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Mathematical Morphology 



Mathematical Morphology 

Mathematical Morphology was 

developed in the ‘60 in France (G. 

Motheron e J. Serra, Ecole des Mines) 

and in different form with the name 

Image Algebra in USA (S. R. Sternberg, 

Michigan University). 
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Preliminary statements 
 Let F={1} et F*={0} be the two sets constituting a binary 

image on a square plane tessellation. Let call them 

image and background respectively 

 Given two pixels p and q, having coordinates (i,j) and 

(h,k), the two distance functions d4 (called city block) et 

d8 (chessboard) are defined as: 

 d4 (p,q) = |i-h|+|j-k|    d8 (p,q) = max {|i-h|, |j-k|} 

q 

p 
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Preliminary statements 

 The neighbors of pixel p are all pixels that have unitary 
distance from p 

 The set of neighbors constitutes the neighborhood of p. 
Depending on the adopted metric we consider the N4(p)          
or N8(p)          neighborhoods.  

 A path of length n from p to q is a sequence of pixels 
p=p0, p1, p2, …..pn=q that in the adopted metric has pi 
neighbor of pi+1, 1in 

 A subset of F (or of F*) is connected if for each couple of 
pixels in the subset exist a path between them entirely 
belonging to the subset. 

 The contour C of an image F is the subset of F having 
unitary distance from F* 
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4 and 8 connectivity 



Topological Paradox 

 Contour in 8 connectivity 

 F and F* are separated only 

in 4 connectivity  
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Preliminary Statements 

 A  En, t  En  

 

 Translation of A by a vector t 

At = { c En | c=a+t, aA } 

 Reflection of A 

Ar= { c | c=-a, aA } 

 Complement of A 

Ac = En -A 
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A 

A(2,1) 

Ar 

Ac 
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Minkowski sum (Dilation) 

AB = { cEn | c=a+b, aA, bB } 

AB =  Ab , bB 

It can be easily shown that: AB = BA 

A B= { (0,0), (1,0) }  

A(0,0) A(1,0) AB 



Dilation 

 B is usually called structural element 
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A B= {(-1,0), (1,0) }  

A(-1,0) A(1,0) AB 



10 

Dilation 

B 

AB A 
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Dilation 

B 

AB A 
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Dilation 

B AB 

A 
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Dilation 

B AB 

A 
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Dilation 

C ABC 

A B 
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Dilation 

C ABC 

A B 
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Minkowski difference (Erosion)  
AB = { cEn | c + bA, per ogni bB } 

AB =  A-b bB 

AB = { cEn | Bc  A 

A B= { (0,0), (1,0) }  

A(-1,0) 
A  B 
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Erosion 

A B 

AB 
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Erosion 

A B 

AB 
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Erosion 

A B 

AB 
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Erosion 

A B 

AB 
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Erosion 

A B 

AB 
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Erosion 

A B 

AB 
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A + {} =  A - {} = A 

A + {a} = A - {a}r = Aa, translation 

A + B = (Ac – Br)c 

A – B = (Ac + B)c 

(A+B)c=Ac -Br  

A+Bt=(A+B)t  

A-Bt=(A-B)-t 

 

 Decomposition: B=B1+B2 +B3 +….+Bn  

A+B = (…(((A+ B1)+B2 )+B3) +….)+Bn 

A-B = (…(((A- B1)-B2 )-B3) -….)-Bn 

 

Dilation (+) and Erosion (-)  

properties 
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(A+B)+C=A+(B+C)           (A-B)-C=A-(B+C) 

(AB)+C=(A+C)(B+C)    (A  B)-C=(A-C)  (B-C) 

A+(BC)=(A+B)(A+C)    A-(BC)=(A-C)(B-C) 

 

A B(A+C) (B+C)        AB(A-C) (B-C) 

   BC(A-B)  (A-C) 

 

(AB)+C (A+C)(B+C)  (A B)-C (A-C) (B-C) 

                  A-(BC)(A-C)(B-C 

Dilation (+) and Erosion (-)  

properties 
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Closing operator 

  C(A, K) = (A+K)-K 

  AC(A,K)=C(C(A,K),K) 
K 

A 

A+K 

(A+K)-K 
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Closing operator 

  C(A, K) = (A+K)-K K 

A 

A+K 

(A+K)-K 
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Closing operator 
  C(A, K) = (A+K)-K 

K 

A 

A+K 

(A+K)-K 



Closing 

 Dilate, then erode 

 Fill holes, but keep original shape 

Before closing      After closing 

Structural 

element:  
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Opening operator 
 O(A, K) = (A-K)+K 

