## Shape extraction

## Edge detection

## Segmentation

Image segmentation consists into the decomposition of the image in segments (i.e. components)
*This process is based on a given criteria of homogeneity (chromatic, morphologic, motion, depth, etc.)
From the operational viewpoint, three approach have been proposed:

- Clustering image data and growing regions
- Border following
$\sigma$ Search of borders


## Binary Images

- The segmentation process leads to detect an individual object (foreground) in contrast to the background so it is a binarization process
* Some applications are by nature binary: black and white printing, writing, mechanical parts, bio-imagery like cells or chromosomes, etc. ....

Often the originals contains various grey levels due to:
$\sigma$ Electric noise of the camera

- Non-uniform scene illuminations
- Shadowing
- ...


## Bimodal Distribution

* The easest solution is a threshold applied to the grey levels:
- $\mathrm{O}(\mathrm{i}, \mathrm{j})=0$ se $\mathrm{I}(\mathrm{i}, \mathrm{j})<\mathrm{S}$
- $\mathrm{O}(\mathrm{i}, \mathrm{j})=255$ otherwise
* It is required the evaluation of the optimal threshold S.
- Operating on the histogram, there are two possibilities:
- Finding the minimum
- Applying statistic criteria



## Example: mechanical part





## Example: sailing



## Example: bear




Original image

## Example: circle



## Texture: Brodatz album



## Border following

* An example of a recursive walk over the image, following the contour to be exhibited. The horizon of an edge point is the triangle of depth 5 and basis 6 , in the direction of the last found edge segment.



## Search of borders



## Analytic derivative model

The border search can be based on the discontinuity of an image feature like the grey level, a texture or a motion parameter, the depth in the scene, etc.

* For operators stemming from first order partial derivatives a maximum response is looked for, either local maximum or over a threshold whether given or adapted
* Note that the second derivative is used too, and among second order operators the Laplacian is peculiarly popular as being scalar then isotropic. There, of course, the zero crossing - inflection points - are looked for


## Analytic derivative model



## Analytic derivative model

The first derivative is given by:

$$
f^{\prime}(x) \approx \frac{f(x+h)-f(x-h)}{2 h}
$$

* The second derivative is given by:

$$
f^{\prime \prime}(x) \approx \frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}
$$

* In 2D the derivate is substituted by the vector gradient


## Convolution

The convolution is a linear operator, that is applied when the image $\mathrm{I}(\mathrm{x}, \mathrm{y})$ is continue. To the digital image $I(i, j)$ a filter is applied represented by the mask:

$$
\begin{gathered}
O\left(x_{0}, y_{0}\right)=\iint f\left(x_{0}-x, y_{0}-y\right) I(x, y) d x d y \\
O(x, y)=\sum \sum f(x-i, y-j) I(i, j)
\end{gathered}
$$

| 1 | 2 | 3 | 3 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 2 | 5 | 2 | 7 | 6 |
| 1 | 3 | 6 | 7 | 8 | 8 |
| 1 | 2 | 8 | 9 | 6 | 7 |
| 2 | 3 | 7 | 7 | 6 | 8 |
| 3 | 3 | 8 | 9 | 8 | 8 |
|  | 7 |  |  |  |  |
|  | 26 | 33 | 43 | 46 |  |
|  | 31 | 44 | 58 | 60 |  |
|  | 33 | 52 | 64 | 66 |  |
|  | 37 | 50 | 68 | 68 |  |
|  |  |  |  |  |  |

## Convolution (decomposition)

* In general the convolution is a computer demanding operator, e.g. the $5 \times 5$ template:

| 1 | 4 | 6 | 4 | 1 |
| ---: | ---: | ---: | ---: | ---: |
| 4 | 16 | 24 | 16 | 4 |
| 6 | 24 | 36 | 24 | 6 |
| 4 | 16 | 24 | 16 | 4 |
| 1 | 4 | 6 | 4 | 1 |

is implemented by 25 multiplications for each pixel; note that often complex template may be decomposed in simple 1D operators (e. g. the isotropic, monotonic decreasing template)
. The previous convolution can be decomposed in the following two 1D operators:

| 1 | 4 | 6 | 4 | 1 |
| :--- | :--- | :--- | :--- | :--- |

in this implementation only $10(5+5)$ multiplications per pixel are required

## Gradient approximations

The gradient is a 2D vector

* The digital differential operators are implemented by template in which the sum of the kernel parameters is null: in a uniform area the result must be zero (no variation)

