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Abstract
A logic based on the two truth values True and False is sometimes inadequate when
describing human reasoning. Fuzzy logic uses the whole interval between 0 (False) and 1
(True) to describe human reasoning. As a result, fuzzy logic is being applied in rule based
automatic controllers, and this paper is part of a course for control engineers.
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Figure 1. Process diagram of a feed-tank.

1 Introduction

A fuzzy controller, in a cement plant for example, aims to mimic the operator’s terms by
means of fuzzy logic. To illustrate, consider the tank in Fig. 1, which is for feeding a cement
mill such that the feed flow is more or less constant. The simplified design in the figure
consists of a tank, two level sensors, and a magnetic valve. The objective is to control the
valve V1, such that the tank is refilled when the level is as low as LL, and stop the refilling
when the level is as high as LH. The sensor LL is 1 when the level is above the mark, and
0 when the level is below; likewise with the sensor LH. The valve opens when V1 is set
to 1, and it closes when V1 is set to 0. In two-valued (Boolean) logic the controller can be
described

V1 =

{
1, if LL switches from 1 to 0
0, if LH switches from 0 to 1

}
(1)

An operator, whose responsibility is to open and close the valve, would perhaps describe the
control strategy as:

If the level is low then open V1 (2)

If the level is high then close V1

The former strategy (1) is suitable for a Programmable Logic Controller (PLC) using
Boolean logic, and the latter (2) is suitable for a fuzzy controller using fuzzy logic. Our aim
here is not to give implementation details of the latter, but to use the example to explain the
underlying fuzzy logic.

Lotfi Zadeh, the father of fuzzy logic, claimed that many sets in the world that surrounds
us are defined by a non-distinct boundary. Indeed, the set of high mountains, or, the set
of low level measurements in Fig 1 are examples of such sets. Zadeh decided to extend
two-valued logic, defined by the binary pair {0,1} , to the whole continuous interval [0,1] ,
thereby introducing a gradual transition from falsehood to truth. The original and pioneering
papers on fuzzy sets by Zadeh (e.g., 1965, 1973, 1975) explain the theory of fuzzy sets that
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Figure 2. Possible definition of the set high levels in the tank in Fig. 1.

result from the extension as well as a fuzzy logic based on the set theory. Primary references
can be found conveniently in a book with 18 selected papers by Zadeh (Yager, Ovchinnikov,
Tong & Nguyen, 1987). For a thorough introduction to the theory, Zadeh in his article in
IEEE Spectrum (Zadeh, 1984) recommends the book by Kaufmann (1975). A more recent
introduction to fuzzy set theory and its applications is the book by Zimmermann (1993)
which is easy to read. Specific questions or definitions can be looked up in the Systems and
Control Encyclopedia (Singh, 1987; 1990; 1992). The book has a large collection of articles
on control concepts in general, and fuzzy control in particular.

Here we will focus on the fuzzy set theory underlying (2), and present the basic
definitions and operations. Please be aware that the interpretation of fuzzy set theory in the
following is just one of several possible; Zadeh and other authors have suggested alternative
definitions. Throughout, letters denoting matrices are in bold upper case, for example A;

vectors are in bold lower case, for example x; scalars are in italics, for example n; and
operations are in bold, for example min.

2 Fuzzy Sets

Fuzzy sets are a further development of the mathematical concept of a set. Sets were
first studied formally by the German mathematician Georg Cantor (1845-1918). His theory
of sets met much resistance during his lifetime, but nowadays most mathematicians believe
it is possible to express most, if not all, of mathematics in the language of set theory.
Many researchers are looking at the consequences of ’fuzzifying’ set theory, and much
mathematical literature is the result. For control engineers, fuzzy logic and fuzzy relations
are the most important in order to understand how fuzzy rules work.

Conventional sets A set is any collection of objects which can be treated as a whole.
Cantor described a set by its members, such that an item from a given universe is either a
member or not. The terms set, collection and class are synonyms, just as the terms item,
element and member. Almost anything called a set in ordinary conversation is an acceptable
set in the mathematical sense, cf. the next example.

Example 1 (sets) The following are well defined lists or collections of objects, and there-
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fore entitled to be called sets:
(a) The set of non-negative integers less than 4. This is a finite set with four members: 0,

1, 2, and 3.
(b) The set of live dinosaurs in the basement of the British Museum. This set has no

members, and is called an empty set.
(c) The set of measurements greater than 10 volts. Even though this set is infinite, it is

possible to determine whether a given measurement is a member or not.

