
20.11.2013 17:00 1

Mathematical Morphology

Mathematical Morphology

Mathematical Morphology was

developed in the ‘60 in France (G.

Motheron e J. Serra, Ecole des Mines)

and in different form with the name

Image Algebra in USA (S. R. Sternberg,

Michigan University).

2

3

Preliminary statements
 Let F={1} et F*={0} be the two sets constituting a binary

image on a square plane tessellation. Let call them

image and background respectively

 Given two pixels p and q, having coordinates (i,j) and

(h,k), the two distance functions d4 (called city block) et

d8 (chessboard) are defined as:

 d4 (p,q) = |i-h|+|j-k| d8 (p,q) = max {|i-h|, |j-k|}

q

p

4

Preliminary statements

 The neighbors of pixel p are all pixels that have unitary
distance from p

 The set of neighbors constitutes the neighborhood of p.
Depending on the adopted metric we consider the N4(p)
or N8(p) neighborhoods.

 A path of length n from p to q is a sequence of pixels
p=p0, p1, p2, …..pn=q that in the adopted metric has pi
neighbor of pi+1, 1in

 A subset of F (or of F*) is connected if for each couple of
pixels in the subset exist a path between them entirely
belonging to the subset.

 The contour C of an image F is the subset of F having
unitary distance from F*

5

4 and 8 connectivity

Topological Paradox

 Contour in 8 connectivity

 F and F* are separated only

in 4 connectivity

6

Preliminary Statements

 A  En, t  En

 Translation of A by a vector t

At = { c En | c=a+t, aA }

 Reflection of A

Ar= { c | c=-a, aA }

 Complement of A

Ac = En -A

7

A

A(2,1)

Ar

Ac

8

Minkowski sum (Dilation)

AB = { cEn | c=a+b, aA, bB }

AB =  Ab , bB

It can be easily shown that: AB = BA

A B= { (0,0), (1,0) }

A(0,0) A(1,0) AB

Dilation

 B is usually called structural element

9

A B= {(-1,0), (1,0) }

A(-1,0) A(1,0) AB

10

Dilation

B

AB A

11

Dilation

B

AB A

12

Dilation

B AB

A

13

Dilation

B AB

A

14

Dilation

C ABC

A B

15

Dilation

C ABC

A B

16

Minkowski difference (Erosion)
AB = { cEn | c + bA, per ogni bB }

AB =  A-b bB

AB = { cEn | Bc  A

A B= { (0,0), (1,0) }

A(-1,0)
A  B

17

Erosion

A B

AB

18

Erosion

A B

AB

19

Erosion

A B

AB

20

Erosion

A B

AB

21

Erosion

A B

AB

22

Erosion

A B

AB

23

A + {} = A - {} = A

A + {a} = A - {a}r = Aa, translation

A + B = (Ac – Br)c

A – B = (Ac + B)c

(A+B)c=Ac -Br

A+Bt=(A+B)t

A-Bt=(A-B)-t

 Decomposition: B=B1+B2 +B3 +….+Bn

A+B = (…(((A+ B1)+B2)+B3) +….)+Bn

A-B = (…(((A- B1)-B2)-B3) -….)-Bn

Dilation (+) and Erosion (-)

properties

24

(A+B)+C=A+(B+C) (A-B)-C=A-(B+C)

(AB)+C=(A+C)(B+C) (A  B)-C=(A-C)  (B-C)

A+(BC)=(A+B)(A+C) A-(BC)=(A-C)(B-C)

A B(A+C) (B+C) AB(A-C) (B-C)

 BC(A-B)  (A-C)

(AB)+C (A+C)(B+C) (A B)-C (A-C) (B-C)

 A-(BC)(A-C)(B-C

Dilation (+) and Erosion (-)

properties

25

Closing operator

 C(A, K) = (A+K)-K

 AC(A,K)=C(C(A,K),K)
K

A

A+K

(A+K)-K

26

Closing operator

 C(A, K) = (A+K)-K K

A

A+K

(A+K)-K

27

Closing operator
 C(A, K) = (A+K)-K

K

A

A+K

(A+K)-K

Closing

 Dilate, then erode

 Fill holes, but keep original shape

Before closing After closing

Structural

element:

