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Motivation
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Genes and gene products interact in 
complicated patterns

controlled by biochemical 
interactions and regulatory activities

A living cell is a complex system

Modelling functional interactions between 
genes, proteins and transcriptional factors

in a Gene Regulatory Network (GRN) 

Uncovering the interaction pictures
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High-throughput technologies provide 
huge amounts of data

Theoretical and computational approaches are 
necessary to model gene regulatory networks

Study and visualize the conditional 
independence structure between random 

variables (e.g. microarray data)

Complexity needs mathematical modelling 

Stochastic tools: Graphical models
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Scope
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for the study of the conditional 
dependencies

Compare different theoretical approaches1

for the isoprenoid biosinthesis pathways 
in A. thaliana 

Infer a gene network 2

Preliminary investigation on isoprenoid pathways in A. thaliana
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for the study of the conditional 
dependencies

Compare different theoretical approaches1



1.0 Graphical models
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VERTICES genes

EDGES conditional dependencies

ADVANTAGE

SHORTCOMING

GRAPH

powerful tool for small # of genes 
(wrt # observations)

high-throughput data
 # genes p >> # samples n

PROBLEM for any statistical inference
for the reliability of inferred GRNs

G = (V,E)



1.1 GGMs with pairwise Markov property
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In this study we consider only
undirected Gaussian graphs
with pairwise Markov property 

X = (X1, X2, . . . , Xp) ∈ Rp

(i, j) /∈ E Xi ⊥⊥ Xj | XV \{i,j}⇔

⇔

ρij·V \{i,j} = 0

p-VARIATE
NORMAL 

DISTRIBUTION

UNDIRECTED
GRAPHS

ABSENCE 
OF EDGE



1.2 Facing n<<p problem
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Partial correlation matrix is then
crucial for study of the edge structure

HOW TO SOLVE n << p PROBLEM?

Reducing # of genes or gene lists 
Toh & Horimoto (2002)

Evaluating only limited-order correlation
Wille & Bulhman (2004), Castelo & Roverato (2006), Gilbert & Dudoit (2009) 

Regularized estimates of precision matrix
Yuan & Lin (2007), Friedman & Tibshirani (2008), Witten & Tibshirani (2009)
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Pseudoinv. estimates of precision matrix
Schaffer & Strimmer (2005)
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1.3 Moore-Penrose Pseudoinverse
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ρij·V \{i,j} = − θij√
θiiθjj

i "= j

Moore-Penrose 
pseudoinverse

X =





x11 x12 · · · x1p

x21 x22 · · · x2p
...

... · · ·
...

xn1 xn1 · · · xnp




DATASET w/
n SAMPLES

p VARIABLES

ESTIMATE OF 
COVARIANCE = S
ESTIMATE OF 
INV. COVAR.

= Θ̂
n < p

The precision matrix ϴ is obtained 
as pseudoinverse of S, by using the 
Singular Value Decomposition

PINV



1.4 L2 penalization
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Cov-regularized 
method

The precision matrix ϴ is obtained 
from maximization of a log-likelihood 
function with a L2 penalization

#2

L(Θ) = log detΘ− Tr(SΘ)− λ‖Θ‖2
F

‖Θ‖2
F = tr(Θ!Θ)

θ±i = − si

4λ
±

√
s2

i + 8λ

4λ
Θ−1 − 2λΘ = S

(λ > 0)

⇒

Θ̂ =
∑

i

θ+
i uiu!i

 λ that maximizes penalized  log-likelihood: we carry out 20 random splits of 
the dataset in a training and a validation sets and then we evaluate the log-
likelihood over the validation set Friedman & Tibshirani (2008)

CHOICE OF THE 
PARAMETER λ

EIGENVALUE 
PROBLEM

Witten & Tibshirani (2009)

L2C



1.5 Regularized Least Squares
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ρij·V \{i,j} =
cov(ri, rj)√
var(ri)var(rj)

= rrirj

Residual corr. 
method

Given RLS estimates of the variables 
Xi and Xj, we evaluate Pearson 
correlation between the residuals

