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Abstract

This paper presents a novel algorithm for estimating
stereo disparity which exploits the benefit of learning
to the fullest. Given a cost volume of stereo matching,
we solve the cost aggregation and disparity computa-
tion in one shot by using a classifier; we design a fea-
ture called matching cost pattern for the input which
we extract from the cost volume while we use simu-
lated stereo patterns for training. To this end, we intro-
duce a highly realistic computer graphics dataset, the
new Tsukuba stereo dataset, with ground-truth dispar-
ity maps. Through preliminary experiments we show
that our algorithm outperforms a simplified AD-Census
cost-minimization method, and also that the error ra-
tio decreases as we use a larger number of samples for
training.

1. Introduction

Stereo matching is one of the most widely stud-
ied research topics in computer vision. A number of
new algorithms have been presented every year, a large
set of which fall in the taxonomy of Scharstein and
Szeliski [11], performing some subset of the follow-
ing four building blocks: matching cost computation,
cost aggregation, disparity computation, and disparity
refinement. During cost computation step, each pixel
in the reference image is compared against a potentially
corresponding pixel in its stereo pair considering a cer-
tain disparity. The similarity between these pixels is
regarded as a matching cost. In cost aggregation step,
the cost is aggregated using either a window of constant
size or adaptive size [14]. Then, the disparity computa-
tion is performed by selecting the minimal aggregated
value, or considering it as an energy minimization prob-

Figure 1: The new Tsukuba CG Stereo Dataset. A
few example frames shown with ground-truth disparity
maps among four sequences of 1800 stereo image pairs.

lem [13]. Finally, the often noisy disparity map is re-
fined by using post-processing methods such as hole
filling [1]. See [11, 13, 2] for some evaluations of dif-
ferent algorithms in terms of their accuracy and compu-
tational efficiency.

In this paper, we focus our attention on learning-
based approach to stereo disparity computation, to
which relatively little work have been reported de-
spite the generality of learning methods in other tasks
of computer vision such as recognition and segmen-
tation; existing stereo methods with few exceptions
[10, 5, 4] do not exploit the hidden information that
can be learned from ground-truth. The main reason for
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this is in the deficiency of sufficient training data with
ground-truth labels which would be required for a re-
liable disparity computation. In recent years, however,
CG techniques have played inspiring roles for synthe-
sizing training data to fill the void in a few domains of
computer vision [12, 9], and a tremendous effect was
demonstrated in human pose recognition [12].

In order to overcome the above issue in learning-
based stereo, we also introduce a highly realistic CG
stereo dataset, the new Tsukuba stereo dataset, contain-
ing a large amount of stereo pairs with highly accu-
rate ground-truth disparity maps as a source for learning
stereo patterns. Figure 1 shows some of the frames in
the dataset with the corresponding ground-truth dispar-
ity maps.

The concept of learning can be introduced in dif-
ferent steps of stereo matching [10, 5, 4]. The prob-
abilities of matching errors are learned in [4], and in
a global optimization approach [10] free parameters in
conditional random field are learned. Armed with a rich
CG dataset for training, in our case, we propose to deal
with the steps of cost aggregation and disparity com-
putation altogether by learning. For the initial step of
computing matching cost, we utilize the state-of-the-art
measure of AD-Census [7]. For the final classification
of disparity, we choose to use Multiclass Linear Dis-
criminant Analysis (Multiclass LDA)[3]. To the best of
our knowledge, this is the first attempt to infer a dis-
parity map based purely on learning with CG data. The
goal of the paper is then to study the performance of
such a simulation-driven approach using the newly cre-
ated data set; it can for example learn the peculiarities
of stereo patterns in low textured areas and infer an im-
proved disparity value.

To sum, the contributions of this paper are (i) the
new learning-based approach to compute stereo dispar-
ity, (ii) the new Tsukuba stereo dataset, and also (iii) a
method to generate a confidence map for the computed
disparities in the framework of classification. We show
the benefits of our approach by applying a real stereo
image pair to the trained classifier.

2 Simplified AD-Census

In this section we briefly describe the initial match-
ing cost defined by AD-Census [7] which we use for
generating the input to our disparity classification.