A set can be specified by its members, they characterize a set completely. The list of
members A = {0,1, 2, 3} specifies a finite set. Nobody can list all elements of an infinite
set, we must instead state some property which characterizes the elements in the set, for
instance the predicate x > 10. That set is defined by the elements of the universe of
discourse which make the predicate true. So there are two ways to describe a set: explicitly
in a list or implicitly with a predicate.

Fuzzy sets Following Zadeh many sets have more than an either-or criterion for
membership. Take for example the set of young people. A one year old baby will clearly
be a member of the set, and a 100 years old person will not be a member of this set, but
what about people at the age of 20, 30, or 40 years? Another example is a weather report
regarding high temperatures, strong winds, or nice days. In other cases a criterion appears
nonfuzzy, but is perceived as fuzzy: a speed limit of 60 kilometres per hour, a check-out
time at 12 noon in a hotel, a 50 years old man. Zadeh proposed a grade of membership, such
that the transition from membership to non-membership is gradual rather than abrupt.

The grade of membership for all its members thus describes a fuzzy set. An item’s grade
of membership is normally a real number between 0 and 1, often denoted by the Greek letter
µ. The higher the number, the higher the membership (Fig. 2). Zadeh regards Cantor’s set
as a special case where elements have full membership, i.e., µ = 1. He nevertheless called
Cantor’s sets nonfuzzy; today the term crisp set is used, which avoids that little dilemma.

Notice that Zadeh does not give a formal basis for how to determine the grade of
membership. The membership for a 50 year old in the set young depends on one’s own view.
The grade of membership is a precise, but subjective measure that depends on the context.

A fuzzy membership function is different from a statistical probability distribution. This
is illustrated next in the so-called egg-eating example.

Example 2 (Probability vs possibility) (Zadeh in Zimmermann, 1991) Consider the state-
ment “Hans ate X eggs for breakfast”, where X ∈ U = {1,2, ..., 8}. We may associate a
probability distribution p by observing Hans eating breakfast for 100 days,

U = [ 1 2 3 4 5 6 7 8 ]
p = [ .1 .8 .1 0 0 0 0 0 ]

A fuzzy set expressing the grade of ease with which Hans can eatX eggs may be the following
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Figure 3. The sets more or less old, very young, and not very young are derived from young
and old.

so-called possibility distribution π,

U = [ 1 2 3 4 5 6 7 8 ]
π = [ 1 1 1 1 .8 .6 .4 .2 ]

Where the possibility for X = 3 is 1, the probability is only 0.1.

The example shows, that a possible event does not imply that it is probable. However, if
it is probable it must also be possible. You might view a fuzzy membership function as your
personal distribution, in contrast with a statistical distribution based on observations.

2.1 Universe

Elements of a fuzzy set are taken from a universe of discourse, or universe for short. The
universe contains all elements that can come into consideration. Even the universe depends
on the context, as the next example shows.

Example 3 (universe) (a) The set of young people could have all human beings in the
world as its universe. Alternatively it could be the numbers between 0 and 100; these would
then represent age (Fig. 3).

(b) The set x � 10 (x much greater than 10) could have as a universe all positive
measurements.

The universe depends on the measuring unit, e.g., whether a duration in time is measured
in weeks, months, or years.

An application of the universe is to suppress faulty measurement data, for example
negative values for the level in our tank example.

In case we are dealing with a non-numerical quantity, for instance taste, which cannot be
measured against a numerical scale, we cannot use a numerical universe. The elements are
then said to be taken from a psychological continuum; an example of such a universe could
be {bitter, sweet, sour, salt, hot, ...}.
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2.2 Membership function

Every element in the universe of discourse is a member of the fuzzy set to some grade,
maybe even zero. The set of elements that have a non-zero membership is called the support
of the fuzzy set. The function that ties a number to each element x of the universe is called
the membership function µ(x).

Continuous And Discrete Representations There are two alternative ways to represent
a membership function in a computer: continuous or discrete. In the continuous form
the membership function is a mathematical function, possibly a program. A membership
function is for example bell-shaped (also called a π-curve), s-shaped (called an s-curve),
a reverse s-curve (called z-curve), triangular, or trapezoidal. There is an example of an
s-curve in Fig. 2. In the discrete form the membership function and the universe are discrete
points in a list (vector). Sometimes it can be more convenient with a sampled (discrete)
representation.

As a very crude rule of thumb, the continuous form is more CPU intensive, but less
storage demanding than the discrete form.

