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Abstract

This paper addresses the problem of estimating hu-
man gaze from eye appearance under free head mo-
tion. Allowing head motion remains challenging be-
cause eye appearance changes significantly for differ-
ent head poses, and thus new head poses require new
training images. To avoid repetitive training, we pro-
pose to produce synthetic training images for varying
head poses. First, we model pixel displacements be-
tween head-moving eye images as 1D pixel flows, and
then produce such flows to synthesize new training im-
ages from the original training images captured under a
fixed default head pose. Specifically, we produce all the
required 1D flows by using only four additionally cap-
tured images. Our method was successfully tested with
extensive experiments to demonstrate its effectiveness.

1. Introduction

Estimating human gaze is useful for many appli-
cations such as human-computer interaction, medical
treatment, and marketing research. For years, it has at-
tracted much research interest, especially with the rapid
development of computer vision technology.

Computer vision-based methods can be categorized
as either feature/model-based or appearance-based [4].
The former methods extract small features such as in-
frared corneal reflections, pupil center [11], and iris
contour [12] from high resolution eye images to fit spe-
cific eyeball models. However, they usually require
dedicated hardware typically with infrared illumination.

On the other hand, appearance-based methods use
an entire eye image as a high-dimensional input, and
therefore require only a single video camera under un-
controlled lighting condition. Baluja and Pomerleau [2]
proposed neural networks trained by thousands of train-
ing samples. Tan et al. [10] proposed a method based
on local linear mapping between eye image manifold
and gaze space using 252 training samples. To reduce

the number of training samples, Williams et al. [13]
developed a semi-supervised method to accept unla-
beled training samples. Recently, Sugano et al. [8]
proposed a novel method that automatically collects la-
beled samples by utilizing saliency prior from a video
clip. Lu et al. [6] introduced an efficient adaptive re-
gression method that uses significantly fewer training
samples to guarantee accurate estimation.

While these methods work well with a fixed head
pose, their performance degrades greatly when a user’s
head is not stationary. The reason is that head motion
deforms the input eye image so drastically that it can
differ significantly from original training images even if
they all correspond to the same gaze direction.

Few appearance-based methods have been reported
to deal with this problem. Sugano et al. [9] proposed re-
collecting training images for each cluster of new head
poses, which results in a long-term training. Lu et al. [5]
suggested initiating estimation with the original training
images and then compensating for the bias via regres-
sion. However, nearly 100 additional training images
for different head poses are needed for regression.

In this paper, we allow head motion in appearance-
based gaze estimation by producing synthetic training
images. Like in the conventional methods, original gaze
training images are first captured only under a fixed
head pose. Then for any unseen head poses, their train-
ing images are synthesized rather than physically cap-
tured. This is done by using a 1D pixel displacement
model constructed from only four additionally captured
images. Using the synthetic training images, gaze esti-
mation can be done in a conventional way.

In terms of image-based rendering, the synthesis in
our method belongs to the category where the geometric
model is used implicitly (Shum et al. [7]). Meanwhile,
our method is distinctive in that 1) we rectify the input
images using 3D head pose information while conven-
tional methods usually need to recover the fundamental
matrix, and 2) instead of extracting or assigning cor-
respondence for sparse feature points, we design tech-
niques to pursuit dense pixel flow for accurate synthesis.
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2. Proposed method

Fixed-head pose methods [10, 6, 8] use training im-
ages {IΓ0,m} captured under a fixed head pose Γ0 to esti-
mate gaze direction of an input eye image ÎΓ0 , where m
indicates different gaze directions due to eye ball rota-
tion. However, {IΓ0,m} cannot estimate for input image
ÎΓ from a different head pose Γ, because eye appearance
changes greatly with head motion.

This paper proposes a novel method to synthesize
training images {IΓ,m} for any unseen head pose Γ based
on the original training images {IΓ0,m} and the corre-
sponding 1D pixel displacement flow (shorted as “1D
flow” or “flow”) uΓ. To do this, only four additional
eye images {IΓi |i = 1 . . . 4} captured under four refer-
ence head poses {Γ1 . . .Γ4} are required. Algorithm 1
overviews the method.

Algorithm 1 Overview of the proposed method
• Rectify all the images (Section 2.1)
• Estimate flows {uΓi } for {IΓi } (Section 2.2)
while input image ÎΓ under unseen head pose Γ do
• Produce uΓ by using {uΓi } (Section 2.1)
• Synthesize {IΓ,m} using uΓ and {IΓ0,m} (Sec-
tion 2.3)
• Estimate gaze direction of ÎΓ using {IΓ,m}

end while

2.1. 1D pixel displacement model

This section proposes a 1D pixel displacement mod-
el to handle eye appearance variation due to head mo-
tion. The goal is that, for an unseen head pose, its cor-
responding eye appearance can be synthesized using a
correctly obtained 1D flow, and such flow can be pro-
duced only from certain reference flows.