AD-Census cost initialization. AD-Census com-
bines the Absolute Difference (AD) cost measure and
a non-parametric transform called Census [15] which
captures the local structure of the image using the rela-
tive ordering of the pixel intensities rather than the in-
tensity values themselves.

Following [7], we define at each pixel (u, v) and dis-
parity level d the two measures Ccensus(u, v; d) and
CAD(u, v; d). For CCensus we use a 9 × 7 window to
encode the local structure in the region centered at each
pixel in a 64-bit string, and therewith Ccensus(u, v; d)
is defined as the Hamming distance of the two bit
strings that stand for pixel (u, v) and its correspondence
(u − d, y) in the other image [15]. The second cost
value, CAD is defined as the absolute color intensity
difference between the pixel (u, v) in the left image and
its correspondent (u− d, y) in the right image.

The total AD-Census cost C(u, v; d) is then com-
puted as:

C(u, v; d) = f(Ccensus(u, v; d), αcensus)+

f(CAD(u, v; d), αAD),
(1)

where f(c, α) is a function on variable c defined as
f(c, α) = 1 − exp(−c/α) with two goals, first to
map the value of the different cost measures to the
range [0, 1] and second to control the influence of each
cost measure with the parameter α. We used the same
αcensus and αAD as in [7] to calculate the initial cost
volume, C, containing C(u, v; d) for all (u, v) and d.
For further details on AD-Census cost initialization re-
fer to [7].

Disparity with cost minimization. Once the initial
cost volume, C, has been calculated, that information
can be used to estimate the disparity map. A simple
version of the AD-Census matching is to use a fixed
aggregation window of 9×7 pixels around (u, v) to sum
the cost of neighboring pixels, instead of an adaptive
aggregation window. The cost aggregation CAgg can
be performed on each disparity plane, with D being the
maximum number of disparities. One standard way to
obtain a disparity map, Z, is then to compute

Z(u, v) = argmin
d

CAgg(u, v; d), (2)

and we will use it for a comparison to our method.

3 Learning disparity

After cost initialization, stereo matching algorithms
usually proceeds with three more steps: cost aggrega-
tion, disparity computation, and refinement1. In this
section we introduce our algorithm to compute the
stereo disparity using Multiclass LDA, and a method
for generating a confidence map for the computed stereo
disparity values.

1The step could independently be applied to the output disparity
map and therefore beyond the scope of this paper.
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Figure 2: Our new algorithm for computing disparity in
a classification framework.

Disparity with Multiclass LDA. Rather than aggre-
gating the cost in the window around a certain pixel,
we propose to directly use the costs in the aggregation
window of each disparity plane by concatenating them
across the depth direction into the features called match-
ing cost pattern. See Figure 2. That is, each match-
ing cost pattern will have a size of 9 × 7 × D. Then,
those features are used as inputs to a Multiclass LDA
classifier that has been previously trained using learning
data. Before applying Multiclass LDA, PCA is applied
to the matching cost pattern to overcome a singularity,
the PCA dimension was set to 33 which has 99.9% cu-
mulative contribution ratio. Hence, we solve a classi-
fication problem instead of a minimization problem to
compute disparity, i.e. given the input matching cost
pattern, x(u, v), we compute the disparity by

Z(u, v) = argmin
d

L(x(u, v), µd), (3)

where L(x(u, v), µd) is the distance between x(u, v)
and µd, the mean vector corresponding to the class of
disparity d in discriminant space.

Confidence Map. We also compute a confidence
map in order to assess the reliability of the computed
disparity. Near depth discontinuities, the window used
to extract the feature may well contain information of
two disparity values simultaneously, which makes the
classification of disparity more difficult. However, the
matching cost patterns corresponding to consecutive
disparity classes are similar, so if the disparity class
with highest score (shortest distance) is d1 for a non-
occluded pattern, then it is very likely that the disparity
class with second highest score, d2, is either of d1 ± 1.
We can use this insight to establish a threshold t and
regard each selected disparity value as reliable or unre-
liable following this rule:

reliable if d2 ∈ [d1 − t, d1 + t]
unreliable otherwise. (4)

Figure 3: Different illumination conditions of the new
CG dataset. Upper-left: Lamps. Upper-right: Fluores-
cent. Lower-left: Daylight. Lower-right: Flashlight.

