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Comparison between Motion Analysis and Stereo 

 Stereo: Two or more frames 

 Motion: N frames 

baseline 

time 

•The baseline is usually larger in 

stereo than in motion: 
•Motion disparities tend to be 

smaller 

•Stereo images are taken at the 

same time: 
•Motion disparities can be due to 

scene motion 

•There can be more than one 

transformation btw frames 



Ill-posed problem 

 As an illustrative example, positively using this 
limitation to attract attention, consider the 
barber-shop banner usually displayed outdoors. 

 Typically, a rotation movement of a 3-coloured 
striped pattern on a cylinder, perceptually 
suggests that the whole pattern is translated 
vertically upwards. 

  In some cases, two helices (clockwise and 
counter-clockwise) appear under rotation to 
clash in the middle of the cylinder. In fact, a 
rotational movement is the only one really 
existing since the cylinder has a fixed size. 
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Why Multitude of Formulations? 
 How is the camera moving?   

• The camera can be stationary 
• execute simple translational motion 
• undergo general motion with both translation and rotation 

 How many moving objects are there?  

• The object(s) can be stationary 

• execute simple 2D motion parallel to the image plane 

• undergo general motion with both 3D translation and rotation 
• Which directions are they moving in? 
• How fast are they moving? 
• Can we recognize their type of motion (e.g. walking, running, etc.)?  

 The camera motion may be known or unknown  

 The shape of the object may be known or unknown 

 The motion of the object may be known or unknown 

 etc. etc. ... 
 



Classes of Techniques 
 Feature-based methods 

• Extract visual features (corners, textured areas) and track 
them 

• Sparse motion fields, but possibly robust tracking 

• Suitable especially when image motion is large (10s of pixels) 

 Direct-methods 
• Directly recover image motion from spatio-temporal image 

brightness variations 

• Global motion parameters directly recovered without an 
intermediate feature motion calculation 

• Dense motion fields, but more sensitive to appearance 
variations 

• Suitable for video and when image motion is small (< 10 pixels) 

Szeliski 



Global Flow 
• Dominant Motion in the image 

• Motion of all points in the scene 

• Motion of most of the points in the scene 

• A Component of motion of all points in the scene 

• Global Motion is caused by  
• Motion of sensor (Ego Motion) 

• Motion of a rigid scene 

• Estimation of Global Motion can be used to 
• Video Mosaics 

• Image Alignment (Registration) 

• Removing Camera Jitter 

• Tracking (By neglecting camera motion) 

•  Video Segmentation etc. 



Motion Detection and Estimation in Literature 

 Image differencing 
• based on the thresholded difference of successive images  

• difficult to reconstruct moving areas 

 Background subtraction 
• foreground objects result by calculating the difference between an 

image in the sequence and the background image (previously 
obtained) 

• remaining task: determine the movement of these foreground 
objects between successive frames 

 Block motion estimation 
• Calculates the motion vector between frames for sub-blocks of the 

image 

 Optical Flow 
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Motion Field (MF) 

 The MF assigns a velocity vector to each pixel in the image. 

 These velocities are INDUCED by the RELATIVE MOTION btw 
the camera and the 3D scene 

 The MF can be thought as the projection of the 3D velocities on 
the image plane. 

 Examples of Motion fields: 

Forward motion Rotation Horizontal 
translation 

Closer objects 
appear to move 

faster!! 
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Shape from….. 

Egomotion 
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Motion Field 
 Image velocity of a point moving in the scene 

Z

X

Y

or

ir

'f

 Perspective projection: 
Zr

rr




o

oi

f '

   
 

 
 22

''
Zr

Zvr

Zr

rZvvZrr
v











o

oo

o

ooooi
i ff

dt

d

 Motion field 

tov

tiv

 Scene point velocity: 

 Image velocity: 
dt

d o
o

r
v 

dt

d i
i

r
v 

Quotient rule:  
D(f/g) = (g f’ – g’ f)/g2 

 



17 

Preliminaries for motion analysis 
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 If A or B are moving objects with velocity 
components vx , vy , vz in 3D space, the 
corresponding velocity of the A or B 
image points, may be computed as follows: 

 

 

 

 

 

 The object speed in the scene is not 
known a-priori so that it must be 
estimated by the detected movement of 
the object projection on the image. 

  Unfortunately, this problem is ill-posed 
since it is seldom possible to compute the 
object speed in space only knowing the 
planar displacement of its projections. 