Example 4 (continuous) A cosine function can be used to generate a variety of member-
ship functions. The s-curve can be implemented as

s(xl, xr, x) =




0 , x < xl
1

2
+ 1

2
cos

(
x−xr

xr−xl
π
)

, xl ≤ x ≤ xr

1 , x > xr


 (3)

where xl is the left breakpoint, and xr is the right breakpoint. The z-curve is just a reflec-
tion,

z(xl, xr, x) =




1 , x < xl
1

2
+ 1

2
cos

(
x−xl

xr−xl
π
)

, xl ≤ x ≤ xr

0 , x > xr


 (4)

Then the π-curve can be implemented as a combination of the s-curve and the z-curve, such
that the peak is flat over the interval [x2, x3],

π(x1, x2, x3, x4, x) = min(s(x1, x2, x), z(x3, x4, x)) (5)

Figure 2 was drawn using π(10,90, 100, 100, x).

Example 5 (discrete) To get a discrete representation equivalent to Fig. 2, assume the
universe u is represented by a number of samples, say,

u =
[

0 20 40 60 80 100
]
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Insertion results in the corresponding list of membership values:

π(10,90,100, 100, u1) = 0

π(10,90,100, 100, u2) = 0.04

π(10,90,100, 100, u3) = 0.31

π(10,90,100, 100, u4) = 0.69

π(10,90,100, 100, u5) = 0.96

π(10,90,100, 100, u6) = 1

or, for short,

π(10, 90, 100, 100,u) =
[

0 0.04 0.31 0.69 0.96 1
]

Normalisation A fuzzy set is normalised if its largest membership value equals 1.
You normalise by dividing each membership value by the largest membership in the set,
a/max(a).

2.3 Singletons

Strictly speaking, a fuzzy set A is a collection of ordered pairs

A = {(x,µ(x))} (6)

Item x belongs to the universe and µ(x) is its grade of membership in A. A single pair
(x, µ(x)) is called a fuzzy singleton; thus the whole set can be viewed as the union of its
constituent singletons. It is often convenient to think of a set A just as a vector

a = (µ(x1), µ(x2), . . . , µ(xn))

It is understood then, that each position i (1,2, . . . , n) corresponds to a point in the universe
of n points.

2.4 Linguistic variables

Just like an algebraic variable takes numbers as values, a linguistic variable takes words
or sentences as values (Zadeh in Zimmermann, 1991). The set of values that it can take is
called its term set. Each value in the term set is a fuzzy variable defined over a base variable.
The base variable defines the universe of discourse for all the fuzzy variables in the term set.
In short, the hierarchy is as follows: linguistic variable → fuzzy variable → base variable.

Example 6 (term set) Let x be a linguistic variable with the label “Age”. Terms of this
linguistic variable, which are fuzzy sets, could be “old”, “young”, “very old” from the term
set

T = {Old,V eryOld,NotSoOld,MoreOrLessY oung,

QuiteY oung, V eryY oung}
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Figure 4. Two terms defining high tank levels (solid) and low tank levels (dashed).

Each term is a fuzzy variable defined on the base variable, which might be the scale from 0
to 100 years.

Primary terms A primary term is a term or a set that must be defined a priori, for
example Young and Old in Fig. 3, whereas the sets VeryYoung and NotYoung are modified
sets.

2.5 Tank Level Example

We have now come a little closer to the representation of a fuzzy control rule. In the premise

If the level is low,
clearly low is a fuzzy variable, a value of the linguistic variable level. The term low can be
represented in the computer as a vector low. It is defined on a universe, which is the range of
the expected values of level, i.e., the interval [0,100] percent full. The measurement level is
a scalar, and the statement level is low looks up the membership value low(i), where level is
rounded to the nearest element in the universe to find the appropriate index i. The outcome
is a number µ = [0, 1] telling how well the premise is fulfilled. Figure 4 suggests a possible
definition of the term set {low,high} for the tank level problem.

3 Operations On Fuzzy Sets

The membership function is obviously a crucial component of a fuzzy set. It is therefore
natural to define operations on fuzzy sets by means of their membership functions.

3.1 Set operations

In fact a fuzzy set operation creates a new set from one or several given sets (Fig. 5). For
example, given the sets A and B the intersection is a new fuzzy set with its own membership
function.

Definition 1 (set operations) Let A and B be fuzzy sets on a mutual universe.
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Figure 5. The three primitive set operations.

(a) The intersection of A and B is

A ∩B ≡ a min b

The operation min is an item-by-item minimum comparison between corresponding items in
a and b.

