A Growing
 Self-Organizing Network for Manifold Reconstruction

Marco Piastra
Laboratorio di Visione Artificiale Università degli Studi di Pavia

Restricted Delaunay Complex

- Manifold (a surface embedded in $\mathbf{R}^{\mathbf{2}}$)

Restricted Delaunay Complex

- Point sample (landmarks) of the manifold

Restricted Delaunay Complex

- Voronoi complex of the landmarks

Each cell contains all points of \mathbf{R}^{2} being closer to a specific landmark

Restricted Delaunay Complex

- Delaunay graph of the landmarks

An edge connects each two landmarks whose Voronoi cells have a common boundary

Restricted Delaunay Complex

- Restricted Delaunay graph of the landmarks

An edge connects each two landmarks whose Voronoi cells have a common boundary which intersects the manifold M

Restricted Delaunay Complex

- Restricted Delaunay complex of the landmarks

A ($n-1$)-dimensional n-face corresponds to n landmarks whose Voronoi cells have a common boundary which intersects M

Restricted Delaunay Complex

- Restricted Delaunay complex of the landmarks

The complex, in general, is not homeomorphic to the manifold
Here, for instance, the neighborhoods of either \mathbf{p} or \mathbf{q} have no counterparts in M

Restricted Delaunay Complex and Homeomorphism

- Manifold (a curve embedded in \mathbf{R}^{2})

Restricted Delaunay Complex and Homeomorphism

- A first point sample (landmarks) of the manifold

Restricted Delaunay Complex and Homeomorphism

- Voronoi complex

Each cell contains all points of $\mathbf{R}^{\mathbf{2}}$ being closer to a specific landmark

Restricted Delaunay Complex and Homeomorphism

- Delaunay graph

An edge connects each two landmarks whose Voronoi cells have a common boundary

Restricted Delaunay Complex and Homeomorphism

- Restricted Delaunay graph

An edge connects each two landmarks whose Voronoi cells have a common boundary which intersects M

Restricted Delaunay Complex and Homeomorphism

- Restricted Delaunay graph

Once again and in general, the complex is not homeomorphic to the manifold Here, for instance, the neighborhoods of either \mathbf{p} or \mathbf{q} have no counterparts in M

Restricted Delaunay Complex and Homeomorphism

- Want homeomorphism?

Just add more landmarks.
(There exists a density threshold)

e-sample

- Medial balls

Maximal balls whose interiors are empty of any points from M

e-sample

- Medial axis

The closure of the set of points that are centers of maximal balls

e-sample

- Local Feature Size

(at a point \mathbf{x} on M)
It is the distance between \mathbf{x} and the medial axis

ع-sample

- ε-sample

A set of landmarks such that every point \mathbf{x} on M is at most $\varepsilon \cdot \operatorname{lfs}(\mathbf{x})$ away from the closest landmark \mathbf{p}

ع-sample

- ε-sample and homeomorphism
[Amenta et al., 2000]
If M is compact, closed and smooth, there exists a positive ε
such that the restricted Delaunay complex for any ε-sample of M
is homeomorphic to M

e-sample

- The restricted Delaunay complex of an ε-sample

When M is compact, closed and smooth and ε is sufficiently small

- It is homeomorphic to M
- The Hausdorff distance to M is $O\left(\varepsilon^{2}\right)$
- It allows a reliable estimate of curvatures, normals, lengths or areas of M
- Limitations

It works only with manifolds of dimension 1 or 2
Although the dimension of the ambient space could be any
[Oudot, 2008]
For manifolds of dimension greater than 2,
no positive value of ε guarantees
that an ε-sample has the properties above
A weighted Delaunay complex could bring those properties back (but this is another story)

Witness complex

- How can the restricted Delaunay complex be constructed?
(From a given set of landmarks)

Witness complex

- Try sampling the manifold at random

For each sample, add a connection between the two closest landmarks
The sampled point is deemed a witness for the corresponding connection

Witness complex

- Try sampling the manifold at random

For each sample, add a connection between the two closest landmarks
The sampled point is deemed a witness for the corresponding connection

Witness complex

- Try sampling the manifold at random

For each sample, add a connection between the two closest landmarks
The sampled point is deemed a witness for the corresponding connection

Witness complex

- Try sampling the manifold at random

For each sample, add a connection between the two closest landmarks
The sampled point is deemed a witness for the corresponding connection

Witness complex

- Witness complex

It is the structure obtained by taking the sampling process to the limit
i.e. when the whole M has been sampled

Witness complex

- Witness complex

It is the structure obtained by taking the sampling process to the limit
i.e. when the whole M has been sampled

Will it coincide with the restricted Delaunay complex?

Witness complex

- Second-order Voronoi complex

Each cell contains all points of \mathbf{R}^{2} being closer to a specific pair of landmarks

Witness complex

- Second-order Voronoi complex

Each cell contains all points of \mathbf{R}^{2} being closer to a specific pair of landmarks Therefore, each cell intersecting M contains witnesses for one connection

Witness complex

- Second-order Voronoi complex and witness complex Certainly, there are witnesses for the restricted Delaunay complex

Witness complex

- Second-order Voronoi complex and witness complex

Certainly, there are witnesses for the restricted Delaunay complex but there will be also witnesses for a few extra connections ...