RCM

ri = X̃i −Xi rj = X̃j −Xj

REGRESSION
MODEL

REGULARIZED
LEAST SQUARES

RESIDUAL
VECTORS

Xj = 〈β(j),X\i\j〉 + bjXi = 〈β(i),X\i\j〉 + bi

PARTIAL CORR
MATRIX

CHOICE OF THE 
PARAMETER λ minimization of the Leave-One-Out cross validation errors

min
β∈Rp−2

1
n
‖Xi − β(i)X\i\j‖2

2 + λ‖β(i)‖2
2



1.6 A comparative study
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GENERATED
DATASETS

50 200 400

20 200 500

from multivariate Gaussian 
distribution N(0, Σgs), Σgs = ϴgs-1

STRUCTURE 
AND SPARSITY

OF ϴgs-1

RANDOM HUBS

CLIQUES

p(p-1)/2

2p

we partition the columns into disjoint groups Gk 
index k indicates the k-th column chosen as central in each group. 
off-diagonal terms θik = θ if  i ∈ Gk, otherwise θik = 0

RANDOM

HUBS

CLIQUES

off-diagonal terms are set randomly to a fixed value θik = θ

fully connected hubs

For each pattern, for each inferring method, we 
evaluate timing and AUC performances 
(Accuracy of classification of edges and non-edges)

p

n

ACCURACY
AND TIMING

Friedman & Tibshirani (2010)



1.7 Results of comparative study
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A COMPARATIVE STUDY OF GAUSSIAN GRAPHICAL MODEL APPROACHES FOR GENOMIC DATA5

!2C PINV RCM

n AUC AUC std T (s) AUC AUC std T (s) AUC AUC std T (s)

r 500 0.998 0.0001 38.86 0.987 0.0006 0.161 0.999 0.0001 8343
h 500 1.000 0.0000 83.74 0.999 0.0000 0.164 1.000 0.0000 6468
c 500 0.995 0.0002 84.95 0.963 0.0014 0.164 0.996 0.0002 6449

r 200 0.976 0.0003 38.44 0.581 0.0161 0.111 0.984 0.0006 3566
h 200 1.000 0.0000 81.13 0.806 0.0150 0.115 0.999 0.0001 3555
c 200 0.936 0.0008 82.02 0.587 0.0049 0.121 0.923 0.0009 3747

r 20 0.808 0.0011 39.03 0.929 0.0018 0.093 0.924 0.0017 105
h 20 0.999 0.0001 82.03 1.000 0.0000 0.091 0.999 0.0000 106
c 20 0.668 0.0014 82.13 0.659 0.0014 0.091 0.659 0.0014 108

Table I. – AUC, AUC standard error and timing performances for p = 400. Left part: !2C

method. Center part: PINV. Right part: RCM. Indices r, h and c stand for random, hubs and
clique pattern, respectively.

precision matrix is partitioned as done in hubs and the off-diagonal terms θij are set to
θ if i, j ∈ Gk, with i "= j. The positive definiteness for each configuration, is guaranteed
by the diagonal entries which are selected in order to keep Θth diagonally dominant.

3
.2. Performances . – In order to compare the performances of the three methods, we

have used this procedure: (I) For each data generation pattern, draw a random dataset
X from N (0,Σth); (II) Evaluate S and Θexp in the case of PINV and "2C , hence find
ρexp from Eq. (??); in the case of RCM use Eq. (??) for the evaluation of ρexp; (III)
For each method, evaluate the AUC performance, as follows. Since the edges in our
simulated dataset have the same strength and we know the label edge and non-edge
for each element, the elements of ρexp can be divided in two sets: ρexp for the edge
elements and ρexp for the non-edge ones. The AUC measures the performances of the
three methods in terms of accuracy of classification of edge and non-edges by using the
relative ρexp values.

