Intelligenza Artificiale II

Ragionamento probabilistico: rappresentazione

Marco Piastra

Ragionamento probabilistico: rappresentazione

Mondi possibili, sottoinsiemi, eventi

Variabili aleatorie

Probabilità

Marginalizzazione

Condizionalizzazione

Indipendenza, indipendenza condizionale Modelli grafici

Eventi come sottoinsiemi di mondi possibili

Fbf e insiemi di mondi possibili

Si consideri un linguaggio logico L (p.es. del primo ordine)

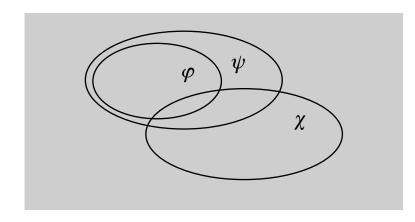
A ciascuna fbf (chiusa) φ di L corrisponde un sottoinsieme di tutte le possibili strutture semantiche che soddisfano φ

Vale a dire, a ciascuna fbf (chiusa) φ corrisponde $\{\langle U, v \rangle : \langle U, v \rangle \models \varphi\}$

(assumiamo per semplicità di mantenere fisso U)

Ciascuna struttura semantica <U, v> rappresenta un *mondo possibile*

Quindi a ciascuna a ciascuna fbf (chiusa) φ corrisponde un insieme di *mondi possibili*



Intuitivamente

Un **evento** può esser visto come un sottoinsieme di *mondi possibili*: un evento si **verifica** quando il *mondo attuale* appartiene al corrispondente sottoinsieme

L'agente usa le descrizioni (fbf) degli eventi e non sa qual'è il mondo attuale

Possibilità

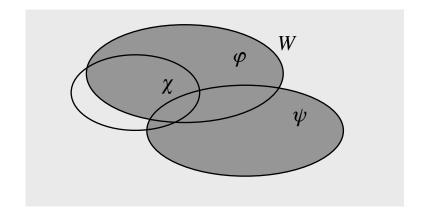
Conoscenze oggettive e fbf possibili

L'agente possiede un sistema di conoscenze oggettive Detta Γ la teoria che rappresenta le conoscenze dell'agente, l'insieme dei *mondi possibili* (per l'agente) è $W \equiv \{ \langle U, v \rangle : \langle U, v \rangle \models \Gamma \}$

P.es. l'agente sa che $\varphi \lor \psi$ quindi solo i mondi $\{\langle U, v \rangle : \langle U, v \rangle \models \varphi \lor \psi\}$ sono possibili (per l'agente) Vuol dire che l'evento $\varphi \lor \psi$ si è già *verificato*?

Viceversa il valore di verità di una fbf χ potrebbe non essere noto (all'agente):

$$\varphi \lor \psi \not\models \chi$$
$$\varphi \lor \psi \not\models \neg \chi$$



Probabilità*

Una misura dei sottoinsiemi di W

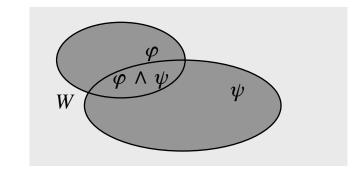
 $W \equiv \{\langle U, v \rangle : \langle U, v \rangle \models \Gamma\}$ dove Γ sono le conoscenze dell'agente

P(.) è una funzione che assegna un numero reale agli elementi di una σ -algebra Σ formata da sottoinsiemi di W

σ -algebra

Una collezione di sottoinsiemi Σ di un insieme W per cui valgono le seguenti proprietà:

- 1) Σ non è vuota
- 2) Se $\varphi \in \Sigma$ allora $\neg \varphi \in \Sigma$ ($\neg \varphi$ inteso come *complemento* rispetto a W)



3) Per qualsiasi collezione numerabile $\{\varphi_i\}, \varphi_i \in \Sigma$, si ha $\bigcup_i \varphi_i \in \Sigma$

Corollario:

Gli insiemi \varnothing e W appartengono a qualsiasi σ -algebra generata su W

Gli elementi della σ -algebra sono gli **eventi**

Probabilità*

Una misura dei sottoinsiemi di W

 $W \equiv \{\langle U, v \rangle : \langle U, v \rangle \models \Gamma\}$ dove Γ sono le conoscenze dell'agente