4 New Tsukuba CG Stereo Dataset

Learning-based approach to stereo requires a suit-
able amount of training data although the avail-
able number of stereo scenes with ground-truth dis-
parity maps has been quite limited [11]. For
this reason we created a highly realistic CG stereo
dataset, which will shortly be made available on
http://cvlab.cs.tsukuba.ac.jp[6]. This dataset was cre-
ated after the original head and lamp scene released by
University of Tsukuba [8] and has the following prop-
erties.

• 4 Different illumination conditions (see Figure 3).

• 1800 full-color stereo pairs per illumination con-
dition with ground truth disparity maps (1 minute
video at 30FPS using an animated stereo camera).

• 256 levels of disparity.

• Non-occluded area mask, near depth-discontinuity
mask and 3D camera position and orientation on
each frame (see Figure 4).

The objects on the scene have been modeled and
photo-realistically rendered using the software Pixo-
logic ZBrush and Autodesk Maya. Each illumination
condition offers specific challenges that will be of great
use for the improvement of new stereo and tracking al-
gorithms:

• Fluorescent: This is considered the default illumi-
nation, it features an even illumination on all sur-
faces.

• Daylight: Smooth illumination to the objects in the
scene with exception of the areas near the window,
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Figure 4: First frame of the new dataset (left camera
view). Upper-left: RGB image. Upper-right: dispar-
ity map. Lower-left: non-occlusion mask. Lower-right:
near depth discontinuity mask.

that appear over exposed due to the intensity of the
sun light.

• Flashlight: This scene has been rendered only lit
by the light of a flashlight attached to the moving
Stereo Camera.

• Lamps: This is the most challenging of all four il-
lumination conditions, with low and uneven light-
ing.

The ground truth data was obtained as follows:

• Disparity map. Derived from the depth map gen-
erated by the render engine by computing

d = fT/Z, (5)

where d is the disparity of the pixel, f is the focal
length of the camera, T is the baseline distance of
the stereo rig and Z is the depth value of the pixel.

• Non-occlusion mask. Has been generated by sim-
ply cross-checking the left and right disparity
maps.

• Near depth discontinuity mask. Obtained by de-
tecting the boundaries of the non-occlusion mask.

• Camera position and orientation. Extracted by ex-
ecuting a MEL (Maya Embedded Language) script
on each frame.

The aim of this dataset is to provide ground truth data
that can be useful to evaluate the performance of com-
puter vision algorithms, especially for stereo vision but
also for camera tracking and 3D reconstruction algo-
rithms from monocular time-sequential images.

Figure 6: Disparity error ratios [%] of our learning-
based approach plotted for varying number of train-
ing samples. Larger number of samples reduces mis-
classification. Also plotted are the error ratio by simpli-
fied AD-Census.

5 Experiment

We use the new CG dataset to train our disparity clas-
sifier and test it to compute the disparity map of real
images. We illustrate the result of using the original
head and lamp scene [8] as the input. The number of
disparities in this scene is 16 so we will consider the
same number of classes in our classifier. To be fair and
avoid visual similarities between the learning data (CG)
and the test data (real images) we discarded the first 261
frames of the CG dataset which contains the head and
lamp scene. The rest of the dataset was used to uni-
formly extract 80, 000 samples per disparity value with
which we trained the Multiclass LDA classifier.

Figure 5 shows the disparity map generated for the
original head and lamp scene using the simplified AD-
Census with cost-minimization method and our Multi-
class LDA-based method. It can be observed that us-
ing our method the disparity map generated is smoother
than that of simplified AD-Census. In particular, our
learning-based approach seems to be more effective in
low textured areas (marked with a green square in Fig-
ure 5), as our method can extract more information from
the cost aggregation window than cost minimization-
based methods.