(b) The union of A and B is
A ∪B ≡ a max b

where max is an item-by-item maximum operation.
(c) The complement of A is

A ≡ 1− a
where each membership value in a is subtracted from 1.

A fuzzy set X is a fuzzy subset of the set Y , written X ⊆ Y, if its membership function is
less than or equal to the membership function of Y . In Fig. 5 we have (A∩B) ⊆ (A ∪B) .

Example 7 (buy a house) (Zimmermann, 1993): A four-person family wants to buy a house.
An indication of how comfortable they want to be is the number of bedrooms in the house.
But they also want a large house. Let u = (1, 2,3,4,5, 6, 7,8,9,10) be the set of available
houses described by their number of bedrooms. Then the fuzzy set c (for Comfortable) may
be described as

c =
[

0.2 0.5 0.8 1 0.7 0.3 0 0 0 0
]

Let l be the fuzzy set Large defined as

l =
[

0 0 0.2 0.4 0.6 0.8 1 1 1 1
]

The intersection of Comfortable and Large is then

c ∩ l =
[

0 0 0.2 0.4 0.6 0.3 0 0 0 0
]

To interpret this, five bedrooms is optimal, but only satisfactory to the grade 0.6. The second
best solution is four bedrooms.

The union of Comfortable and Large is

c∪ l =
[

0.2 0.5 0.8 1 0.7 0.8 1 1 1 1
]
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Property Name
A∪B = B ∪A Commutative
A∩B = B ∩A Commutative
(A ∪B) ∪ C = A ∪ (B ∪ C) Associative
(A ∩B) ∩ C = A ∩ (B ∩ C) Associative
A∩ (B ∪ C) = (A ∩B) ∪ (A∩ C) Distributive
A∪ (B ∩ C) = (A ∪B) ∩ (A∪ C) Distributive
A∩B = A ∪B DeMorgan
A∪B = A ∩B DeMorgan
(A ∩B) ∪A = A Absorption
(A ∪B) ∩A = A Absorption
A∪A = A Idempotency
A∩A = A Idempotency
A∪A 	= 1 Exclusion not satisfied
A∩A 	= 0 Exclusion not satisfied

1. Properties of the primitive operations

Here four bedrooms is fully satisfactory (1) because it is comfortable, and 7-10 bedrooms
also, because that would mean a large house. The complement of Large is

l =
[

1 1 0.8 0.6 0.4 0.2 0 0 0 0
]

The operations ∪ and ∩ associate, commute and more (Table 1). These properties are
important, because they help to predict the outcome of long sentences.

Other definitions of the primitive operations are possible, but using max and min is most
common.

3.2 Modifiers

A linguistic modifier, is an operation that modifies the meaning of a term. For example, in
the sentence “very close to 0”, the word very modifies Close to 0 which is a fuzzy set. A
modifier is thus an operation on a fuzzy set. Examples of other modifiers are a little, more or
less, possibly, and definitely.

Even though it is difficult precisely to say what effect the modifier very has, it does have
an intensifying effect. The modifier more or less, or morl for short, has the opposite effect.
They are often approximated by the operations

very a ≡ a2, morl a ≡ a
1

2

The power function applies to each vector element of a in turn. Here we have limited
ourselves to squaring and square root, but any power function may be used. On discrete
form, we might have a universe u = (0,20,40,60,80). Given the set

young =
[

1 0.6 0.1 0 0
]

then we can derive the discrete membership function for the set very young by squaring all
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elements,
young 2 =

[
1 0.36 0.01 0 0

]

The set very very young is by induction,

young 4 =
[
1 0.13 0 0 0

]

The derived sets inherit the universe of the primary set. The plots in Fig. 3 were generated
using these definitions. Some examples of other modifiers are

extremely a = a3

slightly a = a
1

3

somewhat a = moreorless a and not slightly a

A whole family of modifiers is generated by ap where p is any power between zero and
infinity. With p = ∞ the modifier could be named exactly, because it would suppress all
memberships lower than 1.0.

3.3 Relations Between Sets

In any fuzzy controller, relationships among objects play a fundamental role. Some relations
concern elements within the same universe: one measurement is larger than another, one
event occurred earlier than another, one element resembles another, etc. Other relations
concern elements from disjoint universes: the measurement is large and its rate of change
is positive, the x-coordinate is large and the y-coordinate is small, for example. These
examples are relationships between two objects, but in principle we can have relationships
which hold for any number of objects.

