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Comparison between Motion Analysis and Stereo

= Stereo: Two or more frames

*The baseline is usually larger in

stereo than in motion:
‘Motion disparities tfend to be
smaller

= Motion: N frames -Stereo images are taken at the
same time:

| time ‘Motion disparities can be due to
— \ scene motion

| *There can be more than one
transformation btw frames

baseline
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Ill-posed problem

= As an illustrative example, positively using this
limitation to attract attention, consider the
barber-shop banner usually displayed outdoors.

= Typically, a rotation movement of a 3-coloured
striped pattern on a cylinder, perceptually
suggests that the whole pattern is translated
vertically upwards.

= In some cases, two helices (clockwise and
counter-clockwise) appear under rotation to
clash in the middle of the cylinder. In fact, a
rotational movement is the only one really
existing since the cylinder has a fixed size.




Why Multitude of Formulations?

How is the camera moving?
* The camera can be stationary
« execute simple translational motion
* undergo general motion with both translation and rotation

How many moving objects are there?
* The object(s) can be stationary
« execute simple 2D motion parallel o the image plane

 undergo general motion with both 3D translation and rotation
 Which directions are they moving in?
* How fast are they moving?
- Can we recognize their type of motion (e.g. walking, running, etc.)?

The camera motion may be known or unknown

The shape of the object may be known or unknown
The motion of the object may be known or unknown
etc. etc. ...



Classes of Techniques

* Feature-based methods

Extract visual features (corners, textured areas) and track
them

Sparse motion fields, but possibly robust tracking
Suitable especially when image motion is large (10s of pixels)

= Direct-methods

Directly recover image motion from spatio-temporal image
brightness variations

Global motion parameters directly recovered without an
intermediate feature motion calculation

Dense motion fields, but more sensitive to appearance
variations

Suitable for video and when image motion is small (< 10 pixels)
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Global Flow

Dominant Motion in the image
* Motion of all points in the scene
*  Motion of most of the points in the scene
« A Component of motion of all points in the scene
Global Motion is caused by
* Motion of sensor (Ego Motion)
*  Motion of a rigid scene
Estimation of Global Motion can be used to
 Video Mosaics
Image Alignment (Registration)
Removing Camera Jitter
Tracking (By neglecting camera motion)
Video Segmentation etc.



Motion Detection and Estimation in Literature

Image differencing
* based on the thresholded difference of successive images
- difficult to reconstruct moving areas

Background subtraction

« foreground objects result by calculating the difference between an
image in the sequence and the background image (previously
obtained)

remaining task: determine the movement of these foreground
objects between successive frames

Block motion estimation
Calculates the motion vector between frames for sub-blocks of the
image

Optical Flow



Motion Field (MF)

The MF assigns a velocity vector to each pixel in the image.

These velocities are INDUCED by the RELATIVE MOTION btw
the camera and the 3D scene

The MF can be thought as the projection of the 3D velocities on
the image plane.

'L b4 M — —_— —— ——= ——=
N SN
R Cal PSS

S PR PR S —— ,‘_f*'r'lj

R
'

— i = =

& ,..' — i
a o — - - - -
K1 EHH \. \

j/‘ —_— i —— i —— =

j TR T i

EEETEEEEE’
Yok
1
et
Frbt
tetrer bbb

f ¥ ':. — e e — = ——

Forward motion Rotation Horizontal Closer objects

translation appear to move
fasterll

11



Shape from.....
Egomotion
Y_ - _ 1Y
y oz z
av yf ¥
dz  z2  z
Y dz

Image plane




Motion Field

= Tmage velocity of a point moving in the scene

dr,

= Scene point velocity:V, =

I ST d
mage velocity: V; gt
V.ot
= Perspective projection: LI
p projection: f'_l’o-Z
= Motion field
dri -(ro ' Z)Vo _(Vo ' Z)ro '(ro X VO)>< £
V,=——=f 2 =1 2
dt (ro . Z) (ro ) Z)

Quotient rule:

D(f/g)= (g f' - g f)/g?



