Spatial track: range acquisition modeling

Virginio Cantoni
Laboratorio di Visione Artificiale
Università di Pavia
Via A. Ferrata 1, 27100 Pavia
virginio.cantoni@unipv.it
http://vision.unipv.it/va

The inverse problem

Physical space geometrical properties: distances in depth - the inverse problem

[^0]A dasic prodiem in perception that provides a clue....

- The stimuli produced when energy interacts with sensory receptors cannot specify the real-world sources of that energy
- To survive, animals need to react successfully to the sources of the stimuli, not to the stimuli as such
- This quandary is called the inverse problem

Explanation of Visual Processing and Percepts

- The basic problem understanding vision is that the real-world sources of light stimuli cannot be known directly
- The visual system generates percepts entirely on the basis of past experience, using stimulus patterns to trigger percepts as reflex responses that have been empirically successful.
- This strategy would contend with the inverse problem.

Explanation of Geometrical Percepts

- Physical space is characterized by geometrical properties such as line lengths, angles, orientations and distances in depth
- Our intuition is that the subjective qualities arising from these properties should be a more or less direct transformation of physical space
- As in the domains of brightness and color, however, there are many discrepancies between measurements of physical space and the geometries people actually see

Physical space geometrical properties: line lengths

A

D

E

Physical space geometrical properties: orientation anisotropy

Dale Purves, Cognitive Neuroscience, Duke University

Physical space geometrical properties: line lengths

A

B

Dale Purves, Cognitive Neuroscience, Duke University

Physical space geometrical properties: angles

© Dale Purves and R. Beau Lotto 2002

Optic illusions

Dale Purves, Cognitive Neuroscience, Duke University

Optic illusions

Dale Purves, Cognitive Neuroscience, Duke University

Optic illusions

Dale Purves, Cognitive Neuroscience, Duke University

Optic illusions

Visual cues - The human headway

Overlapping objects
Quantized scenes

Atmospheric perspective

\square Based on the effect of air on the color and visual acuity of objects at various distances from the observer.
\square Consequences:

- Distant objects appear bluer
- Distant objects have lower contrast.

Atmospheric perspective

Atmospheric perspective

Histogram

Gradient

μ_{L} (ellipses

reference orientation

 $b \omega d \omega$ $\perp \perp \perp \perp \perp$
\qquad
 So AOMOB 0.80000% 8,
-

Texture

[From A.M. Loh. The recovery of 3-D structure using visual texture patterns. PhD thesis]

Occlusion

Rene Magritt'e famous painting Le Blanc-Seing (literal translation: "The Blank Signature") roughly translates as "free hand" or "free rein".

Shape from.....

shadows

Shading

a)

b)

c)
[Figure from Prados \& Faugeras 2006]

Shadows

Field of view depends on focal length

- As f gets smaller, image becomes more wide angle
- more world points project onto the finite image plane
- As f gets larger, image becomes more telescopic
- smaller part of the world projects onto the finite image plane

Field of view

- Angular measure of portion of 3d space seen by the camera

28 mm lens, $65.5^{\circ} \times 46.4^{*}$

70 mm lens, $28.9^{\circ} \times 19.5^{\circ}$

50 mm lens, $39.6^{\circ} \times 27.0^{\circ}$

210 mm lens, $9.8^{\circ} \times 6.5^{\circ}$

Perspective effects

Perspective geometry

Object Size in the Image

Image

World

Vanishing points

Vanishing point

- projection of a point at infinity

Perspective effects

- Parallel lines in the scene intersect in the image
- Converge in image on horizon line

Vanishing points

- Properties
- Any two parallel lines have the same vanishing point v
- The ray from C through v is parallel to the lines
- An image may have more than one vanishing point \checkmark in fact every pixel is a potential vanishing point

Vanishing points and lines

Vanishing points

$\square \quad$ Each set of parallel lines (=direction) meets at a different point