Witness complex

- Witness complex and the restricted Delaunay complex

The solution? Add even more landmarks

Witness complex

- Witness complex and the restricted Delaunay complex
[Attali et al., 2007]
There exists a positive ε such that the restricted Delaunay complex for an ε-sample coincides (in the limit) with the witness complex and both are homeomorphic to M

Witness complex

- Witness complex and the restricted Delaunay complex
[Attali et al., 2007]
There exists a positive ε such that the restricted Delaunay complex for an ε-sample coincides (in the limit) with the witness complex and both are homeomorphic to M

The second-order cells for the "extra" connections tend to aggregate around the medial axis

Self-Organizing Adaptive Map (SOAM)

- The algorithm

A set L of units (aka landmarks), initially containing two units only.
Each unit is associated to a few variables:

1) A position \mathbf{p} in the ambient space
2) A firing counter f, which decays exponentially with unit activation
3) An activity radius r
4) A state, which changes dynamically during the process

A set of connections C, initially empty
Each connection is established between two units and is associated to one variable:

1) An age

A probability distribution $P(\xi)$, having M as its support

Self-Organizing Adaptive Map (SOAM)

- The algorithm

1. Draw a sample ξ from $P(\xi)$
2. Determine the two units b and s whose positions are closest and second-closest to ξ
3. Add the connection (b, s) with age $=0$ to C , if it is not already present. Otherwise, set its age to 0
4. Unless unit b is in a stable state (see below) increase by one the age of all connections involving b. Remove all connections whose age exceeds a threshold $T_{\text {age }}$ Remove all units that became unconneted, due to this

Self-Organizing Adaptive Map (SOAM)

- The algorithm

5. If unit b is at least in the habituated state and the distance between the input ξ and its position \mathbf{p}_{b} exceeds its activity radius r_{b}

- create a new unit n
- set its position to \mathbf{x}
- remove the connection (b, s)

- add new connections (b, n) and (n, s)

6. Decrease exponentially the firing counters of unit b and of all units connected to it

$$
\begin{aligned}
\Delta f_{b} & =\left(\alpha_{h} \cdot\left(F-f_{b}\right)-1\right) / \tau_{f} \\
\Delta f_{n b} & =\left(\alpha_{h} \cdot\left(F-f_{n b}\right)-1\right) / \tau_{f, n}
\end{aligned}
$$

where F is the initial value and the α 's and τ 's are suitable constants

Self-Organizing Adaptive Map (SOAM)

- The algorithm

7. Update the state of unit b, according to the value of the firing counter f_{b} and the topology of its neighborhood of connected units (see below)
8. If unit b is in a singular state, decrease exponentially its activity radius r_{b}

$$
\Delta r_{b}=\left(\alpha_{r} \cdot\left(R-r_{b}\right)-1\right) / \tau_{r, h a b}
$$

otherwise, if unit b is in a stable state increase exponentially r_{b}

$$
\Delta r_{b}=\left(\left(\alpha_{r} / \tau_{r, d i s}\right) \cdot\left(R-r_{b}\right)\right.
$$

Self-Organizing Adaptive Map (SOAM)

- The algorithm

9. Unless unit b is in a stable state, adapt its position and those of all connected units

$$
\begin{aligned}
\Delta \mathbf{p}_{b} & =\eta_{b} \cdot f_{b} \cdot\left(\xi-\mathbf{p}_{b}\right) \\
\Delta \mathbf{p}_{n b} & =\eta_{n b} \cdot f_{n b} \cdot\left(\xi-\mathbf{p}_{n b}\right)
\end{aligned}
$$

otherwise, if unit b is stable, adapt only the position of b itself

$$
\Delta \mathbf{p}_{b}=\eta_{\text {stable }} \cdot f_{b} \cdot\left(\xi-\mathbf{p}_{b}\right)
$$

10. Unless some termination criterion has been met, return to step 1.

Self-Organizing Adaptive Map (SOAM)

- Unit states and state transitions

The full set of states and state transitions

Self-Organizing Adaptive Map (SOAM)

- Unit states and state transitions

The full set of states and state transitions

Self-Organizing Adaptive Map (SOAM)

- Unit states and neighborhood topology

For surface reconstruction

connected
the neighboring units are habituated

singular
the configuration of connected neighboring units exceeds a disk

half-disk
formed by connected neighboring units

disk
formed by connected neighboring units

boundary
an half-disk
formed by regular neighboring units

patch
a disk
formed by regular neighboring units

Self-Organizing Adaptive Map (SOAM)

- Unit states and neighborhood topology

For surface reconstruction

connected
the neighboring units are habituated

singular
the configuration of connected neighboring units exceeds a disk

half-disk
formed by connected neighboring units

disk
formed by connected neighboring units
These states
are deemed

Self-Organizing Adaptive Map (SOAM)

- SOAM adaptation process

Self-Organizing Adaptive Map (SOAM)

- SOAM adaptation process

How the number of units varies with time (i.e. input signals)

Each line describes the number of units in the corresponding state/color

Self-Organizing Adaptive Map (SOAM)

- SOAM adaptation process

Another example, a closed surface with genus 22

The same network interpreted as a mesh

Self-Organizing Adaptive Map (SOAM)

- SOAM adaptation process

Either a curve or a surface from the same input
The dimension of the manifold to be reconstructed (i.e. either 1 or 2) is the main parameter of the algorithm

Self-Organizing Adaptive Map (SOAM)

- SOAM adaptation process

Higher dimensions (i.e. beyond 3D)

In 4D (and beyond) the Klein bottle is a manifold and the SOAM converges

In 3D the Klein bottle
is not a manifold, as it must self-intersect: the SOAM cannot converge

Self-Organizing Adaptive Map (SOAM)

- Pre-print

See http://arxiv.org/abs/0812.2969