 

Image plane 



Focus of Expansion-Contraction (FOE-FOC) 

   As t varies the image point moves along a straight line in the image 

   Focus of Expansion: Lets backtrack time or  
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Motion modeling 

 In its dynamic mode, space modeling 
addresses motion. In many applications, 
a significant feature of the scene to 
be analyzed is the movement of some 
objects during a time interval.  

 Such apparent movements may be due 
either to the image sensor, as in an 
airplane photographic campaign 
(egomotion), or to some scene 
components, as cars in a road scenario 
or both.  

 First, the camera is assumed to remain 
still, next, egomotion is introduced and 
compensated for, leading back to the 
former analysis. 

21 



Egomotion 

22 

Y 

Z 

y 

f 

P 
DP 

Dy 

O 

 the optical flow is istrumental at evaluating the shape and 
position of still components from their apparent motion due 
to the camera movement (egomotion). The sketch shows a 
camera downwards shift along the Z axis.  

 Thanks to the relativity of perception it is equivalent to 
assume that the camera is still and the scene moves in the 
opposite direction along the Z axis. In this way, while the P 
point belonging to the ZY plane moves vertically down by 
∆P, its corresponding image point P moves along the Y axis 
by ∆P. Considering the triangle similarity: 

 

and 

 so that the distance Z may be derived considering that dZ 
is the known motion of the camera and (X, dX) is 
determined from the image: 
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Figure from Michael Black, Ph.D. Thesis 

Length of flow vectors 
inversely proportional to 
depth Z of 3d point 

points closer to the 
camera move more quickly 
across the image plane 

Motion field + camera motion 



Egomotion: collision time 
 The apparent movements are radial centered on the focus of expansion (FOE).  

 A collision time (camera/object) could be estimated: the displacement dY with 
respect to the focus of expansion has the same relationship as the displacement 
along the Z axis with respect to the focal plane. 

 For a camera having general velocity with components u, v and w respectively along 
the X, Y and Z axis, the generic object point Xo, Yo, Zo will be displaced on the 
image as: 

 

 

 In order to compute the coordinates of the final/original destination of the 
moving point we may evaluate these for t= ±∞ so obtaining the focus of 
expansion/contraction coordinates: 

 

 

 and consequently the collision time. 
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Camera and egomotion 

 The egomotion makes all still objects in 
the scene to verify the same motion 
model defined by three translations T 
and three rotations . Conversely, mobile 
obstacles pop out as not resorting to the 
former dominating model. 

 Under such assumptions, the following 
classical equations hold: 
 
 
 
 
 

 

 where                                                     
stands for the 2-D velocity vector of the 
pixel under the focal length f. 
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Coherent Motion 

Possibly Gaussian 



Egomotion 
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Detected 
 speeed 

Average 
speed 

Object 
speed 



Motion models 

Translation 

2 unknowns 

Affine 

6 unknowns 

Perspective 

8 unknowns 

3D rotation 

3 unknowns 

Szeliski 























Motion via correspondences 
 Normally, peculiar points on the first image 

are located so as to search their 
corresponding points on the second image.  

 As in the triangulation for stereovision, there 
is no guarantee that such corresponding points 
exist and the new point of view may not include 
such points, moved out of the field of view.  

 The object is first considered as a rigid one 
and therefore without plastic distortion and 
the background is regarded as stationary.  

 In order to reduce the computational cost, the 
number of points is limited to the truly 
characteristic ones.  

 Similarly to the epipolar segment for 
stereovision, the corresponding points are 
searched in a restricted area determined by a 
few heuristics. 

 Primal sketch: locate the position of a pixel in 
the current image having similarity and the 
shortest Euclidean distance with respect to a 
point in the previous frame. 
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Even “impoverished” motion data can 
evoke a strong percept 
 
     30 points               10 points 



Patch Matching 

Where did each pixel in image 1 go to in image 2 



Local Patch Analysis 

 How certain are the motion estimates? 

Szeliski 
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Patch matching (revisited) 

 How do we determine correspondences? 

• block matching or SSD (sum squared differences) 
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Correlation Window Size 

 Small windows lead to more false matches 
 Large windows are better this way, but… 

• Neighboring flow vectors will be more correlated (since the 
template windows have more in common) 

• Flow resolution also lower (same reason) 
• More expensive to compute 

 Small windows are good for local search: more detailed 
and less smooth (noisy?) 