- The vanishing point for this direction
$\square \quad$ Sets of parallel lines on the same plane lead to collinear vanishing points.
- The line is called the horizon for that plane

Perspective cues

Computing vanishing points (from lines)

- Intersect $p_{1} q_{1}$ with $p_{2} q_{2}$

$$
\begin{aligned}
v=\left(p_{1} \times q_{1}\right) \times & \left(p_{2} \times q_{2}\right) \\
& \text { Least squares version }
\end{aligned}
$$

- Better to use more than two lines and compute the "closest" point of intersection
- See notes by Bob Collins for one good way of doing this:
http://www-2.cs.cmu.edu/~ph/869/www/notes/vanishing.txt

Distance from the horizon line

- Based on the tendency of objects to appear nearer the horizon line with greater distance to the horizon.
- Objects above the horizon that appear higher in the field of view are seen as being further away.
- Objects below the horizon that appear lower in the field of view are seen as being further away.

- Objects approach the horizon line with greater distance from the viewer.
- The base of a nearer column will appear lower against its background floor and further from the horizon line.
- Conversely, the base of a more distant column will appear higher against the same floor, and thus nearer to the horizon line.

Moon illusion

Focus of expansion

Focus of contraction

Shape from.....

Egomotion

$$
\begin{gathered}
\frac{Y}{y}=-\frac{f}{z} \\
\frac{\partial Y}{\partial z}=\frac{y f}{z^{2}}=-\frac{Y}{z} \\
z=-\frac{Y \partial z}{\partial Y}
\end{gathered}
$$

Image plane

Camera and motion models

- The egomotion makes all still objects in the scene to verify the same motion model defined by three translations \boldsymbol{T} and three rotations Ω. Conversely, mobile obstacles pop out as not resorting to the former dominating model.
- Under such assumptions, the following classical equations hold:
$u_{t}=\frac{-f T_{X}+x T_{Z}}{Z}, u_{r}=\frac{-x y}{f} \Omega_{X}-\left(\frac{-x^{2}}{f}+1\right) \Omega_{Y}+y \Omega_{Z}$ $v_{t}=\frac{-f T_{Y}+y T_{Z}}{Z}, v_{r}=\frac{-x y}{f} \Omega_{Y}-\left(\frac{-y^{2}}{f}+1\right) \Omega_{X}+x \Omega_{Z}$
- where $\mathbf{w}=[u, v]^{T}=\left[u_{t}+u_{r}, v_{t}+v_{r}\right]^{T}$
 stands for the 2-D velocity vector of the pixel under the focal length \boldsymbol{f}.

Motion occlusion and egomotion

Deletion and accretion occur when an observer moves in a direction not perpendicular to two surfaces that are at different depths. If an observer perceives the two surfaces as in the center and then moves to the left, deletion occurs so that the front object covers more that the back one, as shown on the left. Vice versa for the movement in the opposite direction as shown on the right

Initiale position

Accretion

Stereo:

Epipolar geometry

Slides by

Pinhole camera model

Pinhole camera model

$\mathrm{h} / \mathrm{d}=\mathrm{a} / \mathrm{f}$

Geometry of the camera

Why multiple views?

- Structure and depth are inherently ambiguous from single views.

Our goal: Recovery of 3D structure

- Recovery of structure from one image is inherently ambiguous

Why Stereo Vision?

A second camera can resolve the ambiguity, enabling measurement of depth via triangulation.

Stereo vision

After 30 feet (10 meters) disparity is quite small and depth from stereo is unreliable...

Monocular Visual Field: 160 deg (w) X 135 deg (h) Binocular Visual Field: 200 deg (w) X 135 deg (h)

Schema of the two human visual pathways

BRAIN nso VISUAL PERCEPTION

The Story of a

25-Year Collaboration

DAVID H. HUBEL • TORSTEN N. WIESEL

Section of striate cortex: schematic diagram of dominant band cells

Human stereopsis: disparity

From Bruce and Green, Visual Perception, Physiology, Psychology and Ecology

- Human eyes fixate on point in space - rotate so that corresponding images form in centers of fovea.
- Disparity occurs when eyes fixate on one object; others appear at different visual angles

The problem of global stereopsis

Illusion, Brain and Mind, John P. Frisby

General case, with calibrated cameras

- The two cameras need not have parallel optical axes.