Preliminaries for motion analysis

= If A or B are moving objects with velocity

A
o

/=B Image plane

components v,, v, v, in 3D space, the g
corresponding velocity of the A or B
image points, may be computed as follows: f

-X

vg =L (2o, - v,) :
X z \z z x

.}'
Uy = — (-I? Y )
ooz \g 2 D
= The object speed in the scene is not
known a-priori so that it must be
estimated by the detected movement of
the object projection on the image. Y

= Unfortunately, this problem is ill-posed
since it is seldom possible to compute the
object speed in space only knowing the
planar displacement of its projections.
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Focus of Expansion-Contraction (FOE-FOC)

(x',y")

/ (X,¥,2)
f=1 (Xos Yor Zo)

7‘./
X, +ut Yy, +Vt

(. Y) E{zo +wt z, +vvt}

As t varies the image point moves along a straight line in the image
Focus of Expansion: Lets backtrack time or (t — —o0)

(X', y) ={~,~}
W W




Motion modeling

= In its dynamic mode, space modeling
addresses motion. In many applications,
a significant feature of the scene to
be analyzed is the movement of some
objects during a time interval.

= Such apparent movements may be due
either to the image sensor, as in an
airplane photographic campaign
(egomotion), or to some scene
components, as cars in a road scenario
or both.

= First, the camera is assumed to remain
still, next, egomotion is introduced and
compensated for, leading back to the
former analysis.




Egomotion

= the optical flow is istrumental at evaluating the shape and
position of still components from their apparent motion due P
to the camera movement (egomotion). The sketch shows a AP
camera downwards shift along the Z axis.

Thanks to the relativity of perception it is equivalent to
assume that the camera is still and the scene moves in the
opposite direction along the Z axis. In this way, while the P
point belonging to the ZY plane moves vertically down by
AP, its corresponding image point P moves along the Y axis

by AP. Considering the triangle similarity:
Y
P A T
V4 and Y b 4
so that the distance Z may be derived considering that dZ
is the known motion of the camera and (X, dX) is
determined from the image: dz
L=——"7Y
dY




Motion field + camera motion
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Figure 1.2: Two images taken from a helicopter flying through a canyon and the computed
optical flow field.

Figure from Michael Black, Ph.D. Thesis

Length of flow vectors
inversely proportional to
depth Z of 3d point

points closer to the
camera move more quickly
across the image plane



Egomotion: collision time

The apparent movements are radial centered on the focus of expansion (FOE).

A collision time (camera/object) could be estimated: the displacement dY with
respect to the focus of expansion has the same relationship as the displacement
along the Z axis with respect to the focal plane.

For a camera having general velocity with components u, vand w respectively along
the X, Y and Z axis, the generic object point Xo, Yo, Zo will be displaced on the

image as:

X, +ut Y =—f Y, +vt

X:_f )
Z,+wt Z,+wt

In order to compute the coordinates of the final/original destination of the
moving point we may evaluate these for t= +o so obtaining the focus of
expansion/contraction coordinates:

u v
XFOE :_f_;YFOE =—f—
w w

and consequently the collision time.



Camera and egomotion

= The egomotion makes all still objects in
the scene to verify the same motion
model defined by three translations T
and three rotations Q. Conversely, mobile
obstacles pop out as not resorting to the
former dominating model.

= Under such assumptions, the following

classical equations hold:
- +xT. —
u, = fTXZ Z, :—}(yQX_L
\ 'Ox
Sy +yTz _—xy T~ X
Vy = Z yVp = 7 QY —
Qz \

T T
= where W=[u,v] =[u; +U.,v; +V, |
stands for the 2-D velocity vector of the
pixel under the focal length f.



Coherent Motion
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Egomotion
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Motion models

al MD 5 @

A

e
Translation Affine Perspective 3D rotation
2 unknowns 6 unknowns 8 unknowns 3 unknowns

Szelis]



e Transformations/warping of 1image

E(h) =2 [I(x+h)- [,®]

g —

Ox
oy

e —

Translations h =




Generalization

* Transformations/warping of 1image

E(A, h) = %? [1( Ax

Affine:

A

h) - [,(x)]°

a b Ox
h—

c d Oy

—

—t



Generalization

Affine: A =




Example: Affine Motion

u(x,vy=a,+a,x+a,y

vix,y)=a,+ax+a.y

Substituting into the B.C. Equation:
[,-u+l, v+ =0

[ (a,+a,x+ay)+1 (a,+tasx+agy)+1, =0

Each pixel provides 1 linear constraint in 6 global unknowns
(minimum 6 pixels necessary)

Least Square Minimization (over all pixels):