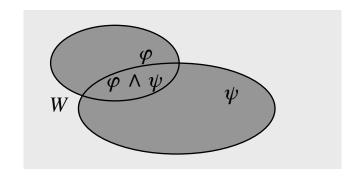
P(.) è una funzione che assegna un numero reale agli elementi di una σ -algebra Σ formata da sottoinsiemi di W

Caso particolare:

 σ -algebra generata su W dalle fbf di L

I sottoinsiemi $\{\langle U, v \rangle : \langle U, v \rangle \models \varphi\} \cap W$ che corrispondono alle fbf φ di L formano un'algebra di Boole su W tramite le operazioni di unione e complemento (vedi IA1)

Qualsiasi algebra di Boole è anche una σ -algebra



Gli **eventi** di questa σ -algebra sono insiemi di *mondi possibili* Più precisamente, sono i sottoinsiemi di W che corrispondono alle fbf di L

Probabilità*

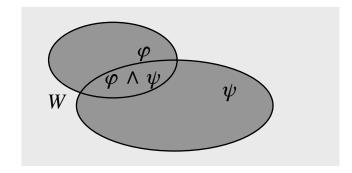
Una misura dei sottoinsiemi di W

 $W \equiv \{\langle U, v \rangle : \langle U, v \rangle \models \Gamma\}$ dove Γ sono le conoscenze dell'agente

P(.) è una funzione che assegna un numero reale agli elementi di una σ -algebra Σ formata da sottoinsiemi di W

P(.) è una *misura* della σ -algebra Σ

- 1) Per qualsiasi evento $\varphi \in \Sigma$, $P(\varphi) \ge 0$
- 2) P(W) = 1
- 3) Per qualsiasi sequenza <u>numerabile</u> φ_i di eventi disgiunti di Σ (disgiunti $\Leftrightarrow \varphi_i \cap \varphi_j \equiv \emptyset$ se $i \neq j$) si ha $P(\varphi_1 \vee \varphi_2 \vee ... \vee \varphi_n) = \sum_i P(\varphi_i)$



Corollario:

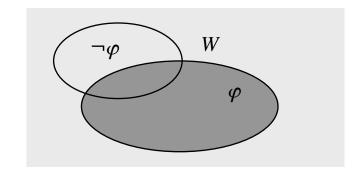
Per qualsiasi *evento* $\varphi \in \Sigma$, si ha $0 \le P(\varphi) \le 1$

(*Vedi anche DutchBook.xls)

Partizioni, variabile aleatoria*

Partizione

Ciascuna fbf (chiusa) φ suddivide W in due sottoinsiemi disgiunti, φ e $\neg \varphi$ (Quindi $P(\varphi) + P(\neg \varphi) = P(W) = 1$, da cui $P(\neg \varphi) = 1 - P(\varphi)$)

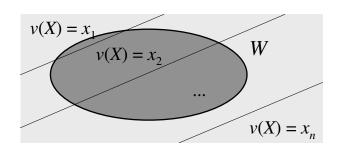


Variabile aleatoria

Si consideri una variabile X che ha $\{x_1, x_2, \dots, x_n\}$ come dominio In ciascun mondo possibile X assume un determinato valore x_i I possibili valori $v(X) = x_1$, $v(X) = x_2$, ..., $v(X) = x_n$ definiscono una partizione di W in base ad X

- X è una variabile aleatoria
- Ciascun $v(X) = x_i$ è un evento (un sottoinsieme di W)

(Anche φ può essere vista come una variabile aleatoria) Le v.a. binarie o *binomiali* sono anche dette *bernoulliane* Le v.a. a più valori sono dette *multinomiali*



Variabili aleatorie, distribuzione congiunta*

Essendo $X=x_i$ e $X=x_j$ eventi disgiunti: $P(X=x_i \lor X=x_j) = P(X=x_i) + P(X=x_j)$ se $i \neq j$

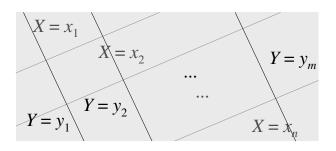
Variabili aleatorie multiple

Solitamente, in una rappresentazione probabilistica convivono più variabili aleatorie

Esempi:

 X_i occorrenza in un'email di una parola i Y classificazione della stessa email come spam