Formally, a binary relation or simply a relation R from a set A to a set B assigns to
each ordered pair (a, b) ∈ A× B exactly one of the following statements: (i)”a is related
to b”, or (ii) ”a is not related to b”. The Cartesian product A× B is the set of all possible
combinations of the items of A and B. A fuzzy relation from a set A to a set B is a fuzzy
subset of the Cartesian product U × V between their respective universes U and V .

Assume for example that Donald Duck’s nephew Huey resembles Dewey to the grade
0.8, and Huey resembles Louie to the grade 0.9. We have therefore a relation between to
subsets of the nephews in the family. This is conveniently represented in a matrix (with one
row),

R1 =
Dewey Louie

Huey 0.8 0.9

Composition In order to show how two relations can be combined let us assume another
relation between Dewey and Louie on the one side, and Donald Duck on the other,

R2 =
Donald

Dewey 0.5
Louie 0.6

It is tempting to try and find out how much Huey resembles Donald by combining the
information in the two matrices:

(i) Huey resembles (0.8) Dewey, and Dewey resembles (0.5) Donald, or

12



(ii) Huey resembles (0.9) Louie, and Louie resembles (0.6) Donald.

Statement (i) contains a chain of relationships, and it seems reasonable to combine
them with an intersection operation. With our definition, this corresponds to choosing the
weakest membership value for the (transitive) Huey-Donald relationship, i.e, 0.5. Similarly
with statement (ii). Performing the operation along each chain in (i) and (ii), we get

(iii) Huey resembles (0.5) Donald, or
(iv) Huey resembles (0.6) Donald.

Both (iii) and (iv) seem equally valid, so it seems reasonable to apply the union
operation. With our definition, this corresponds to choosing the strongest relation, i.e., the
maximum membership value. The final result is

(v) Huey resembles (0.6) Donald

The general rule when combining or composing fuzzy relations, is to pick the minimum
fuzzy value in a ’series connection’ and the maximum value in a ’parallel connection’. It is
convenient to do this with an inner product.

The inner product is similar to an ordinary matrix (dot) product, except multiplication is
replaced by intersection (∩) summation by union (∪) . Suppose R is an m× p and S is a
p × n matrix. Then the inner ∪.∩ product is an m × n matrix T= (tij) whose ij-entry is
obtained by combining the ith row of R with the jth column of S, such that

tij = (ri1 ∩ s1j) ∪ (ri2 ∩ s2j) ∪ . . . ∪ (rip ∩ spj) =

p⋃

k=1

rik ∩ skj (7)

As a notation for the generalised inner product, we shall use f.g, where f and g are any
functions that take two arguments, in this case ∪ and ∩.With our definitions of the set
operations, composition reduces to what is called max-min composition in the literature
(Zadeh in Zimmermann, 1991).

If R is a relation from a to b and S is a relation from b to c, then the composition of R
and S is a relation from a to c (transitive law).

Example 8 (inner product) For the tables R1 and R2 above we get

R1 ∪ . ∩R2 = 0.8 0.9 ∪ . ∩
0.5
0.6

=
⋃

0.5 0.6 = 0.6

which agrees with the previous result.

The max-min composition is distributive with respect to union,

(R ∪ T) ∪ .∩ S = (R ∪ . ∩ S) ∪ (T ∪ . ∩ S),

but not with respect to intersection. Sometimes the min operation in max-min composition
is substituted by * for multiplication; then it is called max-star composition.
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4 Fuzzy Logic

Logic started as the study of language in arguments and persuasion, and it may be used
to judge the correctness of a chain of reasoning, in a mathematical proof for example. In
two-valued logic a proposition is either true or false, but not both. The ”truth” or ”falsity”
which is assigned to a statement is its truth-value. In fuzzy logic a proposition may be true or
false or have an intermediate truth-value, such as maybe true. The sentence the level is high
is an example of such a proposition in a fuzzy controller. It may be convenient to restrict the
possible truth values to a discrete domain, say {0, 0.5,1} for false, maybe true, and true; in
that case we are dealing with multi-valued logic. In practice a finer subdivision of the unit
interval may be more appropriate.

4.1 Connectives

In daily conversation and mathematics, sentences are connected with the words and, or,
if-then (or implies), and if and only if. These are called connectives. A sentence which is
modified by the word ”not” is called the negation of the original sentence. The word ”and”
is used to join two sentences to form the conjunction of the two sentences. Similarly a
sentence formed by connecting two sentences with the word ”or” is called the disjunction
of the two sentences. From two sentences we may construct one of the form ”If ... then ...”;
this is called a conditional sentence. The sentence following ”If” is the antecedent, and the
sentence following ”then” is the consequent. Other idioms which we shall regard as having
the same meaning as ”If p, then q” (where p and q are sentences) are ”p implies q”, ”p
only if q”, ”q if p”, etc. The words ”if and only if” are used to obtain from two sentences a
biconditional sentence.