Vs.

Epipolar constraint

Geometry of two views constrains where the corresponding pixel for some image point in the first view must occur in the second view.

- It must be on the line carved out by a plane connecting the world point and optical centers.

Epipolar geometry

http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html

Epipolar geometry: terms

\square Baseline: line joining the camera centers
\square Epipole: point of intersection of baseline with image plane
\square Epipolar plane: plane containing baseline and world point
\square Epipolar line: intersection of epipolar plane with the image plane
\square All epipolar lines intersect at the epipole
\square An epipolar plane intersects the left and right image planes in epipolar lines

Why is the epipolar constraint useful?

Example: converging cameras

What do the epipolar lines look like?

Figure from Hartley \& Zisserman

Example: parallel cameras

Where are the epipoles?

Figure from Hartley \& Zisserman

Epipolar constraint example

Example: Forward motion

Epipole has same coordinates in both images.
Points move along lines radiating from e:
"Focus of expansion"

Correspondences - homologous points

- Stereo vision geometry: the light gray zone corresponds to the two view-points image overlapping area

Finding the D value

$$
\begin{aligned}
& \frac{\stackrel{P_{1} O_{1}}{O_{2} P_{2}}}{B}=\frac{f}{D} \\
& D=\frac{f B}{\Delta_{1}+\Delta_{2}}
\end{aligned}
$$

$\Delta_{1}+\Delta_{2}$ displacements on the epipolar lines

- The influence of the distance D on the error of the computed $\Delta=\Delta_{1}+\Delta_{2}$ is evidenced by mere derivation:

$$
\frac{\partial D}{\partial \Delta}=-\frac{D}{\Delta}
$$

- Note that the error increases linearly with the depth and is amplified in case of small Δ values.

Looking for the tie point

Occlusions: B is occluded in I_{1}, while A in I_{2}
Distorted views due to different projections

Looking for the tie point

The epipolar segment $P_{2 M} P_{2 m}$

The ordering problem as seen by the letter sequence on each image

Looking for the tie point

The higher the baseline the higher the deformation and the lower the overlapping

To obtain an extended overlapping area it is often necessary to tilt the camera axis

Choosing the stereo baseline

Large Baseline

Small Baseline

- What's the optimal baseline?
- Too small: large depth error
- Too large: difficult search problem

Homologous points

- The simplest ways to determine if a given pixel (p, q) on one image l_{1} is a good candidate, is to evaluate the gray level variance in a limited neighborhood of such pixel.
- If its value exceeds a given threshold, then a neighborhood $(2 n+1) \times(2 m+1)$ is considered and correlated with candidate regions on image I 2 .
- Candidate regions are selected on the epipolar line; in order to compute the correlation between regions of both images the following formula may be used:

$$
C(i, j)=\sum_{r=-n}^{n} \sum_{s=-m}^{m}\left[I_{2}(i+r, j+s)-I_{1}(p+r, q+s)\right]^{2}
$$

- If cameras are parallel and at the same height, the searching homologous tie points are positioned onto the horizontal epipolar lines with same coordinate. In practical applications only a calibration phase and image registration guarantee such properties.
- A cross check can be applied: if P is obtained from Q, Q must correspond be obtained from P

Basic stereo matching algorithm

- If necessary, rectify the two stereo images to transform epipolar lines into scanlines
- For each pixel x in the first image
- Find corresponding epipolar scanline in the right image
- Examine all pixels on the scanline and pick the best match x^{\prime}
- Compute disparity x - x^{\prime} and set $\operatorname{depth}(x)=f B /\left(x-x^{\prime}\right)$