4. – Results

In Tables ??, ?? and ?? we present the AUC, AUC standard error and timing (in
seconds) performances for p = {400, 200, 50}, respectively. Each table is divided in three
columns related to the analyzed methods. Indices r, h, and c refer to the three data
generation methods: random, hubs, and clique. The results shown are averaged over 20
trials for n = {500, 200, 20}.

As expected, when n > p all methods provide the same efficiency with an AUC
virtually equal to 1. In fact, in this case the use of regularization methods should be not
required. When p > n, we find that PINV presents some instability in AUC outcomes,
mainly in those region when p ≈ n/2. This can be due to a “resonance effect”, as
explained in Refs. [?, ?]. Instead, RCM and "2C show high value of AUC in all settings
and have similar performances, almost indipendently of the range of p and n. Note that,
only in the random configuration, when n = 20 and p = {200, 400}, RCM shows AUC

6 P.F. STIFANELLI ETC.

!2C PINV RCM

n AUC AUC std T (s) AUC AUC std T (s) AUC AUC std T (s)

r 500 0.999 0.0001 5.807 0.999 0.0001 0.0377 0.999 0.0001 807
h 500 1.000 0.0000 10.655 1.000 0.0000 0.0376 1.000 0.0000 450
c 500 0.996 0.0002 10.821 0.999 0.0001 0.0439 0.999 0.0000 436

r 200 0.986 0.0003 5.592 0.703 0.0067 0.0310 0.990 0.0007 861
h 200 1.000 0.0000 10.425 0.748 0.0124 0.0309 0.999 0.0003 856
c 200 0.944 0.0010 10.529 0.612 0.0064 0.0336 0.950 0.0008 1028

r 20 0.784 0.0016 6.150 0.880 0.0048 0.0187 0.871 0.0046 24.5
h 20 0.999 0.0001 10.574 0.999 0.0002 0.0182 0.999 0.0001 27.9
c 20 0.669 0.0016 10.545 0.649 0.0017 0.0189 0.654 0.0017 25.3

Table II. – AUC, AUC standard error and timing performances for p = 200. Left part: !2C

method. Center part: PINV. Right part: RCM. Indices r, h and c stand for random, hubs and
clique pattern, respectively.

values 10% larger than !2C ones. On the other hand, the timing comparison highlights
that !2C is much faster than the RLS-based method.

5. – Application to biological pathways

Isoprenoids play various important roles in plants, functioning as membrane compo-
nents, photosynthetic pigments, hormones and plant defence compounds. They are syn-
thesized through condensation of the five-carbon intermediates isopentenyl diphosphate
(IPP) and dimethylallyl diphosphate (DMAPP). In higher plants, IPP and DMAPP are
synthesized through two different routes that take place in two distinct cellular com-
partments. The cytosolic pathway, also called MVA (mevalonate) pathway, provides the
precursors for sterols, ubiquinone and sesquiterpenes [17]. An alternative pathway, called
MEP/DOXP (2-C-methyl-D-erythritol 4-phosphate / 1-deoxy-D-xylulose 5-phosphate),
is located in the chloroplast and is used for the synthesis of isoprene, carotenoids, abscisic
acid, chlorophylls and plastoquinone [18]. Although this subcellular compartmentation
allows both pathways to operate independently, there are several evidences that they can
interact in some conditions [19]. Inhibition of the MVA pathway in A. thaliana leads to an
increase of carotenoids and chlorophylls levels, demonstrating that its decreased function-
ing can be partially compensated for by the MEP/DOXP pathway. Inversely, inhibition
of the MEP/DOXP pathway in seedlings causes the reduction of levels in carotenoids and
chlorophylls, indicating a unidirectional transport of isoprenoid intermediates from the
chloroplast to the cytosol. In order to investigate whether the transcriptional regulation is
at the basis of the crosstalk between the cytosolic and the plastidial pathways, Laule et al.
[19] have studied this interaction by identifying the genes with expression levels changed
as a response to the inhibition. They have shown that the inhibitor mediated changes in
metabolite levels are not reflected in changes in gene expression levels, suggesting that
alterations in the flux through the two isoprenoid pathways are not transcriptionally
regulated. In order to clarify the interaction between the two pathways at the transcrip-

p = 400

p = 200

Schaffer & 
Strimmer (2005)
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for the isoprenoid biosinthesis pathways 
in A. thaliana 

Infer a gene network 2



2.1 Isoprenoid pathways in A. Thaliana
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group of plant natural products. 