By introducing letters and special symbols, the connective structure can be displayed in
an effective manner. Our choice of symbols is as follows

¬ for ”not”
∧ for ”and”
∨ for ”or”
⇒ for ”if-then”
⇔ for ”if and only if”

The next example illustrates how the symbolic forms can provide a quick overview.

Example 9 (baseball) Consider the sentence,
If either the Pirates or the Cubs loose and the Giants win, then the Dodgers will be out of

first place, and I will loose a bet.
It is a conditional, so it may be symbolised in the form r⇒ s. The antecedent is composed

from the three sentences p (”The Pirates lose”), c (”The Cubs lose”), and g (”The Giants
win”). The consequent is the conjunction of d (”The Dodgers will be out of first place”) and
b (”I will lose a bet”). The original sentence may be symbolised by ((p ∨ c)∧ g)⇒ (d ∧ b).
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The possible truth-values of a statement can be summarised in a truth-table. Take for
example the truth-table for the two-valued proposition p ∨ q. The usual form (below, left)
lists all possible combinations of truth-values, i.e., the Cartesian product, of the arguments
p and q in the two leftmost columns. Alternatively the truth-table can be rearranged into a
two-dimensional array, a so-called Cayley table (below, right).

p q p ∨ q
0 0 0
0 1 1
1 0 1
1 1 1

∨ 0 1 q
0 0 1
1 1 1
p

The vertical axis carries the possible values of the first argument p, and the horizontal axis
the possible values of the second argument q. At the intersection of row i and column j
is the truth value of the expression pi ∨ qj. The truth-values on the axes of the Cayley
table can be omitted since, in the two-valued case, these are always 0 and 1, and in that
order. Truth-tables for binary connectives are thus given by two-by-two matrices, where it is
understood that the first argument is associated with the vertical axis and the second with the
horizontal axis. A total of 16 such two-by-two tables can be constructed, and each has been
associated with a connective.

It is possible to evaluate, in principle at least, a logic statement by an exhaustive test
of all combinations of truth-values of the variables, cf. the so-called array based logic
(Franksen, 1979). The next example illustrates an application of array logic.

Example 10 (array logic) In the baseball example, we had ((p ∨ c) ∧ g) ⇒ (d ∧ b). The
sentence contains five variables, and each variable can take only two truth-values. This
implies 25 = 32 possible combinations. Only 23 are legal, however, in the sense that the
sentence is valid (true) for these combinations, and 32−23 = 9 cases are illegal, that is, the
sentence is false for those particular combinations. Assuming that we are interested only in
the legal combinations for which I win the bet (b = 0), then the following table results

p c g d b
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
1 0 0 0 0
1 0 0 1 0
1 1 0 0 0
1 1 0 1 0

There are thus 10 winning outcomes out of 32 possible.
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We can make similar truth-tables in fuzzy logic. If we for example start out by defining
negation and disjunction, then we can derive other truth-tables from that. Let us assume that
negation is defined as the set theoretic complement, i.e. not p ≡ 1− p, and that disjunction
is equivalent to set theoretic union, i.e., p ∨ q ≡ p max q. Then we can find truth-tables for
or, nor, nand, and and

Or
p ∨ q

0 0.5 1
0.5 0.5 1
1 1 1

Nor
¬(p ∨ q)

1 0.5 0
0.5 0.5 0
0 0 0

Nand
(¬p) ∨ (¬q)
1 1 1
1 0.5 0.5
1 0.5 0

And
¬((¬p) ∨ (¬q))
0 0 0
0 0.5 0.5
0 0.5 1

(8)

The two rightmost tables are negations of the left hand tables, and the bottom tables are
reflections along the anti-diagonal (orthogonal to the main diagonal) of the top tables. It is
comforting to realise that even though the truth-table for ”and” is derived from the table for
”or”, the table for ”and” can also be generated using the min operation, in agreement with
the definition for set intersection.

The implication operator, however, has always troubled the fuzzy theoretic community.
If we define it in the usual way, i.e., p ⇒ q ≡ ¬p ∨ q, then we get a truth-table which is
counter-intuitive and unsuitable, because several logical laws fail to hold.