42

Opening operator
 O(A, K) = (A-K)+K

 O(O(A,K),K)=O(A,K)A

K
A

A-K

(A-K)+K

43

Opening operator

 O(A, K) = (A-K)+K

K

A

(A-K)+K

A-K

Opening

 Erode, then dilate

 Remove small objects, keep original shape

Before opening After opening

Structural

element:

45

Opening and Closing

properties
 F and F* can be changed changing the two

operators:

 (A  B) c = Ac • B (A • B) c = Ac


 B

 Idempotency:

 (A  B)  B = A  B (A • B) • B = A • B

 Monotonicity:

 A  B  A  C  B  C

 A  B  A • C  B • C

46

Examples

Propagation
C = { X }; C = evolving image

do D = C F = original image

C = (C  K)F

while(DC)

Contour
 Internal: A-(AK)

External: (A  K)Ā or (A  K)-A

Double: (A  K)(A  K) = (A  K)-(AK)

47

Hit or Miss operator

A(J,K) = (A-J)(Ac-K)

 con il vincolo JK=

Suitable for ‘template’ matching

48

Hit or Miss

Search of isolated points(8-connection)

 A-J=A

Final

Risult

J K

A Ac

Ac-K

49

Hit or Miss

Search of isolated points(4-connection)

 A-J=A J

A Ac

Ac-K

K

Final

Risult

50

Hit or Miss

Pixels satisfying the

 background constraints

Pixels satisfying the

 foreground constraints

51

Umbra
 This is an extension to multidimensional ‘images’ in particular

to grey level and color images

 A  En, FEn-1, xF, yE

 Top of a set A:

T[A](x) = max { y | (x, y)  A }

 Umbra of f:

U[f] = { (x, y)  F  E | y  f(x) }

Set A Top of A Umbra of A

52

Dilation - Example

f U[f]

k

U[k]

U[f]U[k] fk = T[U[f]U[k]]

53

Erosion - Example

U[f]U[k] T{U[f]U[k]}

54

Hit or Miss

J and K can be seen as a single

template with three values:

Image points

Background points

Do not care points

M

Distance transform and MAT

55

 The Distance Transform (DT) is obtained by

labeling all the pixels inside a binary object

with their distance to the background

 Applying twenty iterations of the erosion

operator (structural element: unit disk)

twenty successive colored layers showing

equi-distant contours from the background

for a Manhattan distance metric are

obtained

 Every pixel has a color corresponding to its

distance label which increases going

inwards. In practice, this value represents

the side of the greatest digital disk having its

centre on this pixel, which is completely

contained in the binary object.

 Any pattern can be interpreted as the union

of all its maximal digital disks (local

maximum in DT). A maximal disk is a disk

contained in the object that is not

completely overlapped by any other disk.

 The set of the centers of the maximal disks

with their labels, constitutes the MAT

56

Distance transform

DT implementation using dilation and
addition operators:

R =  R = evolving image

while(A<>) do at the end DT
R = R+A

A = AK

 done

57

Distance transform

1 1 1 1 1

1 1 2 2 2 1 1

1 2 2 3 2 2 1

1 1 2 3 3 3 2 1 1

1 2 2 2 3 2 2 1

1 1 1 2 2 2 1 1

1 1 1 1 1

1

1 1 1 1 1

1 2 2 2 2 2 1

1 2 3 3 3 2 1

1 2 3 4 4 4 3 2 1

2 2 3 3 3 3 2 1

1 1 2 2 2 2 2 1

1 1 1 1 1

1

58

DT – sequential algorithm

 Two image scan:

 First top-down and left-right

 Foreground pixels are assigned to the minimum value

among the neighbors already assigned +1(background

pixels are pre-set to 0)