Ciascuna combinazione di valori delle v.a. è un $\it evento$ Un'insieme di v.a. definisce una partizione di $\it V$



Distribuzione di probabilità congiunta (joint probability distribution)

Per un determinato insieme di variabili aleatorie, p.es. X, Y, Z

E` una funzione $P(X=x_i \land Y=y_j \land Z=z_k)$ che associa un numero reale a ciascuna combinazione di valori $\langle x_i, y_j, z_k \rangle$

Si indica anche con $P(X=x_i, Y=y_j, Z=z_k)$ oppure P(X, Y, Z)

Dato che X, Y e Z definiscono una partizione di V: $\sum_{i} \sum_{j} \sum_{k} P(X = x_i, Y = y_j, Z = z_k) = 1$

Marginalizzazione

L'eliminazione di una variabile aleatoria da una probabilità congiunta

Data una probabilità congiunta

$$P(X=x_i, Y=y_i, Z=z_k)$$

La probabilità marginale $P(X=x_i, Y=y_i)$ si ottiene per sommatoria:

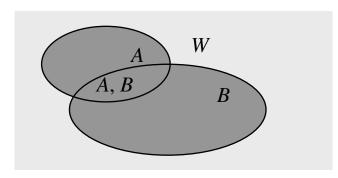
$$P(X = x_i, Y = y_j) = \sum P(X = x_i, Y = y_j, Z = z_k)$$

Data una probabilità congiunta su una partizione, si può sempre ottenere una probabilità congiunta su una partizione contenuta nella prima

Probabilità condizionale

Definizione

$$P(A | B) = \frac{P(A, B)}{P(B)}$$



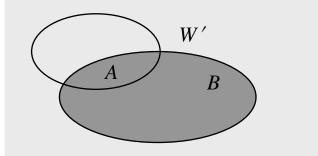
Significato

E` una forma di *inferenza*: si passa da un'insieme di mondi possibili ad un altro Quindi, da una misura di probabilità ad un'altra

Si assuma un agente consideri W come insieme di mondi possibili P(A) è la probabilità che A si verifichi

Si supponga che l'agente venga a sapere che l'evento B si è verificato L'evento complementare $\neg B$ è quindi *impossibile*

 $W' \equiv B$ è il nuovo insieme dei mondi possibili $P(A \mid B)$ è la nuova probabilità che l'evento A si verifichi



Esempio: distribuzione congiunta

(*Vedi anche DutchBook.xls)

La conoscenza della distribuzione di probabilità congiunta permette di stabilire la probabilità di qualsiasi combinazione logica di eventi

A	В	C	P(A, B, C)
0	0	0	0.10
0	0	1	0.12
0	1	0	0.35
0	1	1	0.08
1	0	0	0.01
1	0	1	0.02
1	1	0	0.23
1	1	1	0.09

Esempi:

$$P(A \lor C) = \sum_{B} P(A \lor C, B) = 0.55$$

 $(0.55 \cdot x)$ dovrebbe essere la somma che siete disposti a scommettere per una vincita x

$$P(\neg A \land \neg B) = \sum_{C} P(\neg A \land \neg B, C) = 0.22$$

Esempio: probabilità condizionale

La conoscenza della distribuzione di probabilità congiunta permette di stabilire qualsiasi probabilità condizionale

0	0	0	0.10
0	0	1	0.12
0	1	0	0.35
0	1	1	0.08
1	0	0	0.01
1	0	1	0.02
1	1	0	0.23
1	1	1	0.09

Esempio:

$$P(A \lor C \mid B=1) = \frac{P(A \lor C, B=1)}{P(B=1)} = \frac{0.40}{0.75} = 0.53$$

P(*A* ∨ *B*) era 0.55:

la conoscenza B=1 diminuisce, in questo caso, il valore della scommessa al totalizzatore

P(A, B, C)

Teorema di Bayes (T. Bayes, 1764)

Definizione

Una relazione tra probabilità condizionali e marginali

$$P(A \mid B) = \frac{P(B \mid A) P(A)}{P(B)}$$

Nelle applicazioni pratiche, $P(B \mid A)$ viene anche detta verosimiglianza (likelihood) $L(A \mid B)$

$$P(A \mid B) \propto L(A \mid B) P(A)$$

Corollario della definizione di probabilità condizionale (chain rule)