 O(O(A,K),K)=O(A,K)A 

K 
A 

A-K 

(A-K)+K 
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Opening operator 

 O(A, K) = (A-K)+K 

K 

A 

(A-K)+K 

A-K 



Opening 

 Erode, then dilate 

 Remove small objects, keep original shape 

 

Before opening        After opening 

Structural 

element:  
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Opening and Closing 

properties 
 F and F* can be changed changing the two 

operators: 

  (A  B) c = Ac • B            (A • B) c = Ac 


 B 

 Idempotency: 

  (A  B)  B = A  B       (A • B) • B = A • B  

  Monotonicity: 

         A  B       A  C  B  C 

         A  B       A • C  B • C 



46 

Examples 

Propagation 
C = { X };    C = evolving image 

do D = C   F = original image  

C = (C  K)F 

while(DC) 

Contour 
 Internal: A-(AK) 

External:  (A  K)Ā  or (A  K)-A 

Double: (A  K)(A  K) = (A  K)-(AK) 
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Hit or Miss operator 

A(J,K) = (A-J)(Ac-K) 

   con il vincolo JK= 

 

 

 

Suitable for ‘template’ matching 
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Hit or Miss 

Search of isolated points(8-connection) 

 A-J=A 

Final 

Risult 

J K 

A Ac 

Ac-K 
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Hit or Miss 

Search of isolated points(4-connection) 

 A-J=A J 

A Ac 

Ac-K 

K 

Final 

Risult 
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Hit or Miss 

Pixels satisfying the 

 background constraints 

Pixels satisfying the 

 foreground constraints 
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Umbra 
 This is an extension to multidimensional ‘images’ in particular 

to grey level and color images 

 A  En, FEn-1, xF,  yE 

 Top of a set A: 

T[A](x) = max { y | (x, y)  A } 

 Umbra of f: 

U[f] = { (x, y)  F  E | y  f(x) } 

Set A Top of A Umbra of A 
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Dilation - Example  

f U[f] 

k 

U[k] 

U[f]U[k] fk = T[U[f]U[k]] 
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Erosion - Example 

U[f]U[k] T{U[f]U[k]} 
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Hit or Miss 

J and K can be seen as a single 

template with three values: 

Image points 

Background points 

Do not care points 

M 



Distance transform and MAT 
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 The Distance Transform (DT) is obtained by 

labeling all the pixels inside a binary object 

with their distance to the background 

 Applying twenty iterations of the erosion 

operator (structural element: unit disk) 

twenty successive colored layers showing 

equi-distant contours from the background 

for a Manhattan distance metric are 

obtained 

 Every pixel has a color corresponding to its 

distance label which increases going 

inwards. In practice, this value represents 

the side of the greatest digital disk having its 

centre on this pixel, which is completely 

contained in the binary object. 

 Any pattern can be interpreted as the union 

of all its maximal digital disks (local 

maximum in DT). A maximal disk is a disk 

contained in the object that is not 

completely overlapped by any other disk. 

 The set of the centers of the maximal disks 

with their labels, constitutes the MAT 
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Distance transform 

DT implementation using dilation and 
addition operators: 
 

R =    R = evolving image 

while(A<>) do              at the end DT 
R = R+A 

A = AK 

   done 
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Distance transform 

1 1 1 1 1 

1 1 2 2 2 1 1 

1 2 2 3 2 2 1 

1 1 2 3 3 3 2 1 1 

1 2 2 2 3 2 2 1 

1 1 1 2 2 2 1 1 

1 1 1 1 1 

1 

1 1 1 1 1 

1 2 2 2 2 2 1 

1 2 3 3 3 2 1 

1 2 3 4 4 4 3 2 1 

2 2 3 3 3 3 2 1 

1 1 2 2 2 2 2 1 

1 1 1 1 1 

1 
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DT – sequential algorithm 

 Two image scan: 

 First top-down and left-right 

 Foreground pixels are assigned to the minimum value 

among the neighbors already assigned +1(background 

pixels are pre-set to 0) 

 Second bottom-up and right-left 

 Foreground pixels are assigned to the minimum value 

among the neighbors already assigned + 1 and the 

value of the pixel itself 
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DT – sequential algorithm 