 Second bottom-up and right-left

 Foreground pixels are assigned to the minimum value

among the neighbors already assigned + 1 and the

value of the pixel itself

59

DT – sequential algorithm

1 1 1 1 1

1 1 2 2 2 1 1

1 2 2 3 2 2 1

1 1 2 3 3 3 2 1 1

1 2 2 3 4 3 2 2

1 2 3 3 4 3 3 1

1 2 3 4 4

1

1 1 1 1 1

1 2 2 2 2 2 1

1 2 3 3 3 3 2

1 2 3 4 4 4 4 2 1

2 3 4 5 5 5 3 2

1 2 3 4 5 6 4 3

1 2 3 4 5

1

1 1 1 1 1

1 1 2 2 2 1 1

1 2 2 3 2 2 1

1 1 2 3 3 3 2 1 1

1 2 2 2 3 2 2 1

1 1 1 2 2 2 1 1

1 1 1 1 1

1

1 1 1 1 1

1 2 2 2 2 2 1

1 2 3 3 3 2 1

1 2 3 4 4 4 3 2 1

2 2 3 3 3 3 2 1

1 1 2 2 2 2 2 1

1 1 1 1 1

1

60

DT – local maxima

3

3 3 3 1

2 3 1

2 2

2 4 4 4

2 3

2

The local maxima set is a
compact object
representation

The object can be rebuilt
as union of the maximal
digital disks

61

Disks in 4 and 8 connectivity

5 5

62

Distance transform and MAT

Reverting progressively MAT

 A procedure to derive the MAT from the DT is

based on the comparison of neighboring labels to

establish whether a local maximum exists

 This transform is complete in the sense that it is

possible to revert it, so obtaining the original

object back

 This recovery process can be implemented by

expanding every pixel belonging to the MAT,

using the corresponding maximal disc whose size

is given by the pixel label. The logical union of

all such discs reconstructs the original object

 This figure shows the progressive reconstruction,

starting from the set of disks corresponding to

the highest level (two white disks) until the sixth

and last monk’s profile, where discs, reduced to

just one pixel, have been included

 This transform is compact since the full object

may be described only by its labeled disk centers

63

64

Distance between two points
 Distance between X,YZ:

A = { X }; D=A Z={} A= evolving binary image

while(ZA) do F= original image

Z = A

A = (A  K)F Z= connected component

D = D + A

Done

 If A (A  K)F and Y has not been

already reached: Z is not connected and Y

is not reachable from X

 Following a path of max gradient we can

find one of the minimum paths between

X, Y

K

Y

X

4
 4 4 1

 5 8

4 4 4 3 2 1
5 5 4 3 2 1 1

6 6 6 5 3 1 1
7 7 2
8 4 3 2 1
9 8 7 6 5 4 3 2 1
8 8 7 6 5 4

6
7

8
8

F

D

1
1

1
1

1
1

65

Weighted DT

 In this case all neighbors are not considered at the same
distance (e.g. 8-connectivity)

 Sequential algorithm, two scannings
 Direct scanning

 val = mini {pi+wi} (i previous neighbors)

 Inverse scanning

 new-val = mink {pk+wk} (k vicini successivi)

 Example: a good approximation to the Euclidean
distance (the result is about doubled) is given by:

 w=
2 3

2

2 3

3

2

3

66

Weighted DT

2
2

2
2

3
3

3

2
5

5
2

3
6

3

2
5

5
2

3
3

3

2
2

2
2

2 3

2

2 3

3

2

3

67

Topological paradoxes

 The contour computed by the 4-

connected disk is 8-connected

 The contour computed by the 8-

connected disk is 4-connected

 Hexagonal tessellation avoid

paradoxes

1 1 1 1 1

1 1 2 2 2 1 1

1 2 2 3 2 2 1

1 1 2 3 3 3 2 1 1

1 2 2 2 3 2 2 1

1 1 1 2 2 2 1 1

1 1 1 1 1

1

1 1 1 1 1

1 2 2 2 2 2 1

1 2 3 3 3 2 1

1 2 3 4 4 4 3 2 1

2 2 3 3 3 3 2 1

1 1 2 2 2 2 2 1

1 1 1 1 1

1

68

Skeleton

The skeleton F is a subset of F having

the following property:

It is connected if F is connected and

maintains the same molteplicity order of F

Its thickness is everywhere unitary

It is centred in F

All local maxima of F (MAT) belong to it

Skeleton from MAT

MAT does not ensure connectivity

for a connected object

Many different algorithms were

designed for generating skeletons.