Table 1 shows the results of applying our method
and the cost-minimization to the original real image.
Our method outperforms the cost-minimization based
method in the overall count of pixels (all) and in non-
occluded pixels (non-occ). As anticipated, the perfor-
mance at near depth discontinuity areas (disc) is not as
desirable, but we can disregard the resulting disparities
in such regions by referring the confidence map; Fig-
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Figure 5: From left to right: Left image from the original head and lamp dataset, ground-truth disparity, disparity map
with cost-minimization method, disparity map with learning-based approach, and the confidence map.

Method non-occ. all disc.
Simplified AD-Census 10.70% 12.63% 15.35%
Our method 9.16% 10.91% 21.91%

Table 1: The error ratios in all and sub-regions.

ure 5 also shows an example generated by considering
a threshold of t = 3 in equation 4.

Finally, Figure 6 shows the effect on the error ra-
tios of computed disparity due to varying the number
of training samples. The ratio of incorrect matches (an
average after performing 100 evaluations) is plotted for
each case. The larger the number of samples is, the
lower the mis-classification is. It clearly shows the ef-
fect of using a large number of training data, supporting
our basic idea of learning-based stereo matching.

6 Conclusions

We have introduced a novel learning-based approach
to stereo disparity computation as well as the new
Tsukuba CG stereo dataset. We have described a fea-
ture called matching cost pattern which we extract
from AD-Census cost volume and classify by Multi-
class LDA; we train the classifier exclusively with the
synthetic data. To the best of our knowledge, this is
the first attempt to infer a disparity map purely based
on learning with CG data. In our early experiment with
real input data we observed superior performance to a
simplified AD-Census in terms of the error ratio. Fur-
ther evaluations will be made for more variations of in-
put scenes in the future. Finally, the new stereo dataset
will be also useful to evaluate any stereo matching al-
gorithms.

7 Acknowledgements

This work was supported by KAKENHI 23650081.

References

[1] H. Hirschmüller. Stereo processing by semiglobal
matching and mutual information. IEEE PAMI, 30(2),
2008.

[2] H. Hirschmüller and D. Scharstein. Evaluation of stereo
matching costs on images with radiometric differences.
IEEE PAMI, 31(9), 2009.

[3] A. J. Izenman. Modern Multivariate Statistical Tech-
niques : Regression, Classification, and Manifold Learn-
ing. Springer Texts in Statistics. Springer New York,
2008.

[4] D. Kong and H. Tao. A method for learning matching
errors for stereo computation. In BMVC, 2004.

[5] Y. Li and D. P. Huttenlocher. Learning for stereo vision
using the structured support vector machine. In CVPR,
0, 2008.

[6] S. Martull, M. Peris, and K. Fukui. Realistic CG stereo
image dataset with ground truth disparity maps. In Trak-
Mark, 2012.

[7] X. Mei, X. Sun, M. Zhou, S. Jiao, H. Wang, and
X. Zhang. On building an accurate stereo matching sys-
tem on graphics hardware. ICCV Workshops on GPU in
Computer Vision Applications, (9), 2011.

[8] Y. Nakamura, T. Matsuura, K. Satoh, and Y. Ohta. Oc-
clusion detectable stereo – occlusion patterns in camera
matrix. In CVPR, 1996.

[9] L. Pishchulin, A. Jain, C. Wojek, M. Andriluka,
T. Thormählen, and B. Schiele. Learning people detec-
tion models from few training samples. In CVPR, 2011.

[10] D. Scharstein and C. Pal. Learning conditional random
fields for stereo. In CVPR, 2007.

[11] D. Scharstein and R. Szeliski. A taxonomy and eval-
uation of dense two-frame stereo correspondence algo-
rithms. IJCV, 47(1-3), 2002.

[12] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finoc-
chio, R. Moore, A. Kipman, and A. Blake. Real-time
human pose recognition in parts from single depth im-
ages. In CVPR, 2011.

[13] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler,
A. Agarwala, and C. Rother. A comparative study of
energy minimization methods for markov random fields.
In ECCV, 2006.

[14] F. Tombari, S. Mattoccia, and L. di Stefano. Full-search-
equivalent pattern matching with incremental dissimilar-
ity approximations. IEEE PAMI, 31(1), 2009.

[15] R. Zabih and J. W. Ll. Non-parametric local transforms
for computing visual correspondence. In ECCV, 1994.

1042