 Large windows good for global search: less detailed and 
smoother 



Maximum velocity 

 A generic central object point can be located in the successive frame 
within a circle with a radius equal to Vmax ∆t, where Vmax is the  highest 
possible velocity of such point: 
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Obstacles 

 The previous circular field is also limited by existing obstacles 
and physical boundaries contained in the scene 
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Maximum acceleration 

 An extrapolation can enable TRACKING  the object point in 
successive frames. 

 The velocity detected in the two previous frames may be 
exploited to foresee the future position of the object point (time 
filtering). Same as before, a displacement will be inside a circle 
of radius equal to ½ Amax Dt2 where Amax is the maximum 
acceleration; 
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Consistent matching 

 Object points do not likely coalesce into one single point of the 
following frame, leading to the so-called consistent matching 
criterion. The picture shows four identified points that force the 
correspondence of the fifth dark one  
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Common motion 

 Common motion situation: once the motion of the neighbors has 
been identified, the dark point necessarily maps into a congruent 
position (the depicted case is an expansion centered in the figure 
window)  
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Flexible motion model 

 motion model for a ‘herd’ of points suggesting the most plausible 
displacement of the dark object point. 
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Robust estimation 

Standard Least Squares Estimation allows too much influence 

for outlying points 
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 Problem: Least-squares 
estimators penalize deviations 
between data & model with 
quadratic error fn (extremely 
sensitive to outliers) 

 Redescending error functions 
(e.g., Geman-McClure) help to 
reduce the influence of 
outlying measurements. 
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Tracking as induction 

 Make a measurement starting in the 0th frame 

 Then:  assume you have an estimate at the ith frame, after the 
measurement step. 

 Show that you can do prediction for the i+1th frame, and measurement 
for the i+1th frame. 
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Tracking 

 Idea 
• We don’t have the best estimate of state - what about the future? 

• Run two filters, one moving forward, the other backward in time. 

• Now combine state estimates 
• The crucial point here is that we can obtain a smoothed estimate by 

viewing the backward filter’s prediction as yet another measurement for 
the forward filter 
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Combined forward-backward estimates 



Problem definition:  optical flow 

 How to estimate pixel motion from image H to image I? 

• Solve pixel correspondence problem 
– given a pixel in H, look for nearby pixels of the same color in I 

 Key assumptions 
• color constancy:  a point in H looks the same in I 

– For grayscale images, this is brightness constancy 

• small motion:  points do not move very far 

 This is called the optical flow problem 
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Brightness Constancy 
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Optical Flow Constraints 

• Optical flow is a constrained problem that only guarantees results 
under certain conditions. 
• The Smoothness Constraint requires that neighboring points in the 

image have similar velocities in the velocity field. 

• This means discontinuities represent object occlusion. 

• The Minimization Constraint requires that as our expected noise 
trends toward zero our error rate for our derivative must be tend 
towards zero as well 

• This means that our derivative estimates have to be accurate.  
Well that sucks.   

 

 



Motion via local change 
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Mathematical formulation 
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Optical flow constraint equation :  
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(u’,v’) 

The brightness constancy constraint 



 The component of the motion perpendicular to the gradient (i.e., 
parallel to the edge) cannot be measured 

edge 

(u,v) 

gradient 

(u+u’,v+v’) 

If [u,v] satisfies the equation,  
so does [u+u’, v+v’ ] if  

  0 t
T IvuI

  0'' 
TvuI



Optical flow 

 A geometric representation of grey level variations due 
to the movement of the object points are illustrated in 
figure . X corresponds to the location examined along a 
given spatial coordinate while four straight lines 
materialize four potential grey level variations 
(linearized) on the object. Bold lines show the grey 
level pattern due to the object displacement.  

 If the object point moves along a direction having 
constant grey level, no variation can be detected. 
Conversely, the higher the gradient value the greater 
the grey level variation due to motion, so that the 
movement along the gradient direction be evaluated 
easily in accordance through it: the apparent movement 
is inversely weighted with the gradient intensity.  

 The information obtained via this approach only refers 
to the orthogonal direction with respect to the contour 
and a number of algorithms along the years, have been 
given to provide a more detailed movement 
information..  
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Optical flow 

 The optical flow is defined as the vectorial field of luminosity 
variation. 

 This variation depends on the motion and on the grey level 
gradient 

 Examples: 
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 Motion detectable 

 Focus of expansion  Focus of contraction 



Forms of motion 
Translation at constant 
distance from the observer. 

Set of parallel motion 
vectors. 