Correspondence search

- Slide a window along the right scanline and compare contents of that window with the reference window in the left image
- Matching cost: SSD or normalized correlation

Correspondence search

Matching windows

Similarity Measure
Sum of Absolute Differences (SAD)

Sum of Squared Differences (SSD)

Zero-mean SAD

Locally scaled SAD
Normalized Cross Correlation (NCC)

Formula

$$
\begin{gathered}
\sum_{(i, j) \in W}\left|I_{1}(i, j)-I_{2}(x+i, y+j)\right| \\
\sum_{(i, j) \in W}\left(I_{1}(i, j)-I_{2}(x+i, y+j)\right)^{2} \\
\sum_{(i, j) \in W}\left|I_{1}(i, j)-\bar{I}_{1}(i, j)-I_{2}(x+i, y+j)+\bar{I}_{2}(x+i, y+j)\right| \\
\sum_{(i, j) \in W}\left|I_{1}(i, j)-\frac{\bar{I}_{1}(i, j)}{\bar{I}_{2}(x+i, y+j)} I_{2}(x+i, y+j)\right| \\
\frac{\sum_{(i, j))=W} I_{1}(i, j) \cdot I_{2}(x+i, y+j)}{\sqrt[2]{\sum_{(i, j) \in W} I_{1}^{2}(i, j) \cdot \sum_{(i, j) \in W} I_{2}^{2}(x+i, y+j)}}
\end{gathered}
$$

SAD

SSD

NCC

Ground truth

Correspondence search

Exemple

Failures of correspondence search

Textureless surfaces

Occlusions, repetition

Implementation aspects

The search can be done in four steps:

- Selection of interesting points (through a threshold S_{1} applied to the variance in the neighborhood or to the result of an edge detector)
- For each point selected, finding if exists the tie point (with a cross-check and a threshold S_{2} of cross-similarity)
- Evaluation of the distance on the basis of the extracted homologous points
- Experimentation of the best solution, considering that:
- augmenting S_{1} the number of tie points is reduced but the reliability increases
- augmenting S_{2} increases the number of homologous couples but it is reduced the reliability

Principal point

- Principal point (p): point where principal axis intersects the image plane (origin of normalized coordinate system)
- Normalized coordinate system: origin is at the principal point
- Image coordinate system: origin is in the corner
- How to go from normalized coordinate system to image coordinate system?

Camera calibration

- Given n points with known 3D coordinates X_{i} and known image projections x_{i}, estimate the camera parameters

Camera parameters
 Intrinsic parameters

- Principal point coordinates
- Focal length
- Pixel magnification factors
- Skew (non-rectangular pixels)
- Radial distortion
- Extrinsic parameters
- Rotation and translation relative to world coordinate system

Camera calibration

Extrinsic parameters:

Camera frame $\leftarrow \rightarrow$ Reference frame
Intrinsic parameters:
Image coordinates relative to camera
$\leftrightarrow \rightarrow$ Pixel coordinates

- Extrinsic parameters: rotation matrix and translation vector
- Intrinsic parameters: focal length, pixel sizes (mm), image center point, radial distortion parameters

Beyond Pinholes: Radial Distortion

Corrected Barrel Distortion

Image rectification

To unwarp (rectify) an image

- solve for homography H given p and p^{\prime}
- solve equations of the form: wp' $=\mathrm{Hp}$
- linear in unknowns: w and coefficients of H
- H is defined up to an arbitrary scale factor
- how many points are necessary to solve for H ?

Stereo image rectification

Stereo image rectification

- Reproject image planes onto a common plane parallel to the line between camera centers
- Pixel motion is horizontal after this transformation
- Two homographies (3×3 transform), one for each input image reprojection
> C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo Vision. IEEE Conf. Computer Vision and Pattern Recognition, 1999.

