), Zgs = Ogs™!

KT -2
cuiaues 2

RANDOM off-diagonal terms are set randomly to a fixed value Ok = 6

m we partition the columns into disjoint groups Gk

Index k indicates the k-th column chosen as central in each group.
off-diagonal terms 0= 0 if / € Gk, otherwise Bk=0

H:
AND SPARSITY
OF Oy

fully connected hubs

ACCURACY T
TR evaluate timing and AUC performances

(Accuracy of classification of edges and non-edges)
Friedman & Tibshirani (2010)
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| CLIQUES
- For each pattern, for each inferring method, we



1.7 Results of comparative study

loc PINV RCM

n AUC AUCstd T (s) | AUC AUCstd T (s) | AUC AUCstd T (s)

r 500 | 0.998  0.0001  38.86 | 0.987  0.0006 0.161 | 0.999  0.0001 8343
h 500 | 1.000 0.0000  83.74 | 0.999  0.0000 0.164 | 1.000  0.0000 6468
c 500 | 0.995  0.0002 84.95 | 0963  0.0014  0.164 | 0.996  0.0002 6449
r 200 | 0.976 0.0003 3844 | 0581  0.0161 0.111 | 0984  0.0006 3566
h 200 | 1.000 0.0000 81.13 | 0.806 0.0150 0.115 | 0.999  0.0001 3555
c 200 | 0936  0.0008  82.02 | 0.587  0.0049  0.121 | 0.923  0.0009 3747
r 20 | 0.808 0.0011  39.03 | 0.929  0.0018  0.093 | 0.924  0.0017 105
R 20 | 0999  0.0001  82.03 | 1.000 0.0000  0.091 | 0.999  0.0000 106
c 20 | 0.668 0.0014 82.13 | 0.659  0.0014  0.091 | 0.659  0.0014 108
n AUC AUCstd T (s) AUC AUCstd T (s) AUC AUCstd T (s)

r 500 | 0.999  0.0001 5.807 | 0.999  0.0001  0.0377 | 0.999  0.0001 807
h 500 | 1.000 0.0000 10.655 | 1.000  0.0000  0.0376 | 1.000  0.0000 450
¢ 500 | 0.996 0.0002  10.821 | 0.999  0.0001  0.0439 | 0.999  0.0000 436
r 200 | 0.986 0.0003  5.592 | 0.703  0.0067  0.0310 | 0.990  0.0007 861
h 200 | 1.000 0.0000 10.425 | 0.748  0.0124  0.0309 | 0.999  0.0003 856
¢ 200 | 0944 0.0010 10.529 | 0.612  0.0064  0.0336 | 0.950 0.0008 1028
r 20 | 0.784  0.0016  6.150 | 0.880  0.0048  0.0187 | 0.871  0.0046  24.5
h 20 | 0999  0.0001 10.574 | 0.999  0.0002  0.0182 | 0.999  0.0001  27.9
Schaffer & - 20 | 0660  0.0016 10545 | 0.649  0.0017  0.0189 | 0.654  0.0017  25.3

Strimmer (2005)
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E Infer a gene network |

for the Isoprenoid biosinthesis pathways
N A. thallana
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2.1 Isoprenoid pathways in A. Thaliana |

ISOPRENOIDS m acetyl - CoA / GAP + pyruvale PLASTID
AACT 4 vDXS ot

DxP

aceioacetyl-Cod
group of plant natural products. sy YDXR
MVA  HmMGRy o MEP
“w:ﬂup v MCS
membrane components, PMKy M D e
MVPP HMEPF— & fiins
hormones and plant defence N MPD _HDR
compounds, etc cytokinins *—BMLTL—F/IF' -------- o [ e s <o prene |
prlnfl-FP \pmn?l-F'P y-PP
MVA AND MPE PATHWAYS —vy i — /’:}“ i e Armmee
: lated sesquiterpenes carotenoids i
They are synthesized through prem "’“":_Em _ ADA .y E,f,m"m
. i rols
two different routes that take v MITOCHONDRIA Q"“““‘"" g —
, L brassinostercids chlarophylls
place in two distinct cellular
compartmentsl image from Universitat de Barcelona website http://www.bqg.ub.es/~mrodrigu/RESEARCH.htm