A simple one proceeds in two steps:

 find gaps between different branches

and bridge them by joining the

extremes along paths with directions

dependent on context (white pixels);

 thin the obtained branches so as to

produce a one-pixel wide

representation (red pixels)

One possible application of the

skeleton is contour smoothing,

where pruning branches with

relatively short lengths and then

inverting the skeleton

transformation, a more regular

contour is obtained

 The skeleton transformation is not

reversible in general

69

82

Example

Minimum path

4-conn

83

84

Minimum path

8-conn

85

Minimum path

4-conn

Minimum path

8-conn

86

Minimum path

4-conn

87

20/11/2013 17:00 88

Low level IP operations

Monadic Point Operation Dyadic Point Operation Monadic Local NN Operation Dyadic Local NN Operation

Monadic Recursive NN Operation
Dyadic Recursive NN Operation

Global Operation Statistical Operation

20/11/2013 17:00 90

Neighbours parallelism

cellular logic PE

PE

carry

Image window

Image mask

Result 1

Result 2

Carry out Carry in

20/11/2013 17:00 91

SIMD Processing Element
 Bit parallel or bit serial

neighbourood connections

 Memoriy size: 32 – 64 Kbit

 Registers for accumulation

of inputs/results

 Known pixel address in the

image

PE

carry

Image memory

A

B

C

D

20/11/2013 17:00 92

Window mapping in PA
 Fast processing of

windows

 Neighbourood

connectivity preserved

 Processing speed reduced by:

Overhead: (image size / array

size)

 Overhead in processing window

edge pixels

F E D C

B A 9 8

7 6 5 4

3 2 1 0

Scanning

IMAGE

Processor Array

F E D C

B A 9 8

7 6 5 4

3 2 1 0

F E D C

B A 9 8

7 6 5 4

3 2 1 0

F E D C

B A 9 8

7 6 5 4

3 2 1 0

F E D C

B A 9 8

7 6 5 4

3 2 1 0

20/11/2013 17:00 93

Crinkle mapping in PA

 Fast access of distant pixels

 No use of neighborhood

connections

 Negligible edge problem

F F E E D D C C

F F E E D D C C

B B A A 9 9 8 8

B B A A 9 9 8 8

7 7 6 6 5 5 4 4

7 7 6 6 5 5 4 4

3 3 2 2 1 1 0 0

3 3 2 2 1 1 0 0

F E D C

B A 9 8

7 6 5 4

3 2 1 0 IMAGE

Processor Array

20/11/2013 17:00 94

Pixel Parallelism: Processor arrays
Processor Element (PE) includes local memory

 Image distributed over all PE

All PE run the same program (SIMD)

PE PE PE

PE PE PE

PE PE PE

20/11/2013 17:00 95

Propagation: examples

Short

Cut Mousebyte

Spacing

20/11/2013 17:00 96

Mousebyte

20/11/2013 17:00 97

Minimum distance

20/11/2013 17:00 98

Global OR (Or-sum-tree)

20/11/2013 17:00 99

Global OR (Or-sum-tree)

20/11/2013 17:00 100

Operation Parallelism: Pipeline

Processing is done combined with transport

PE may be identical (Systolic array)

PE may be programmable (General purpose

pipeline)

PE may be hard wired (Special purpose

pipeline)

Input

Image
PE PE PE PE

Output

Image

20/11/2013 17:00 101

Cellular logic pipeline
7 6 5 Shift register

0 8 4 Shift register

1 2 3

PE

3 2 1

4 8 0

5 6 7

Input image Output image

Pixel 8 under

processing
Processed

pixels

20/11/2013 17:00 102

Pipeline characteristics

 Each PE processes another operation over all pixels

 Output speed is as fast as processing a single

instruction

 Algorithm length is limited by the number of PEs.

For larger algorithms recycling is necessary.

 Complicated (e.g. grey value) operations can be

realized by more complicated hardware

 Pipelines are either inflexible or difficult to program

20/11/2013 17:00 103

Comparison PA versus PL
 Processor arrays:

 Input/output problem

 Lowest level: stream of
instructions

 Relatively easy to
program

 Higher degree of
parallelism possible
(images can be large)

 Less powerful PE’s

 1. load image (part)

 2. load instruction

 3. process instruction

 4. repeat

 Pipelines:
 Instruction load problem

 Lowest level: stream of
pixels

 Relatively difficult to
program

 Difficult to realize a very
high degree of parallelism
(algorithms are not long
enough)

 More powerful PEs

 1. load instructions (part)

 2. process

 3. shift

 4. repeat