Translation in depth relative 
to the observer. 

Set of vectors having 
common focus of 
expansion. 

Rotation at constant 
distance from view axis. 

Set of concentric motion 
vectors. 

Rotation of planar object 
perpendicular to the view 
axis. 

One or more sets of 
vectors starting from 
straight line segments. 



Occlusion 

occlusion disocclusion shear 

Multiple motions within a finite region. 

Black 



Aperture Problem 

In degenerate local regions, only the normal velocity is measurable. 
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The aperture problem 
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What is Optical Flow? 

Optical Flow 
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Velocity vectors 

Note: more elaborate tracking models can be adopted if more frames are process all at once  

Image sequence 
(single camera) 

Tracked sequence 

Image tracking 



Optical Flow Examples 

Translation Rotation Scaling 



Optical Flow 

Pierre Kornprobst's Demo  



Optical Flow as Seen from an Aircraft  

 Blue arrows show the 
optic flow 

 Blue circle directly 
at the center shows 
the "focus of 
expansion“, which 
tells the aircraft the 
specific direction it 
is flying.  

73 



 MF of a pilot looking to the right 
in level flight. FoE is off at 
infinity to the left or 
equivalently FoC is off to the 
right 

 MF with a plane parallel to the 
ground FoE at infinity on the 
horizon. 

 MF during landing FoE on the 
pont of impact. 
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Optical Flow as Seen from an Aircraft  



Picture courtesy of Selim Temizer - Learning and Intelligent Systems (LIS) Group, MIT  

Optical flow 

Vector field function of the 
spatio-temporal image 
brightness variations  



Example 
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Example 
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OF results 
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Example 
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Of results 
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Iterative Refinement 

 Estimate velocity at each pixel using one iteration of Lucas and 
Kanade estimation 

 Warp one image toward the other using the estimated flow field 
(easier said than done) 

 Refine estimate by repeating the process 
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Optical Flow: Iterative Estimation 

x x0 

Initial guess:  

Estimate: 

estimate 
update 

(using d for displacement here instead of u) 
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Optical Flow: Iterative Estimation 

x x0 

estimate 
update 

Initial guess:  

Estimate: 
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Optical Flow: Iterative Estimation 

x x0 

Initial guess:  

Estimate: 

Initial guess:  

Estimate: 

estimate 
update 
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Optical Flow: Iterative Estimation 

x x0 
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Optical Flow: Aliasing 

Temporal aliasing causes ambiguities in optical flow because 
images can have many pixels with the same intensity. 

I.e., how do we know which ‘correspondence’ is correct?  

nearest match is correct 
(no aliasing) 

nearest match is 
incorrect (aliasing) 

To overcome aliasing: coarse-to-fine estimation. 

actual shift 

estimated shift 



When does it break? 

The screen is 
stationary yet 
displays motion 

Homogeneous 
objects 
generate zero 
optical flow. 

Fixed sphere. 
Changing light 
source. 

Non-rigid 
texture motion 



Computing Optical Flow: Improvements 

 Larger motion: how to maintain “differential” approximation? 
• Solution: iterate 

 Even better: adjust window / smoothing 
• Early iterations: use larger Gaussians to allow more motion  

• Late iterations: use less blur to find exact solution, lock on to high-
frequency detail 



Revisiting the Small Motion Assumption 

 Is this motion small enough? 
• Probably not—it’s much larger than one pixel (2nd order terms dominate) 
• How might we solve this problem? 
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SSD Surface – Textured area 
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SSD Surface -- Edge 
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SSD – homogeneous area 



Reduce the Resolution! 



Gaussian pyramid of image H Gaussian pyramid of image I 

image I image H u=10 pixels 

u=5 pixels 

u=2.5 pixels 

u=1.25 pixels 

Coarse-to-fine Optical Flow Estimation 



image I image J 

Gaussian pyramid of image H Gaussian pyramid of image I 

image I image H 

run iterative OF 

run iterative OF 

upsample 

. 

. 

. 