Many researchers have tried to come up with other definitions; Kiszka, Kochanska &
Sliwinska (1985) list 72 alternatives to choose from. One other choice is the so-called Gödel
implication which is better in the sense that more ”good old” (read: two-valued) logical
relationships become valid (Jantzen, 1995). Three examples are (p∧q)⇒ p (simplification),
[p ∧ (p ⇒ q)] ⇒ q (modus ponens), and [(p ⇒ q) ∧ (q ⇒ r)] ⇒ (p ⇒ r) (hypothetical
syllogism). Gödel implication can be written

p⇒ q ≡ (p ≤ q) ∨ q (9)

The truth-table for equivalence (⇔) is determined from implication and conjunction, once it
is agreed that p⇔ q is the same as (p⇒ q) ∧ (q⇒ p).

Implication
(p ≤ q) ∨ q
1 1 1
0 1 1
0 0.5 1

Equivalence
(p⇒ q) ∧ (q ⇒ p)
1 0 0
0 1 0.5
0 0.5 1

(10)

Fuzzy array logic can be applied to theorem proving, as the next example will show.

Example 11 (fuzzy modus ponens) It is possible to prove a law by an exhaustive search of
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all combinations of truth-values of the variables in fuzzy logic, provided the domain of truth
values is discrete and limited. Take for example modus ponens

[p ∧ (p⇒ q)]⇒ q (11)

The sentence contains two variables, and let us assume that each variable can take, say, three
truth-values. This implies 32 = 9 possible combinations,

p q p⇒ q [p ∧ (p⇒ q)] [p ∧ (p⇒ q)]⇒ q
0 0 1 0 1
0 0.5 1 0 1
0 1 1 0 1
0.5 0 0 0 1
0.5 0.5 1 0.5 1
0.5 1 1 0.5 1
1 0 0 0 1
1 0.5 0.5 0.5 1
1 1 1 1 1

Since the right column is all one’s, the modus ponens (11) is valid, even for fuzzy logic. The
scope of the validity is limited to the chosen truth domain (0, 0.5,1); this could be extended,
however, and the test performed again in case a higher resolution is required.

Example 12 (fuzzy baseball) We will modify the baseball example (example 9) to see what
difference fuzzy logic makes. The sentence contains five variables, but in the fuzzy case each
variable can take, say, three truth-values. This implies 35 = 243 possible combinations; 148
of these are legal in the sense that the sentence is true (truth-value 1) for these combinations.
There are other cases where there is a 0.5 possibility of winning the bet depending on the
possibilities of wins and losses of the Dodgers, etc. If we are interested again in the combina-
tions for which there is some possibility that I win the bet, i.e., b ∈ {0,0.5} then there are
88 possible combinations. Instead of listing all of them, we will just show one for illustration,

(p, c, g, d, b) =
[

0 0.5 0.5 1 0.5
]
.

The example shows that fuzzy logic provides more solutions and it requires more
computational effort than in the case of two-valued logic. This is the price to pay for having
intermediate truth-values describe uncertainty.

Originally, Zadeh interpreted a truth-value in fuzzy logic, for instance Very true, as a
fuzzy set (Zadeh, 1988). Thus Zadeh based fuzzy (linguistic) logic on treating Truth as
a linguistic variable that takes words or sentences as values rather than numbers (Zadeh,
1975). Please be aware that our approach differs, being built on scalar truth-values rather
than vector truth-values.
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4.2 Implication

The rule If the level is low, then open V1 is called an implication, because the value of
level implies the value of V1 in the controller. It is uncommon, however, to use the Gödel
implication (9) in fuzzy controllers. Another implication, called Mamdani implication, is
often used.

Definition 2 (Mamdani implication) (Mamdani, 1977) Let a and b be two fuzzy sets, not
necessarily on the same universe. The Mamdani implication is defined

a ⇒ b ≡ a ◦ .min b (12)

where ◦.min is the outer product, applying min to each element of the cartesian product of a
and b.

Let a be represented by a column vector and b by a row vector, then their outer min
product may be found as a ’multiplication table’,

◦.min b1 b2 · · · bm

a1 a1 ∧ b1 a1 ∧ b2 · · · a1 ∧ bm
· · · · · · · · · · · · · · ·
an an ∧ b1 an ∧ b2 · · · an ∧ bm

(13)

Example 13 (outer product) Take the implication If the level is low, then open V1, with
low and open defined as,

low = (1,0.75,0.5, 0.25,0)

open = (0,0.5, 1)

The implication is then represented by the scheme

◦.min 0 0.5 1 V1

1 0 0.5 1
0.75 0 0.5 0.75
0.5 0 0.5 0.5
0.25 0 0.25 0.25
0 0 0 0

level

This is a very important way to construct an implication table from a rule.