Err(a) = z‘[[x(a1 ta,x+tay)+1,(a,+asx+agy)+ Iz] 2



Generalization

* Transformations/warping of image

E(A) =2 [IC Ax )~ [,®]’

a, d, d,

Planar perspective: A =|a, a. a

a, ag 1

b —



Generalization

Affine +

Planar perspective: A =| q,




Generalization

e Transformations/warping of image

E(h) =2 [I(fxh) - [x)]’

Other parametrized transformations



Generalization

N
7 TN

Other parametrized transformations



Residual Planar Parallax Motion
(Plane+Parallax)

Original sequence Plane-aligned sequence Recovered shape

Block sequence from [Kumar-Anandan-Hanna’94]

“Given two views where motion of points on a
parametric surface has been compensated, the
residual parallax is an epipolar field”



Residual Planar Parallax Motion

epipole

The intersection of the two line constraints
uniquely defines the displacement.




Motion via correspondences

Even "impoverished" motion data can -
evoke a strong percept

30 points 10 points "
| ...
] |
n - -
[ ) L
¥ .
] I* ]
u " - L ] -
LI -
- “u -
- ik u

Normally, peculiar points on the first image
are located so as to search their
corresponding points on the second image.

As in the triangulation for stereovision, there
is no guarantee that such corresponding points
exist and the new point of view may not include
such points, moved out of the field of view.

The object is first considered as a rigid one
and therefore without plastic distortion and
the background is regarded as stationary.

In order to reduce the computational cost, the
number of points is limited to the truly
characteristic ones.

Similarly to the epipolar segment for
stereovision, the corresponding points are
searched in a restricted area determined by a
few heuristics.

Primal sketch: locate the position of a pixel in
the current image having similarity and the
shortest Euclidean distance with respect to a

point in the previous frame. 29



Patch Matching

Where did each pixel in image 1 go to in image 2




Local Patch Analysis

= How certainare the motion estimates?

Szelis]



Patch matching (revisited)

= How do we determine correspondences?
«  block matching or SSD (sum squared differences)

E(x,y;d) = ST (@ 4d, ) —Ir(e, y)]?
(', y')eN(x,y)

42



Correlation Window Size

Small windows lead to more false matches

Large windows are better this way, but...

* Neighboring flow vectors will be more correlated (since the
template windows have more in common)

* Flow resolution also lower (same reason)
* More expensive to compute

Small windows are good for local search: more detailed
and less smooth (hoisy?)

Large windows good for global search: less detailed and
smoother

43



Maximum velocity

= A generic central object point can be located in the successive frame
within a circle with a radius equal to V, . At, where V, . is the highest
possible velocity of such point:

- B




Obstacles

The previous circular field is also limited by existing obstacles
and physical boundaries contained in the scene




Maximum acceleration

An extrapolation can enable TRACKING the object point in
successive frames.

The velocity detected in the two previous frames may be
exploited to foresee the future position of the object point (#ime
filtering). Same as before, a displacement will be inside a circle
of radius equal to 3 A, Dt2 where A, is the maximum
acceleration;

P
i 7




Consistent matching

Object points do not likely coalesce into one single point of the
following frame, leading to the so-called consistent matching
criterion. The picture shows four identified points that force the
correspondence of the fifth dark one




Common motion

Common motion situation: once the motion of the neighbors has
been identified, the dark point necessarily maps into a congruent
position (the depicted case is an expansion centered in the figure

window)




Flexible motion model

= motion model for a 'herd’ of points suggesting the most plausible

displacement of the dark object point.

/" /4
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Robust estimation
¢ E(m)=Yp(x)

°® p(x;)=(x,—m)°
°3e Influence v (x) = P _ 2(x; —m)
oX

influence function error penalty function
v Problem: Least-squares

estimators penalize deviations
between data & model with
quadratic error f" (extremely
sensitive to outliers)

v" Redescending error functions
(e.g., Geman-McClure) help to 4
reduce the influence of
outlying measurements.

A

A 4

A 4



Tracking as induction

Make a measurement starting in the O™ frame

Then: assume you have an estimate at the ith frame, after the
measurement step.

Show that you can do prediction for the i+1th frame, and measurement
for the i+1th frame.