Coarse-to-fine Optical Flow Estimation 
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Multiscale Optical Flow 

(other names: “warping”, “coarse-to-fine”, “multiresolution”) 

pyramid for frame 1 

tyx IvIuItyxItvyuxI            ),,()1,,( 

Linearization: valid only for small flow 

+ 

+ 
frame 1 
warped 

pyramid for frame 2 

upsample 



J Jw I warp refine 

inV

VD
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J Jw I warp refine 

V

VD+ 

J 

pyramid  

construction 

J Jw I warp refine 

VD+ 

I 

pyramid  

construction 

outV

Coarse-to-fine estimation 
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Optical Flow Assumptions: 
  

* Slide from Michael Black, CS143 2003 



Local smoothness Lucas Kanade (1984) 

Assume constant (u,v) in small neighborhood 
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Goal:    Minimize 
2

u bA 


Method: Least-Squares 



Regularization Horn and Schunk (1981) 

Add global smoothness term 

    dydxvvuuE
D

yxyxs   2222
Smoothness error: 

  dydxIvIuIE
D

tyxc  
2Error in brightness 

constancy equation 

sc EE Minimize: 

Solve by calculus of variations 



Deployment of Video segmentation 

• Segment the video into multiple coherently moving objects 
• Background subtraction 

• Shot boundary detection 

• Motion segmentation 



Layered Representation 

Estimate dominant motion parameters 

Reject pixels which do not fit 

Convergence 

Restart on remaining pixels 

For scenes with multiple affine motions 



Block-based motion prediction 

 Break image up into square blocks 

 Estimate translation for each block 

 Use this to predict next frame, code difference 
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Layered motion 

 

 Break image sequence up into “layers”: 

 

 

                                         = 

 

 

 Describe each layer’s motion 

J. Y. A. Wang and E. H. Adelson.  Representing moving images with layers.  IEEE Transactions 
on Image Processing, 3(5):625--638, September 1994.   
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Layer synthesis 

 For each layer: 
• stabilize the sequence with the affine motion 

• compute median value at each pixel 

 Determine occlusion relationships 



114 

Results 
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Layered motion 

 Advantages: 
• can represent occlusions / disocclusions 

• each layer’s motion can be smooth 

• video segmentation for semantic processing 

 Difficulties: 
• how do we determine the correct number? 

• how do we assign pixels? 

• how do we model the motion? 



Image Data Sets 

 Poor resolution 

 Amount of occlusion 

 Low contrast  

 Velocities ~2 p/f 

 Primarily dilational  

 Velocities <1 pixel/ 
frame 

 The cube is rotating 
counterclockwise on a 
turntable  

 Velocities on the 
table 1.2~1.4 p/f  

 Velocities on the 
cube 0.2~0.5 p/f 

 Four moving objects 

 Speeds 
• Taxi 1.0 p/f 

• Car 3.0 p/f 

• Van 3.0 p/f 

• Pedestrian 0.3 p/f 

 



Results: Horn-Schunck 



Results: Lucas-Kanade 



Results: Anandan 
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Other break-downs 

 Brightness constancy is not satisfied 
 
 

 A point does not move like its neighbors  
• what is the ideal window size? 

 

 
 The motion is not small (Taylor expansion doesn’t 

hold) 

Correlation based methods 

Regularization based methods 

Use multi-scale estimation 
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Contour tracking 



Textured Motion 

 http://civs.stat.ucla.edu/Yizhou_Research/Texturedmotion.htm 

 Natural scenes contain rich stochastic motion patterns which are 
characterized by the movement of a large amount of particle and 
wave elements, such as falling snow, water waves, dancing grass, 
etc. We call these motion patterns "textured motion".  

 

 

 

http://civs.stat.ucla.edu/Yizhou_Research/Texturedmotion.htm
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 * From Marc Pollefeys COMP 256 2003 

Optical Flow Break Down 



Optical Flow: 
Where do pixels move to? 



Optical Snow 

 http://www.cim.mcgill.ca/~langer/research-optical-snow.html 

 Optical snow is the type of motion an observer sees when watching a 
snow fall.  Flakes that are closer to the observer appear to move faster 
than flakes which are farther away.  



Applications of segmentation 
to video 

• Background subtraction 

• Shot boundary detection 
• Commercial video is usually composed of shots or sequences showing 

the same objects or scene 

• Goal: segment video into shots for summarization and browsing (each 
shot can be represented by a single keyframe in a user interface) 

• Difference from background subtraction: the camera is not 
necessarily stationary 



Applications of segmentation to video 

• Background subtraction 

• Shot boundary detection 
• For each frame 

• Compute the distance between the current frame and the 
previous one 

– Pixel-by-pixel differences 

– Differences of color histograms 

– Block comparison 

• If the distance is greater than some threshold, classify the 
frame as a shot boundary 



Optical Flow Applications 

Obstacle Detection: Unbalanced Optical Flow 

Temizer 