Rectification example

Example

Multi-view Stereo

Multi-view Stereo

Input: calibrated images from several viewpoints
Output: 3D object model

Beyond two-view stereo

The third view can be used for verification

Projective structure from motion

- Given: m images of n fixed 3D points

$$
\mathbf{x}_{i j}=\mathbf{P}_{i} \mathbf{X}_{j}, \quad i=1, \ldots, m, \quad j=1, \ldots, n
$$

- Problem: estimate m projection matrices \mathbf{P}_{i} and $n 3$ points \mathbf{X}_{j} from the $m n$ corresponding points $\mathbf{x}_{i j}$

```
X
```


Slides from Lana Lazebnik

Bundle adjustment

- Non-linear method for refining structure and motion
- Minimizing reprojection error

Multiple-baseline stereo

- Pick a reference image, and slide the corresponding window along the corresponding epipolar lines of all other images, using inverse depth relative to the first image as the search parameter

Figure 2: An example scene. The grid pattern in the background has ambiguity of matcling.

Baseline $\quad b \quad 2 b \quad 3 b \quad 4 b \quad 5 b \quad 6 b \quad 7 b \quad 8 b \quad 9 b$

Multiple-baseline stereo

- For larger baselines, must search larger area in second image

pixel matching score

width of
a pixel

Multiple-baseline stereo

Fig. 5. SSD values versus inverse distance: (a) $B=b$; (b) $B=2 b$; (c) $B=3 b$; (d) $B=4 b$; (e) $B=5 b$; (f) $B=6 b$; (g) $B=7 b$; (h) $B=8 b$.
The horizontal axis is normalized such that $8 b F=1$.

scores to rank

 matches

Fig. 7. Combining multiple baseline stereo pairs.

Multiple-baseline stereo results

M. Okutomi and T. Kanade, "A Multiple-Baseline Stereo System," IEEE Trans. on Pattern Analysis and Machine Intelligence, 15(4):353-363 (1993).

Merging depth maps

Naïve combination (union) produces artifacts
Better solution: find "average" surface

- Surface that minimizes sum (of squared) distances to the depth maps depth map 1 depth map 2

Union

Implicit
Functions

VRIP [Curless \& Levoy 1996$]$

Reconstruction from Silhouettes ($\mathrm{C}=2$)

Binary Images

Approach:

- Backproject each silhouette
- Intersect backprojected volumes

Which shape do you get?

- The Photo Hull is the UNION of all photo-consistent scenes in V
- It is a photo-consistent scene reconstruction
- Tightest possible bound on the true scene

True Scene

Photo Hull

Volume intersection

Reconstruction Contains the True Scene

- But is generally not the same
- In the limit (all views) get visual hull
\checkmark Complement of all lines that don't intersect S

Voxel algorithm for volume intersection

Color voxel black if on silhouette in every image

- $\mathrm{O}\left(\right.$?), for M images, N^{3} voxels $\mathrm{O}\left(\mathrm{MN}^{\wedge} \wedge^{3}\right)$
- Don't have to search $2^{N^{3}}$ possible scenes!

Photo-consistency vs. silhouette-consistency

True Scene

Photo Hull

Visual Hull

Structured light: point

\square Point
\square Plane
\square Grid

Laser scanning

Digital Michelangelo Project http://graphics.stanford.edu/projects/mich/

- Optical triangulation
- Project a single stripe of laser light
- Scan it across the surface of the object
- This is a very precise version of structured light scanning

Structured light: plane

- Point

Structured light: plane

- Point
- Plane
- Grid

Structured light: grid

- Point
- Plane
- Grid

Structured light: plane

L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color Structured Higght and Multi-pass Dynamic Programming. 3DPVT 2002

Kinect: Structured infrared light

http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/

Photometric stereo

Can write this as a matrix equation:

$$
\left[\begin{array}{lll}
I_{1} & I_{2} & I_{3}
\end{array}\right]=k_{d} \mathbf{N}^{T}\left[\begin{array}{lll}
\mathbf{L}_{1} & \mathbf{L}_{2} & \mathbf{L}_{3}
\end{array}\right]
$$