Time Update Measurement Update
(“Predict’™) (*Correct”)



Tracking

Idea
« We don't have the best estimate of state - what about the future?
« Run two filters, one moving forward, the other backward in time.

« Now combine state estimates

* The crucial point here is that we can obtain a smoothed estimate by
viewing the backward filter's prediction as yet another measurement for
the forward filter



Forward estimates
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Backward es’rlma‘res
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Problem definition: optical flow

e
./' .\ .
o—r (@)

-—0
o

H(z,y) I(z,y)

= How to estimate pixel motion from image H to image I?

Solve pixel correspondence problem
- given a pixel in H, look for|nearby|pixels of the|same color]in I
= Key assumptions
color constancy: a point in H looks the same in T
- For grayscale images, this is brightness constancy
- small motion: points do not move very far

= This is called the optical flow problem




Brightness Constancy

I(x+r,y+st+1)-I(x,y,1)=0




Optical Flow Constraints

« Optical flow is a constrained problem that only guarantees results
under certain conditions.

* The Smoothness Constraint requires that neighboring points in the
image have similar velocities in the velocity field.

- This means discontinuities represent object occlusion.
* The Minimization Constraint requires that as our expected noise

trends toward zero our error rate for our derivative must be tend
towards zero as well

- This means that our derivative estimates have to be accurate.
Well that sucks.



Motion via local change

= Differently from the previous approach, the computation now is
performed point-wise, evaluating the motion based on the grey
level variations of pixels.

= Let be P, and P,.; the pixels respectively corresponding to the same
3D point in successive frames n and n+1, under the assumption that
this object point remains visible and that illumination conditions do
not change, it is assumed that the grey value #of P,and P,.;is
constant (optical flow constraint):

f(x+0x,y+0y,t+0t)=f(x,y,t)

= where 0x, 0y represents the pixel displacement between images

and 0 t is the time interval. By differentiating, one can write:
fxﬁ—x+fy@=—ft or using « for the scalar product and V for the
TN

gradient Vf -V=f,

= Under the hypothesis that Vf #0 it writes: V, = :ﬁ 2
the velocity along the gradient direction. fo+d,

giving



Mathematical formulation

Brightness constancy assumption:

dx dy
|(X+—&X, y+—X,t+)=1(x,Vy,t
( 5 Yo )=1(X,y,1)

Optical flow constraint equation :

dl _al dx_aldy ol _

dt ox dt aydt ot

1 equation in 2 unknowns



The brightness constancy constraint

= Can we use this equation to recover image motion v'=[u,v] at each

pixel?
VI luvl +I =0

= One equation (this is a scalar equation!), two unknown v = [u, v]

= The component of the motion perpendicular to the gradient (i.e.,
parallel to the edge) cannot be measured

If [u,yv]satisfies the equation, gradient

so does [u+u’, v+v' ] if (u,v)

VI-[U' v']r =0

(i, V)

(u’,v')

edge



Optical flow

= A geometric representation of grey level variations due
to the movement of the object points are illustrated in
figure . X corresponds to the location examined along a
given spatial coordinate while four straight lines
materialize four potential grey level variations
(/inearized) on the object. Bold lines show the grey
level pattern due to the object displacement.

= If the object point moves along a direction having
constant grey level, no variation can be detected.
Conversely, the higher the gradient value the greater
the grey level variation due to motion, so that the
movement along the gradient direction be evaluated
easily in accordance through it: the apparent movement
is inversely weighted with the gradient intensity.

= The information obtained via this approach only refers
to the orthogonal direction with respect to the contour
and a number of algorithms along the years, have been
given to provide a more detailed movement
information..

displacement |,

Grey level

a --

C _

d -

Spatial coordinate X



Optical flow

The optical flow is defined as the vectorial field of luminosity
variation.

This variation depends on the motion and on the grey level
gradient

Examples: Focus of expansion Focus of contraction
D
0
S
(S
S
Q)
o
[
3
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°
5 Nt SN S
3
M detectable X s Y/
1 X 4 b X

/SN /SN



Forms of motion

Translation at constant
distance from the observer.

Set of parallel motion
vectors.

Translation in depth relative
to the observer.

Set of vectors having
common focus of
expansion.

Rotation at constant
distance from view axis.

Set of concentric motion
vectors.

Rotation of planar object
perpendicular to the view
axis.

One or more sets of
vectors starting from
straight line segments.