1 1 1 1 1 

1 1 2 2 2 1 1 

1 2 2 3 2 2 1 

1 1 2 3 3 3 2 1 1 

1 2 2 3 4 3 2 2 

1 2 3 3 4 3 3 1 

1 2 3 4 4 

1 

1 1 1 1 1 

1 2 2 2 2 2 1 

1 2 3 3 3 3 2 

1 2 3 4 4 4 4 2 1 

2 3 4 5 5 5 3 2 

1 2 3 4 5 6 4 3 

1 2 3 4 5 

1 

1 1 1 1 1 

1 1 2 2 2 1 1 

1 2 2 3 2 2 1 

1 1 2 3 3 3 2 1 1 

1 2 2 2 3 2 2 1 

1 1 1 2 2 2 1 1 

1 1 1 1 1 

1 

1 1 1 1 1 

1 2 2 2 2 2 1 

1 2 3 3 3 2 1 

1 2 3 4 4 4 3 2 1 

2 2 3 3 3 3 2 1 

1 1 2 2 2 2 2 1 

1 1 1 1 1 

1 
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DT – local maxima 

3 

3 3 3 1 

2 3 1 

2 2 

2 4 4 4 

2 3 

2 

 

The local maxima set is a 
compact object 
representation 

 

The object can be rebuilt 
as union of the maximal 
digital disks  
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Disks in 4 and 8 connectivity 

5 5 
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Distance transform and MAT 



Reverting progressively MAT 

 A procedure to derive the MAT from the DT is 

based on the comparison of neighboring labels to 

establish whether a local maximum exists 

 This transform is complete in the sense that it is 

possible to revert it, so obtaining the original 

object back 

 This recovery process can be implemented by 

expanding every pixel belonging to the MAT, 

using the corresponding maximal disc whose size 

is given by the pixel label. The logical union of 

all such discs reconstructs the original object 

 This figure shows the progressive reconstruction, 

starting from the set of disks corresponding to 

the highest level (two white disks) until the sixth 

and last monk’s profile, where discs, reduced to 

just one pixel, have been included 

 This transform is compact since the full object 

may be described only by its labeled disk centers 
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Distance between  two points 
 Distance between X,YZ: 

A = { X }; D=A Z={} A= evolving binary image 

while(ZA) do F= original image 

Z = A 

A = (A  K)F     Z= connected component 

D = D + A 

Done 

 If A (A  K)F and Y has not been 

already reached: Z is not connected and Y 

is not reachable from X 

 Following a path of max gradient we can 

find one of the minimum paths between 

X, Y 

K 

  
        

    

Y 

X 

4 
  4 4 1 

  5 8 

4 4 4 3 2 1 
5 5 4 3 2 1 1 

6 6 6 5 3 1 1 
7 7 2 
8 4 3 2 1 
9 8 7 6 5 4 3 2 1 
8 8 7 6 5 4 

6 
7 

8 
8 

F 

D 

1 
1 

1 
1 

1 
1 
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Weighted DT 

 In this case all neighbors are not considered at the same 
distance (e.g. 8-connectivity) 

 Sequential algorithm, two scannings 
 Direct scanning  

 val = mini {pi+wi} (i previous neighbors) 

 Inverse scanning  

 new-val = mink {pk+wk} (k vicini successivi) 

 Example: a good approximation to the Euclidean 
distance (the result is about doubled) is given by:  

 

    w= 
2 3 

2 

2 3 

3 

2 

3 
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Weighted DT 

2 
2 

2 
2 

3 
3 

3 

2 
5 

5 
2 

3 
6 

3 

2 
5 

5 
2 

3 
3 

3 

2 
2 

2 
2 

2 3 

2 

2 3 

3 

2 

3 
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Topological paradoxes 

 The contour computed by the 4- 

connected disk is 8-connected 

 

 The contour computed by the 8- 

connected disk is 4-connected 

 

 Hexagonal tessellation avoid 

paradoxes 

1 1 1 1 1 

1 1 2 2 2 1 1 

1 2 2 3 2 2 1 

1 1 2 3 3 3 2 1 1 

1 2 2 2 3 2 2 1 

1 1 1 2 2 2 1 1 

1 1 1 1 1 

1 

1 1 1 1 1 

1 2 2 2 2 2 1 

1 2 3 3 3 2 1 

1 2 3 4 4 4 3 2 1 

2 2 3 3 3 3 2 1 

1 1 2 2 2 2 2 1 

1 1 1 1 1 

1 
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Skeleton 

The skeleton F is a subset of F having 

the following property: 

It is connected if F is connected and 

maintains the same molteplicity order of F 

Its thickness is everywhere unitary 

It is centred in F 

All local maxima of F (MAT) belong to it 



Skeleton from MAT 

MAT does not ensure connectivity 

for a connected object 

Many different algorithms were 

designed for generating skeletons. 