The basic and historical convolution kernels have an extension limited to $2 \times 2$ and $3 \times 3$, for each of the two components

## Roberts Operator

. It is the simplest solution
$\sigma$ Two templates are applied $M_{1}$ and $M_{2}$, obtaining the two orthogonal gradient components:

- $\mathrm{G}_{1}=\mathrm{M}_{1} * \mathrm{I}, \quad \mathrm{G}_{2}=\mathrm{M}_{2} * \mathrm{I}$
$\sigma$ It is very sensible to noise


The gradient module and phase are:

$$
\begin{aligned}
& \mathrm{G}_{\mathrm{m}}=\sqrt{\mathrm{G}_{1}^{2}+\mathrm{G}_{2}^{2}} \\
& \mathrm{G}_{\phi}=\operatorname{arctg}\left(\mathrm{G}_{2} / \mathrm{G}_{1}\right)+\pi / 4
\end{aligned}
$$

$$
\mathrm{G}_{2}
$$



## Isotropic operator

* Two templates are applied $M_{1}$ and $M_{2}$, obtaining the two orthogonal gradient components:

$$
\mathrm{G}_{\mathrm{x}}=\mathrm{M}_{\mathrm{x}} * I, \mathrm{G}_{\mathrm{y}}=\mathrm{M}_{\mathrm{y}} * \mathrm{I}
$$

* The gradient module and phase are:


$$
\begin{aligned}
& \mathrm{G}_{\mathrm{m}}=\sqrt{\mathrm{G}_{1}^{2}+\mathrm{G}_{2}^{2}} \\
& \mathrm{G}_{\phi}=\operatorname{arctg}\left(\mathrm{G}_{\mathrm{y}} / \mathrm{G}_{\mathrm{x}}\right)
\end{aligned}
$$

- In C:

$$
\mathrm{phi}=\operatorname{atan} 2(\mathrm{gy}, \mathrm{gx})
$$



## Prewitt and Sobel operators

To simplify the computation often the isotropic filter is implemented by these two simplified solutions:

- Prewitt

- Sobel


$\mathrm{G}_{\mathrm{y}} \uparrow$| 1 | 2 | 1 |
| :---: | :---: | :---: |
| 0 | 0 | 0 |
| -1 | -2 | -1 |

## Example Sobel



Original image


Module


Phase

## Example Sobel



Original image


Module


Phase

## Sobel operator



## Sobel operator




## Sobel operator

Module


Phase


## Example (module)



## Lateral inhibition



## Lateral inhibition



Position

## Lateral inhibition

The retina receptor apply a lateral inhibition mechanism.
The implementation of this mechanism can be done by a filter obtained by the difference of two Gaussian of equal area, having different $\sigma$ (and amplitude):

$$
\frac{1}{2 \pi \sigma^{2}} e^{-\frac{x^{2}+\nu^{2}}{2 \sigma^{2}}}
$$

* The 'zero-crossing' correspond to the border points. An advantage of this technique is that the produced contour are closed.


## The DoG operator

* This operator is called usually Difference of Gaussians (DoG)
* The best results are obtained maintaining the external Gaussian as large as possible but avoiding to include more than one border
The internal Gaussian is optimized if it covers just the transition area

Complex scene are better analyzed if a set of different DoG filters with various $\sigma$ are applied.

## The DoG operator



## DoG Example



## DoG Example



## Gaussian Filter

1 Original image


2 Filtered image $\sigma=8$

3 Filtered image $\sigma=4$


## DoG Filter



Original



Filtered


Filtered



Threshold $=0$


Threshold $=0$


Contour


## DoG: $\sigma$ dependence

Original
b.

$$
\sigma=6
$$

$\sigma=12$

c.

d.