To do this, the key is to regard head motion as cam-
era motion. To be specific, head-moving images cap-
tured by a fixed camera are considered to be captured
by multi-view cameras with a fixed head pose (Fig-
ure 1(a)). The camera positions can be calculated from
head pose parameters obtained by a head pose tracker.
Because these camera positions are unconstrained, for
further treatment, we move all the cameras parallel and
onto the same camera plane. As a result, all the images
lie on an image plane parallel to the camera plane (Fig-
ure 1(b)). Note that this process deforms the images
while we can handle such deformation via projection
transformation.

For any 3D point P on the eye surface, denote the
camera positions for different head poses as {Ci} on the
camera plane, and the recorded pixels as {pi} on the im-
age plane, as shown in Figure 1(b). Note the image
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Figure 1. (a) Head motion is regarded as
multi-camera capturing. (b) The cameras
are parallelized and moved to the camera
plane while images go to the parallel im-
age plane. (c,d) New flow is produced for
unseen head pose for image synthesis.

plane and camera plane are parallel, therefore any poly-
gons formed by {Ci} and {pi} are always similar. This
leads to two important conclusions:

(1) Pixel displacement pi − p j for any 3D point P due
to head motion i ⇒ j is parallel to camera motion
Ci − C j, meaning that the pixel flow has identical
direction at all pixels, which we call “1D flow”.

(2) Pixel displacement pi − p j is also proportional to
Ci − C j in length, and thus if we know the camera
position of any unseen head pose, we can easily
compute its pixel flow using known samples.

In practice, we capture four reference eye images
{IΓi |i = 1 . . . 4} without eye ball rotation under four ref-
erence head poses {Γi|i = 1 · · · 4} other than the default
head pose Γ0. Their corresponding flows {uΓi } with re-
spect to the default eye image under Γ0 can be estimat-
ed as described later in Section 2.2. Now our goal is to
find the unknown 1D flow uΓ for an unseen head pose
Γ. Without lose of generality, let C0 and {Ci} denote the
corresponding camera positions of Γ0 and {Γi} in the
camera plane, and assume that the camera position CΓ
of the unseen head pose Γ is near C1 and C2. We solve
the following equation for λ1 and λ2:

CΓ − C0 = λ1(C1 − C0) + λ2(C2 − C0) ∈ R3 (1)

where λ1(C1 − C0) and λ2(C2 − C0) are considered the
two sides of a parallelogram on the camera plane and
CΓ − C0 is actually the diagonal. Thus a similar paral-
lelogram exists in the image plane to produce uΓ

uΓ = λ1uΓ1 + λ2uΓ2 ∈ R
2 (2)
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for all the eye surface points. An illustration is shown
in Figure 1(c,d). To summarize, we can produce pixel
flows for any unseen head poses by using two of the
four reference flows {uΓi }, where {uΓi } can be estimated
from only four additional images captured under four
reference head poses, as described in the next section.

2.2. Reference flow estimation

This section describes how to extract the four refer-
ence 1D flows {uΓi }. First of all, to capture the refer-
ence eye images {IΓi } under four reference head poses
{Γ1 . . .Γ4}, the user just needs to turn his/her head up-
ward/downward/leftward/rightward without eye ball ro-
tation. Then for each IΓi , we compute its flow uΓi with
regard to the eye image in {IΓ0,m} which has the same
eye ball orientation. Denote these two images as I and
J, and the flow as u. Remember that we already know
the direction of u from camera displacement. Therefore
we rewrite u with inclination angle θ:

u = [u(x) cos θ, u(x) sin θ]T (3)

Hereafter we use u to stand for u(x). On the other hand,
real images contain cropping misalignments which also
introduce pixel displacements. Let h denote one com-
ponent of the misalignment which is orthogonal to u,
while the other component is added to u. Note that this
cropping misalignment is unique for all pixels, therefore
h = [−h sin θ, h cos θ]T. Then we minimize the optical
flow function following Brox et al. [3]:

E(u, h) = EData(u, h) + αES mooth(u) (4)

where EData(u, h) ensures the synthesis accuracy and
ES mooth(u) controls the smoothness of u. Let {Ic} and
{Jc} be the different channels of image I and J, then

EData(u, h) =

∫
Ω

∑
c

Ψ([Jc(x + u + h) − Ic(x)]2)dx

ES mooth(u) =

∫
Ω

Ψ([∇u]2)dx (5)

where Ω indicates the image domain containing all pix-
els, and Ψ(s2) =

√
s2 + ε2 (ε = 0.001) is a robust func-

tion approximating an l1-minimization of s. This mini-
mization problem can be solved by an iterative method
similar to that proposed by Brox et al. [3].