A simple one proceeds in two steps: 

 find gaps between different branches 

and bridge them by joining the 

extremes along paths with directions 

dependent on context (white pixels); 

 thin the obtained branches so as to 

produce a one-pixel wide 

representation (red pixels) 

One possible application of the 

skeleton is contour smoothing, 

where pruning branches with 

relatively short lengths and then 

inverting the skeleton 

transformation, a more regular 

contour is obtained 

 The skeleton transformation is not 

reversible in general 
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Example 



Minimum path  

4-conn 
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Minimum path  

8-conn 
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Minimum path  

4-conn 



Minimum path  

8-conn 
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Minimum path  

4-conn 

87 
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Low level IP operations 

Monadic Point Operation Dyadic Point Operation Monadic Local NN Operation Dyadic Local NN Operation 

Monadic Recursive NN Operation 
Dyadic Recursive NN Operation 

Global Operation Statistical Operation 
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Neighbours parallelism 

cellular logic PE 

PE 

carry 

Image window 

Image mask 

Result 1 

Result 2 

Carry out Carry in 
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SIMD Processing Element 
 Bit parallel or bit serial 

neighbourood connections 

 Memoriy size: 32 – 64 Kbit 

 Registers for accumulation 

of inputs/results 

 Known pixel address in the 

image 

PE 

carry 

Image memory 

A 

B 

C 

D 
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Window mapping in PA 
 Fast processing of 

windows 

 Neighbourood 

connectivity preserved 

 Processing speed reduced by: 

Overhead: (image size / array 

size)  

 Overhead in processing window 

edge pixels 

 

F E D C 

B A 9 8 

7 6 5 4 

3 2 1 0 

Scanning 

IMAGE 

Processor Array 

F E D C 

B A 9 8 

7 6 5 4 

3 2 1 0 

F E D C 

B A 9 8 

7 6 5 4 

3 2 1 0 

F E D C 

B A 9 8 

7 6 5 4 

3 2 1 0 

F E D C 

B A 9 8 

7 6 5 4 

3 2 1 0 
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Crinkle mapping in PA 

 Fast access of distant pixels 

 No use of neighborhood 

connections 

 Negligible edge problem  

 

F F E E D D C C 

F F E E D D C C 

B B A A 9 9 8 8 

B B A A 9 9 8 8 

7 7 6 6 5 5 4 4 

7 7 6 6 5 5 4 4 

3 3 2 2 1 1 0 0 

3 3 2 2 1 1 0 0 

F E D C 

B A 9  8 

7 6 5 4 

3 2 1 0 IMAGE 

Processor Array 
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Pixel Parallelism: Processor arrays 
Processor Element (PE) includes local memory 

 Image distributed over all PE 

All PE run the same program (SIMD) 

 

PE PE PE 

PE PE PE 

PE PE PE 
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Propagation: examples 

Short 

Cut Mousebyte 

Spacing 
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Mousebyte 
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Minimum distance 
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Global OR (Or-sum-tree) 
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Global OR (Or-sum-tree) 
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Operation Parallelism: Pipeline 

Processing is done combined with transport 

PE may be identical (Systolic array) 

PE may be programmable (General purpose 

pipeline) 

PE may be hard wired (Special purpose 

pipeline) 

Input 

Image 
PE PE PE PE 

Output 

Image 
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Cellular logic pipeline 
7 6 5 Shift register 

0 8 4 Shift register 

1 2 3 

PE 

    

3 2 1 

4 8 0 

5 6 7 

  

    

  

Input image Output image 

Pixel 8 under 

processing 
Processed 

pixels 
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Pipeline characteristics 

 Each PE processes another operation over all pixels 

 Output speed is as fast as processing a single 

instruction 

 Algorithm length is limited by the number of  PEs. 

For larger algorithms recycling is necessary. 

 Complicated (e.g. grey value) operations can be 

realized by more complicated hardware 

 Pipelines are either inflexible or difficult to program 
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Comparison PA versus PL 
 Processor arrays: 

 Input/output problem 

 Lowest level: stream of 
instructions 

 Relatively easy to 
program 

 Higher degree of 
parallelism possible 
(images can be large) 

 Less powerful PE’s 

 

 1. load image (part) 

 2. load instruction 

 3. process instruction 

 4. repeat 

 Pipelines: 
 Instruction load problem 

 Lowest level: stream of 
pixels 

 Relatively difficult to 
program 

 Difficult to realize a very 
high degree of parallelism 
(algorithms are not long 
enough) 

 More powerful PEs 

 

 1. load instructions (part) 

 2. process  

 3. shift 

 4. repeat 

 
 