The outer min product (Mamdani, 1977) as well as the outer product with min replaced
by * for multiplication (Holmblad & Østergaard, 1982), is the basis for most fuzzy
controllers; therefore the following chapters will use that. However, Zadeh and other
researchers have proposed many other theoretical definitions (e.g., Zadeh, 1973; Wenstøp,
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1980; Mizumoto, Fukami & Tanaka, 1979; Fukami, Mizumoto & Tanaka, 1980; see also the
survey by Lee, 1990).

4.3 Inference

In order to draw conclusions from a rule base we need a mechanism that can produce
an output from a collection of if-then rules. This is done using the compositional rule of
inference (CROI). The verb to infer means to conclude from evidence, deduce, or to have as
a logical consequence – do not confuse ’inference’ with ’interference’. To understand the
concept, it is useful to think of a function y = f(x), where f is a given function, x is the
independent variable, and y the result; a value y0 is inferred from x0 given f .

The famous rule of inference modus ponens,

a ∧ (a⇒ b)⇒ b (14)

can be stated as follows: If it is known that a statement a⇒ b is true, and also that a is true,
then we can infer that b is true. Fuzzy logic generalises this into generalised modus ponens
(GMP):

a′ ∧ (a⇒ b)⇒ b′ (15)
Notice that fuzzy logic allows a′ and b′ to be slightly different in some sense from a and
b, for example after applying modifiers. An intuitive illustration is the famous advice for
tourists

When in Rome, do like the Romans

Had the world been Boolean, I would behave like the Romans the moment I cross the city
limits. Nevertheless, if I were near Rome, in Assisi for instance, I would start to behave like
the Romans. We can thus associate a with ”When in Rome”, b with ”do like the Romans”,
a′ with ”I am near Rome”, and the result of the implication (b′) would be something like:
”I do more or less like the Romans”. The GMP is closely related to forward chaining, i.e.,
reasoning in a forward direction in a rule base containing chains of rules, which is the case
in a fuzzy controller. The GMP inference is based on the compositional rule of inference,
see the following example.

Example 14 (GMP) Given the relation R = low ◦.min open from the previous example,
and an input vector

level = (0.75, 1,0.75,0.5, 0.25),
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then

v1 = level ∨ .∧R (16)

= 0.75 1 0.75 0.5 0.25 ∨ . ∧

0 0.5 1
0 0.5 0.75
0 0.5 0.5
0 0.25 0.25
0 0 0

(17)

= 0 0.5 0.75 (18)

The inner product used here is the same as defined earlier in (7), except the operation ∩ has
been replaced by ∧, and ∪ by ∨, since we are in fuzzy logic rather than fuzzy set theory.
Obviously, the input level is a fuzzy set representing a level somewhat higher than low. The
result after inference is a vector v1 slightly less than “open”. Incidentally, if we try putting
level = low, we would expect to get a vector v1 equal to open after composition with R. This
is indeed so, but the confirmation is left as an exercise for the student.

4.4 Several Rules

A rule base usually contains several rules, how do we combine them? Returning to the
simple rule base

If the level is low then open V1 (19)

If the level is high then close V1

We implicitly assume a logical or between rules, such that the rule base is read as R1 ∨R2,
where R1 is the first, and R2 the second rule. The rules are equivalent to implication
matrices R1 and R2, therefore the total rule base is the logical or of the two tables, item by
item. In general terms, we have

R =
∨

Ri

Inference can then be performed on R.
In case there are n inputs, that is, if each if -side contains n variables, the relation matrix

R generalises to an n + 1 dimensional array. Let ei (i = 1, . . . , n) be the inputs, then
inference is carried out by a generalised composition,

u = (e1 × e2 × . . .× en) ∨ . ∧R

Inference is still the usual composition operation; we just have to keep track of the
dimensions.

5 Summary

We have achieved a method of representing and executing a rule
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If the level is low then open V1

in a computer program. In summary:

1. Define fuzzy sets low and open corresponding to a low level and an open valve; these
can be defined on different universes.

2. Represent the implication as a relation R by means of the outer product, R = low ◦.min
open. The result is a matrix.

3. Perform the inference with an actual measurement. In the most general case this
measurement is a fuzzy set, say, the vector level. The control action v1 is obtained by
means of the compositional rule of inference, v1 = level ∨.∧ R.

Fuzzy controllers are implemented in a more specialised way, but they were originally
developed from the concepts and definitions presented above, especially inference and
implication.
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