2.3. Training image synthesis for gaze sensing

This section shows how to synthesize training im-
ages {IΓ,m} for any unseen head pose Γ based on the o-
riginal {IΓ0,m} and the corresponding pixel displacement
flow uΓ. Let vector x be the image pixel positions, then

IΓ,m(x + uΓ) = IΓ0,m(x) (6)

meaning that IΓ,m is warped by moving the pixels of
IΓ0,m from x to x + uΓ. The basic assumption to perfor-
m such synthesis is that the pixel displacement flow uΓ
shall not be affected much by gaze variation (eyeball ro-
tation), meaning that for any m, IΓ,m can be synthesized
from IΓ0,m using the same uΓ.

Synthesizing a set of training images for each input
image with an arbitrary head pose is prohibitively ex-
pensive. Therefore, training images {IΓn,m} are synthe-
sized for a set of selected anchor head poses {Γn} in ad-
vance. In estimation, for an unseen head pose Γ we can
directly acquire the pre-stored {IΓn,m} where Γn is clos-
est to Γ. It is enough to pre-synthesize training images
for less than a hundred anchor head poses to achieve
high accuracy and avoid online synthesis.

3. Experimental evaluation

Evaluation is presented in this section. We first ex-
amined our proposed eye appearance synthesis, then
evaluated how accurate the gaze estimation can be
achieved using the synthetic training images.

Our system was built on a desktop PC with a 22-
inch LCD monitor and a VGA webcam. The users sat
in front of the monitor (about 60 cm away) and let the
camera capture their appearances and track their head
poses by a vision-based head pose tracker [1].

The training process consisted of two steps. First,
the users tried to keep a fixed head pose (without using
chinrest) and focused their gaze on each of the 33 train-
ing points shown on the screen in turn to capture the o-
riginal training images. Second, they moved their heads
vertically/horizontally to capture four reference images.
During this period they had to gaze at a moving point on
the screen shown in accordance with their head orienta-
tion to avoid eyeball rotation. In the test process, the
users were allowed to move their head freely and gaze
at any position on the screen, and collected test samples
by mouse click on the gaze positions. Typical head mo-
tion range in the experiments was 25◦ in rotation or 30
cm in translation approximately.

3.1. Eye image synthesis

We first estimate reference 1D pixel flows for four
reference eye images under different head poses. Fig-
ure 2 gives examples of the estimated 1D flows and
the synthetic eye images with ground truths. The well-
synthesized images show the efficacy of the 1D flows.

With the reference flows, new flows can be produced
to synthesize the eye images for unseen head poses. Ex-
amples of synthetic eye images for unseen head poses
are shown in Figure 3 with ground truths. The synthetic
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Figure 2. Four reference images: ground
truths, synthetic results and 1D flows.
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Figure 3. Representative results of eye im-
age synthesis for unseen head poses.

images are obviously satisfactory, therefore we can syn-
thesize training images for gaze estimation efficiently.

3.2. Gaze estimation results under head motion

Gaze estimation using the synthetic training images
was assessed. Experiments were done for five subjects.
For each subject, we collected more than one hundred
samples combining head motion and gaze variation. For
comparison, results of the recent method by Lu et al. [5]
are also presented in Table 1(top) based on the same
dataset. Our method clearly achieved higher accuracy
when only four additional training images were used to
allow head motion. Moreover, comparisons with ex-
isting head pose-free appearance-based methods with
respect to their reported accuracies are shown in Ta-
ble 1(bottom). Our method outperforms others since it
requires much less training effort to handle head motion
with the highest accuracy. Overall, the average accuracy
of 2.24◦ is quite acceptable for common applications.

4. Conclusion

This paper proposes a novel method to allow head
motion in appearance-based gaze estimation via eye im-
age synthesis. By capturing only four additional images
besides the original training images, our method synthe-
sizes new training images for any unseen head poses to
estimate gaze direction with high accuracy. We believe
that the proposed technique can be also useful in oth-

Subject Proposed Lu et al. [5] Training samples
S1 2.25◦ 2.93◦ 33 under default

head pose
and

4 under reference
head poses

S2 2.22◦ 2.29◦

S3 2.07◦ 2.68◦

S4 2.36◦ 3.81◦

S5 2.30◦ 2.59◦

Average 2.24◦ 2.86◦

Method Estimation error Training samples
Proposed 2.24◦ 33+4

Lu et al. [5] 2.38◦ 33+video(≈ 102)
Sugano et al. [9] 4◦ ∼ 5◦ ≈ 103

Table 1. Comparison of estimation errors.

er applications. Our future work may include increas-
ing the robustness of the method by considering effects
such as lighting changes and highlights.
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