They are synthesized through 
two different routes that take 
place in two distinct cellular 
compartments.

membrane components, 
hormones and plant defence 
compounds, etc.

Evidence of interactions at metabolic level 
Gene expression levels do not respond to the single inhibition 
of the two pathways

Laule et al., PNAS (2003)

Beyond one-gene approach, a GRN has been inferred (795 
gene expr. levels from other 56 pathways). It has been 
shown the possible presence of various connections 
between genes in the two pathways, i.e. possible crosstalk at 
trascriptional level

Wille & Bulhman, Genome 
Biology (2004)

ISOPRENOIDS

FUNCTIONS

MVA AND MPE PATHWAYS

image from Universitat de Barcelona website http://www.bq.ub.es/~mrodrigu/RESEARCH.htm

http://www.pb.ethz.ch/research/isoprenoid
http://www.pb.ethz.ch/research/isoprenoid


2.2 Inferring the crosstalk
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DATASET

39 genes E.L.

+
795 genes E.L.

MVA & MEP

56 PATHWAYS

Wille (2004)

L2CMETHOD

GRAPH 
SELECTION

95% bootstrap c.i. 
of the statistics.

For each pathway: a module with strongly interconnected and positively correlated genes

Two strong candidate hub genes for the cross-talk between the pathways: HMGS and HDS

The negative correlation between HMGS and HDS means that they respond differently to 
the several tested experimental conditions: possible evidence of a cross-talk

1

2

3

118 observations



Conclusions
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We have provided a preliminary comparative study of three methods to 
obtain estimates of partial correlation matrix, in the regime n << p
On the basis of the best AUC and timing performances, we have 
applied a covariance-regularized method (with L2 penalty) to infer a gene 
network for isoprenoid biosynthesis pathways in Arabidopsis thaliana

1

2

3 We have found the evidence of cross-talk between the two pathways 
MVA and MEP, as expected in literature

Outlook

Improving inferring methods (e.g. novel algorithms for a more accurate 
edge selections) and applications to cancer or human disease

I

Investigation based a priori on real network properties (scale-free and 
small-world topologies, etc.) 

II
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Thanks for your attention

No problem is too small or too trivial if we can really do something 
about it. (R. P. Feynman)



Bootstrap confidence interval
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Generate 100 resamples of the observed dataset (of equal 
size of the observed data set), obtained by random sampling 

with replacement from the original dataset.

We build a distribution for each element of the rho matrix, and 
we consider a non-edge if the zero value is contained in the 

95% confidence interval.



Area Under the ROC curve
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AUC is equal to the probability that a classifier will rank 
randomly chosen positive istance higher than a randomly 

chosen negative one.

A singular value decomposition of a m× q matrix M , is M = UΛV ∗ , where U
is a m ×m unitary matrix, Λ is m × q diagonal matrix with nonnegative real
numbers on the diagonal and V ∗ is a q× q unitary matrix (transpose conjugate
of V ). Then, the pseudoinverse of M is M+ = V Λ+U∗, where Λ+ is obtained
by replacing each diagonal element with its reciprocal and then transposing the
matrix.



20 random splits
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For 20 splits we evaluate the log-likelihood the log-likelihood 
without penalty using S1, according to a fixed window of 

lambda values.

For each value of lambda we evaluate the average of the log-
likelihood value over the 20 splits.

Then we choose among the window of lambdas, the one that 
maximizes the log-likelihood.

Split in X9 and X1 then evaluate S9. Then for a fixed window 
of lambda and evaluate Theta9 from the penalized log-

likelihood.

Then we use this lambda to evaluate the final precision matrix 
over the original dataset.