$\sigma=24$

## DoG: contour robustness



## DoG: discretization of grey level and noise



Original


with noise



## 16 grey levels




## 8 grey levels



## DoG: spatial discretization



## John Canny, Rachid Deriche, etc operators



## DoG + Sobel



## DoG(2, 9)+Sobel



42

## DoG(1, 9)+Sobel



## Template Matching

An alternative method for edge detection computes the closest (over all four/eight directions) approximations of $g(i, j)$ in every $3 \times 3$ neighborhood, to keep the one with maximum convolution value, provided it is large enough
Even if the sum of the kernel parameter is null note that starting with grey level images in the range 0:255 the final range is $-3825:+3825$ and $-1275: 1275$ for Kirsh and compass operators respectively (the equivalent are $-255: 255,-765: 765$, -871:871, -1020:1020 for Roberts, Prewitt, isotropic and Sobel respectively)
Obviously the greater is the number of values different from zero of the kernel parameters the higher is the robustness to noise.

## Template Matching

*irsh's operator

| -3 5 | -3 5 5 | 5 5 5 | 5 5 -3 |
| :---: | :---: | :---: | :---: |
| -3 -3 05 | -3 0 5 | -3 0 | 50 |
| -3-3 5 | -3-3-3 | -3-3 | -3-3-3 |
| 5-3-3 | 3-3-3 | -3-3 | -3 |
| 5 0 -3 | 0-3 | -3 0 -3 <br> 5   | -3 0 5 |
| 5-3-3 | 5 5 -3 | 5 5 5 | 仡 |

Compass operator

|  |
| :---: |
|  |  |

## 3/9 operator

| 11 | 10 | 00 | 1 |
| :---: | :---: | :---: | :---: |
| 000 | 00 | 00 | O |
| 000 | 0100 | 1100 | 1110 |
| 000 | O00 0 | ${ }^{0} 01$ | 01 |
| 000 | 00 | 00 |  |
| 11 | 0.11 | $0 \mid 01$ | 01010 |

\[

\]

## Contour extraction

$$
P=1.5\left[\frac{P_{i, k}}{P_{i}}-0.333\right]
$$

* $\mathrm{P}_{\mathrm{i}, \mathrm{k}}$ is the maximum among the 8 parameters $\mathrm{P}_{\mathrm{i}, \mathrm{j}}$

The coefficients $3 / 2$ et $1 / 3$ are introduced to normalize the result

The final threshold can be applied depending on the minimum average contrast $\tau$ admitted in the neighborhood

## Practical aspects of the $3 / 9$ filter

The filter implements a relative gray level intensity analisys. Also the human eye apply a similir approach.

* It must be payed attention when looking contours in the dark!
Note that if $\mathrm{P}_{\mathrm{i}}$ is low this edge estimation suffers very much for the effect of the noise (if it is 0 the edge value determined by the ratio $0 / 0$ !).
- Selecting the threshold for $\mathrm{P}_{\mathrm{i}}$ note that it is 9 time di average intensity of the area (if this intensity is 10 - over 255 - so very low $P_{i}$ is 90 : edges are looked for in the very dark)


## Contrast and threshold

Let us call 'contrast' the ratio $\tau=\frac{a}{b}$, the threshold Th is given by:

$$
\begin{gathered}
P_{i}=\frac{3}{2}\left[\frac{3 b}{6 a+3 b}-\frac{1}{3}\right] \\
P_{i}=\frac{3}{2}\left[\frac{1}{2 \tau+1}-\frac{1}{3}\right] \\
T h=\frac{1-\tau}{2 \tau+1}
\end{gathered}
$$

## Example: Op. 3 / 9



50

## Example: Op. 3 / 9



## Degraded image: uniform noise

The standard model of this noise is additive, independent at each pixel and independent of the signal intensity with continuous uniform distribution in a given interval. The noise caused by quantizing the pixels to discrete levels has an approximately uniform distribution.