Computing light source directions

- Trick: place a chrome sphere in the scene

- the location of the highlight tells you where the light source is

Single View Metrology

Three-dimensional

 reconstruction from single views
Single-View Reconstruction

- Geometric cues: Exploiting vanishing points and vanishing lines
- Interactive reconstruction process

> Masaccio's
> Trinity

Vanishing point
Vanishing line (horizon)

A special case, planes

Homography matrix

Observer

H : a plane to plane projective transformation

3D-2D Projective mapping

Analysing patterns and shapes

Analysing patterns and shapes

From Martin Kemp The Science of Art (manual reconstruction)

2 patterns have been discovered!

Vanishing lines

- Multiple Vanishing Points
- Any set of parallel lines on the plane define a vanishing point
- The union of all of vanishing points from lines on the same plane is the vanishing line
\checkmark For the ground plane, this is called the horizon

Vanishing lines

- Multiple Vanishing Points
- Different planes define different vanishing lines

Computing the horizon

- Properties
- I is intersection of horizontal plane through C with image plane
- Compute I from two sets of parallel lines on ground plane
- All points at same height as C project to 1
- Provides way of comparing height of objects in the scene

Are these guys the same height?

Comparing heights

Measuring height

Computing vanishing points (from lines)

- Intersect $p_{1} q_{1}$ with $p_{2} q_{2}$

$$
v=\left(p_{1} \times q_{1}\right) \times\left(p_{2} \times q_{2}\right)
$$

- Least squares version
- Better to use more than two lines and compute the "closest" point of intersection
- See notes by Bob Collins for one good way of doing this:
- http://www-2.cs.cmu.edu/~ph/869/www/notes/vanishing.txt

Measuring height without a ruler

Compute Z from image measurements

- Need more than vanishing points to do this

The cross ratio

- A Projective Invariant
- Something that does not change under projective transformations (including perspective projection)

The cross-ratio of 4 collinear points

$$
\frac{\left\|\mathbf{P}_{3}-\mathbf{P}_{1}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{2}\right\|}{\left\|\mathbf{P}_{3}-\mathbf{P}_{2}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{1}\right\|}
$$

$$
\mathbf{P}_{i}=\left[\begin{array}{c}
X_{i} \\
Y_{i} \\
Z_{i} \\
1
\end{array}\right]
$$

Can permute the point ordering

- $4!=24$ different orders (but only 6 distinct values)

$$
\frac{\left\|\mathbf{P}_{1}-\mathbf{P}_{3}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{2}\right\|}{\left\|\mathbf{P}_{1}-\mathbf{P}_{2}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{3}\right\|}
$$

This is the fundamental invariant of projective geometry

Measuring height

Measuring height

$\dagger v_{z}$

Measuring height

What if the point on the ground plane b_{0} is not known?

- Here the guy is standing on the box
- Use one side of the box to help find b_{0} as shown above

Assessing geometric accuracy

Problem: Are the heights of the two groups of people consistent with each other?

Piero della Francesca, Flagellazione di Cristo, c. 1460, Urbino

Measuring relative heights

Single-View Metrology

Complete 3D reconstructions from single views

Example: The Virtual Trinity

Masaccio, Trinità, 1426, Florence

Complete 3D reconstruction

Example: The Virtual Flagellation

Piero della Francesca, Flagellazione di Cristo, c.1460, Urbino

Complete 3D reconstruction

Example: The Virtual St. Jerome

Henry V Steenwick, St.Jerome in His Study, 1630, The Netherlands

Complete 3D reconstruction

Example: The Virtual Music Lesson

J. Vermeer,

The Music Lesson, 1665, London

Complete 3D reconstruction

Example: A Virtual Museum @ Microsoft

 A dive into the paintings third dimension

The Image-Based Realities team @ Microsoft Research

Why do we perceive depth?

[^0]: Dale Purves, Cognitive Neuroscience, Duke University