=
)|
L
g




Occlusion
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occlusion disocclusion

Multiple motions within a finite region.

Blacl



Aperture Problem

In degenerate local regions, only the normal velocity is measurable.






What is Optical Flow?

Optical Flow o
)

| (t+1

Image sequence
(single camera) 70

Tracked sequence

Note: more elaborate tracking models can be adopted if more frames are process all at once



ical Flow Examples

Opt

Rotation

Translation
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Optical Flow
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Optical Flow as Seen from an Aircraft

Blue arrows show the
optic flow

Blue circle directly
at the center shows
the "focus of
expansion”, which
tells the aircraft the
specific direction it
is flying.




Optical Flow as Seen from an Aircraft

= MF of a pilot looking to the right
in level flight. FoE is of f at
infinity fo the left or
equivalently FoC is off to the
right

= MF with a plane parallel to the
ground FoE at infinity on the

—~— o ~— -




Optical flow

Vector field function.of the =
spatio-temporal image
brightnhess variations

Picture courtesy of Selim Temizer - Learning and Intelligent Systems (LIS) Group, MIT




Example







OF results




Example




Of results




Tterative Refinement

Estimate velocity at each pixel using one iteration of Lucas and
Kanade estimation

Warp one image toward the other using the estimated flow field
(easier said than done)
Refine estimate by repeating the process

83



Optical Flow: Iterative Estimation

s f1(x) f-(z)

estimate

oy o : d — O
update Initial guess: do

Estimate: dy =dg+d

>
Xo X

(using dfor displacement here instead of v)

84



Optical Flow: Iterative Estimation

A filz —d1) f5(2)

estimate

Initial guess: ¢
update I !

Estimate: d> = dy + d

=V

85



Optical Flow: Iterative Estimation

A filz —d2) | f5(2)

estimate

Initial guess: d
update I 2

Estimate: d3 = do + d

=V

86



Optical Flow: Iterative Estimation

A fi(x —d3) = fa(x)

=<V

87



Optical Flow: Aliasing

Temporal aliasing causes ambiguities in optical flow because
images can have many pixels with the same intensity.

I.e., how do we know which ‘correspondence’ is correct?

A

J1(z) fo(x)

o~
/

A

- J1(z)  fo(x)
actual shift

nearest match is correct
(no aliasing)

N
estimated shift

>

nearest match is
incorrect (aliasing)

To overcome aliasing: coarse-to-fine estimation.

89



When does it break?

! Q' ¥

The screen is Homogeneous  Fixed sphere. Non-rigid
stationary yet  objects Changing light texture motion
displays motion generate zero source.

optical flow.




Computing Optical Flow: Improvements

= Larger motion: how to maintain "differential” approximation?
+ Solution: iterate

= Even better: adjust window / smoothing
 Early iterations: use larger Gaussians to allow more motion

* Late iterations: use less blur to find exact solution, lock on to high-
frequency detail



Revisiting the Small Motion Assumption

= Ts this motion small enough?
* Probably not—it's much larger than one pixel (2" order terms dominate)
« How might we solve this problem?



Correlation and SSD

» For large displacements, do template matching as
was used in stereo disparity search.
— Define a small area around a pixel as the template

— Match the template against each pixel within a search
area in next image.

— Use a match measure such as correlation, normalized
correlation, or sum-of-squares difference

— Choose the maximum (or minimum) as the match

— Sub-pixel interpolation also possible



SSD Surface - Textured area




SSD Surface -- Edge




SSD - homogeneous area




Reduce the Resolution!




Coarse-to-fine Optical Flow Estimation

/YN
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u=1.25 pixels

u=2.5 pixels

u=>5 pixels

Gaussian pyramid of image |

Gaussian pyramid of image H



Coarse-to-fine Optical Flow Estimation

. run iterative OF

a

upsample

Gaussian pyramid of image H Gaussian pyramid of image |



Multiscale Optical Flow

Linearization: valid only for small flow

I(X+u,y+v,t+1)—1(xy,t)=1Lu+ v+ I

pyramid for frame 1 pyramid for frame 2

LT

LE 1]

LE 11

(other names: “warping”, “coarse-to-fine”, “multiresolution”)

100



Coarse-to-fine estimation

refine

[ pyre{'mid

pyramid J
construction

construction

refine




Optical Flow Assumptions:

Spatial Coherence

Surﬂace\/

Image Plane

Assumption
* Neighboring points in the scene typically belong to the same
surface and hence typically have similar motions.
* Since they also project to nearby points in the image, we expect

spatial coherence in image flow.
103

* Slide from Michael Black, CS143 2003




Local smoothness Lucas Kanade (1984)

lu+lyv=—I, = [r, Iy].m:_ff

Assume constant (u,v) in small neighborhood

Y lelyl — - Itl

U
/E\ 2l |,

- AO=D

Goal: Minimize HAU—bHZ Method: Least-Squares




Regularization Horn and Schunk (1981)

Add global smoothness term

Smoothness error:

Error in brightness
constancy equation

y

E. =”(u§ +u2)+ (v)% +v§)dxdy
D

Ee = [[(1u+1,v+1, F dxdy
D

Minimize:

E. +AE

Solve by calculus of variations



Deployment of Video segmentation

Segment the video into multiple coherent/y moving objects

Background subtraction
Shot boundary detection
Motion segmentation



Layered Representation

For scenes with multiple affine motions

Estimate dominant motion parameters

I

Reject pixels which do not fit

'

Convergence

!

Restart on remaining pixels




Block-based motion prediction

= Break image up into square blocks
= Estimate translation for each block
= Use this to predict next frame, code difference




Layered motion

= Break image sequence up into “layers":

J.Y. A. Wang and E. H. Adelson. Representing moving images with layers. IEEE Transactions
on Image Processing, 3(5):625--638, September 1994,
112



Layer synthesis

=  For each layer:
stabilize the sequence with the affine motion
compute median value at each pixel

=  Determine occlusion relationships

CSE 576, Spring 2008 Motion estimation

113



Results
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Layered motion

= Advantages:
can represent occlusions / disocclusions
each layer's motion can be smooth
video segmentation for semantic processing
= Difficulties:
how do we determine the correct number?
how do we assign pixels?
how do we model the motion?
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Image Data Sets

= Primarily dilational

= Velocities <1 pixel/
frame

= Poor resolution

= Amount of occlusion
= Low contrast

= Velocities ~2 p/f

ol

The cube is rotating
counterclockwise on a
turntable

(a) SRI Trees

= Four moving objects

= Velocities on the = Speeds
table 1.2~1.4 p/f - Taxi 1.0 p/f

= Velocities on the - Car 3.0 p/f
cube 0.2~0.5 p/f » Van 3.0 p/f

* Pedestrian 0.3 p/f

() Rubik Cube (d) Hamburg Taxi
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Lucas-Kanade
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Results: Anan
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Other break-downs

= Brightness constancy is not satisfied
b Correlation based methods

= A point does not move like its neighbors
* what is the ideal window size?

b Regularization based methods

= The motion is not small (Taylor expansion doesn't

hold)
b Use multi-scale estimation



Contour tracking
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Textured Motion

http://civs.stat.ucla.edu/Yizhou Research/Texturedmotion.htm

Natural scenes contain rich stochastic motion patterns which are
characterized by the movement of a large amount of particle and
wave elements, such as falling snow, water waves, dancing grass,
etc. We call these motion patterns " fextured motion".


http://civs.stat.ucla.edu/Yizhou_Research/Texturedmotion.htm

Optical Flow Break Down

* From Marc Pollefeys COMP 256 2003




Optical Flow:
Where do pixels move t0?




Optical Snow

http://www.cim.mcgill.ca/~langer/research-optical-snow.html

Optical snow is the type of motion an observer sees when watching a
snow fall. Flakes that are closer to the observer appear to move faster

than flakes which are farther away.



Applications of segmentation
to video

Background subtraction
Shot boundary detection

« Commercial video is usually composed of shots or sequences showing
the same objects or scene

« Goal: segment video into shots for summarization and browsing (each
shot can be represented by a single keyframe in a user interface)

« Difference from background subtraction: the camera is not
hecessarily stationary
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Applications of segmentation to video

* Background subtraction
- Shot boundary detection

* For each frame
- Compute the distance between the current frame and the
previous one
- Pixel-by-pixel differences
- Differences of color histograms
- Block comparison

- If the distance is greater than some threshold, classify the
frame as a shot boundary



Optical Flow Applications

Obstacle Detection: Unbalanced Optical Flow

Temizer