This noise can be simulated adding in each pixel $\mathrm{N}(\mathrm{i}, \mathrm{j})=2 \mathrm{~K}(r n d-0,5)$ being K the noise intensity and $r n d$ a random number with $0 \leq \operatorname{rnd} \leq 1$


## Degraded image: 'salt and pepper'

This is an impulsive or spike noise for which the image has dark pixels and bright pixels randomly distributed.


This noise can be simulated for each pixel in this way:

$$
\begin{array}{ll}
\text { if } r n d \geq T h_{1} & \mathrm{I}(\mathrm{i}, \mathrm{j})=255 \\
\text { if } r n d \leq T h_{2} & \mathrm{I}(\mathrm{i}, \mathrm{j})=0
\end{array}
$$


else $\mathrm{N}(\mathrm{i}, \mathrm{j})=2 \mathrm{~K}(r n d-0,5[1-t h 1+t h 2])$ and if $\mathrm{N}(\mathrm{i}, \mathrm{j})>255: \mathrm{N}(\mathrm{i}, \mathrm{j})=255$, if $\mathrm{N}(\mathrm{i}, \mathrm{j})<0: \mathrm{N}(\mathrm{i}, \mathrm{j})=0$ being K the uniform component noise intensity, $0 \leq r n d \leq 1$, and $T h_{I}$ and $T h_{2}$ two suitable thresholds (1-Th ${ }_{1}$ and $T h_{2}$ are the percentage of extra white and black pixels respectively)

## Average value filter

Each pixel takes the average value over the neighbors ( $3 \times 3$ in the example)

* Example - given the neighborhood:

|  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | 3 | 6 | 8 |  |
|  | 3 | 4 | 2 |  |
|  | 5 | 8 | 3 |  |
|  |  |  |  |  |

the central pixel will take the new value:

$$
(3+6+8+3+4+2+5+8+3) / 9=4.67
$$

## Average value filter: uniform noise



Noisy image


Filtered image


Second iteration

## Average value filter: uniform noise



Noisy image


Filtered image


Second iteration

## Average value filter: salt and pepper



Noisy image


Filtered image


Second iteration

## Average value filter: salt and pepper



Noisy image


Filtered image


Second iteration

## Median and rank filters

The median filter assigns to pixel the median value of neighborhood

- It is a particular case of the rank filters family, in which to the pixel is assigned the average value over a predefined range of the neighbors histogram.

The average excluding the extremes is suited for impulse or spike noise such as the salt and pepper case.

* Example - given the neighborhood:

|  | 3 | 6 | 8 |  |
| :--- | :--- | :--- | :--- | :--- |
|  | 3 | 4 | 2 |  |
|  | 5 | 8 | 3 |  |
|  |  |  |  |  |

the correspondent values are:


## Median filter: uniform noise

Noisy image

Filtered image
Second iteration
Rank 3

## Median filter: uniform noise



Noisy image


Filtered image


Rank 3


Second iteration

## Median filter: salt and pepper

Noisy image

Filtered image
Second iteration


## Median filter: salt and pepper



Noisy image


Rank 3

Filtered image


Second iteration

## The Nagao-Matsuyama Filter

This filter selects for the centre pixel the average for the orientation with the least variation. Hence, the steps are as follows:

1. Calculate the variance for each of the nine sub-groups shown to the right (including the centre pixel).
2. Determine the sub-group with the lowest variance.
3. Assign the mean of this sub-group to the centre pixel.
Nagao-Matsuyama improves the borders, and is effective at reducing the edges smoothing. Clearly there is a cost in terms of computation due to the calculation of nine variances for each pixel.


## Nagao filter: uniform noise



Noisy image


Filtered image


## Nagao filter: uniform noise



Noisy image


Filtered image

## Nagao filter: salt and pepper



Noisy image


Filtered image

## Nagao filter: salt and pepper



Noisy image


Filtered image

## Examples



## Examples