Evidence of interactions at metabolic level

Laule et al., PNAS (2003) Gene expression levels do not respond to the single inhibition

of the two pathways

Beyond one-gene approach, a GRN has been inferred (795
A= o 3 Jeneexpr. levels from other 56 pathways). It has been
Biology (2004) shown the possible presence of various connections
between genes in the two pathways, i.e. possible crosstalk at
trascriptional level
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http://www.pb.ethz.ch/research/isoprenoid
http://www.pb.ethz.ch/research/isoprenoid

2.2 Inferring the crosstalk

= GGPPS9 <ol sl
\ GGPPS4
39 genes E.L. MVA & MEP MPDC _/ FPPS?
- 118 observations pPs1 LS i — il
\ )IPPIZ MPDC2 /
/
795 genes E.L. 56 PATHWAYS - // \ // // ~

DXR GGPPS2
IPPI1 TA | CMK
MecPs [~{aappsi2 / \
PPDS2
/ N veT [ Gappss

HDS PPDS1
GGPPS10 GGPS DPPS2 GGPPS11

: |
GRAPH 95% bootstrap c.i. e 1 [ Earems HDR DXPS2 UPPS1
SELECTION of the statistics. \ T = P

For each pathway: a module with strongly interconnected and positively correlated genes

Two strong candidate hub genes for the cross-talk between the pathways: HMGS and HDS

The negative correlation between HMGS and HDS means that they respond differently to
the several tested experimental conditions: possible evidence of a cross-talk
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Conclusions

We have provided a preliminary comparative study of three methods to
obtain estimates of partial correlation matrix, in the regime n <<p

On the basis of the best AUC and timing performances, we have
applied a covariance-regularized method (with L2 penalty) to infer a gene
network for isoprenoid biosynthesis pathways in Arabidopsis thaliana

We have found the evidence of cross-talk between the two pathways
MVA and MEP, as expected in literature

Outlook

B8 Improving inferring methods (e.g. novel algorithms for a more accurate
edge selections) and applications to cancer or human disease

ﬂ Investigation based a priori on real network properties (scale-free and
small-world topologies, etc.)
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Thanks for your attention

No problem is too small or too trivial if we can really do something
about it. (R. P. Feynman)
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Bootstrap confidence interval |

Generate 100 resamples of the observed dataset (of equal
size of the observed data set), obtained by random sampling
with replacement from the original dataset.

We build a distribution for each element of the rho matrix, and
we consider a non-edge If the zero value Is contained in the
95% confidence interval.
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Area Under the ROC curve |

AUC is equal to the probability that a classifier will rank
randomly chosen positive istance higher than a randomly
chosen negative one.

A singular value decomposition of a m x ¢ matrix M, is M = UAV*, where U
is a m X m unitary matrix, A is m X ¢ diagonal matrix with nonnegative real
numbers on the diagonal and V* is a ¢ X ¢ unitary matrix (transpose conjugate
of V). Then, the pseudoinverse of M is M™ = VATU*, where A™ is obtained
by replacing each diagonal element with its reciprocal and then transposing the
matrix.
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20 random splits |

Split in X9 and X1 then evaluate S9. Then for a fixed window
of lambda and evaluate Theta9 from the penalized log-
likelihood.

For 20 splits we evaluate the log-likelihood the log-likelihood
without penalty using S1, according to a fixed window of
lambda values.

For each value of lambda we evaluate the average of the log-
ikelihood value over the 20 spilits.
Then we choose among the window of lambdas, the one that
maximizes the log-likelihood.
Then we use this lambda to evaluate the final precision matrix
over the original dataset.
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