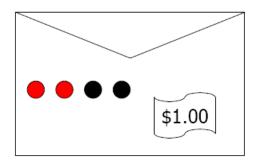
$$P(A, B) = P(B \mid A) P(A)$$

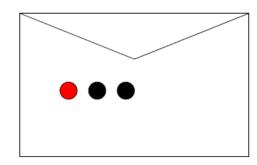
Per la definizione di marginalizzazione:
$$P(B) = \sum_{A} P(A, B) = \sum_{A} P(B \mid A) P(A)$$

Da cui (formulazione alternativa del teorema di Bayes):

$$P(A \mid B) = \frac{P(B \mid A) P(A)}{\sum_{A} P(B \mid A) P(A)}$$

Esercizio: informazioni e scommesse





Due buste, una viene estratta

Una busta contiene due gettoni rossi e due neri, vale \$1.00 Una busta contiene un gettone rosso e due neri, non vale nulla

La busta è stata estratta.

Prima di scommettere, potete estrarre un gettone

- a) Il gettone è nero. Quanto scommettete, per vincere \$1.00?
- b) Il gettone è rosso. Quanto scommettete, per una vincita \$1.00?

Obiettivo: mostrare che il teorema di Bayes semplifica la rappresentazione e i calcoli

Indipendenza, indipendenza condizionale

Indipendenza (anche detta indipendenza marginale)

Due eventi sono indipendenti se la probabilità congiunta è uguale al prodotto delle probabilità marginali

$$\langle A \perp B \rangle \implies P(A, B) = P(A) P(B)$$

Indipendenza condizionale

Due eventi sono condizionalmente indipendenti (dato un terzo evento) se la probabilità condizionale congiunta è uguale al prodotto delle probabilità condizionali marginali

$$\langle A \perp B \mid C \rangle \implies P(A, B \mid C) = P(A \mid C) P(B \mid C)$$

$$\Rightarrow P(A|B,C) = \frac{P(A,B|C)}{P(B|C)} = \frac{P(A|C)P(B|C)}{P(B|C)} = P(A|C)$$

Questa è la proprietà più rilevante

ATTENZIONE: le due forme di indipendenza sono disgiunte!

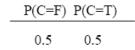
$$\Rightarrow , \Rightarrow$$

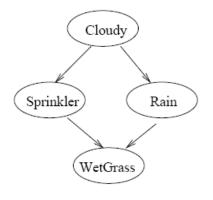
Modelli grafici (anche Bayesian Networks)

Struttura + numeri, invece di soli numeri

 Un modo per rappresentare una distribuzione di probabilità congiunta

I nodi sono variabili aleatorie Gli archi (orientati) rappresentano dipendenza





С	P(R=F) P(R=T)	
F	0.8	0.2
T	0.2	0.8

Notare che la specifica di una
distribuzione congiunta di quattro v.a
richiederebbe $2^4 = 16$ valori
In figura i valori sono solo 9

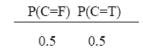
S R	P(W=F)	P(W=T)
F F	1.0	0.0
T F	0.1	0.9
FΤ	0.1	0.9
T T	0.01	0.99

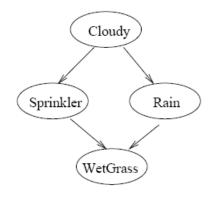
Da un modello grafico alla probabilità congiunta

Distribuzione congiunta

Può essere espressa come prodotto di probabilità condizionali

(estensione della chain rule)





С	P(R=F) P(R=T)	
F	0.8	0.2
Т	0.2	0.8

Esempio:

$$P(C, S, R, W) = P(C)P(S \mid C)P(R \mid S, C)P(W \mid R, S, C)$$

In un modello grafico, la distribuzione congiunta è un prodotto delle probabilità condizionali dei nodi

$$P(X_1, X_2, ..., X_n) = \prod_i P(X_i | parents(X_i))$$

Dove $parents(X_i)$ sono i nodi afferenti (diretti) del grafo orientato

Nell'esempio:

$$P(C, S, R, W) = P(C)P(S \mid C)P(R \mid C)P(W \mid R, S)$$

Assunzioni implicite: $\langle R \perp S \mid C \rangle$, $\langle W \perp C \mid R, S \rangle$

Modello grafico e indipendenze condizionali

D-separation (Dependency-separation)

Come si 'legge' l'indipendenza condizionale in un modello grafico

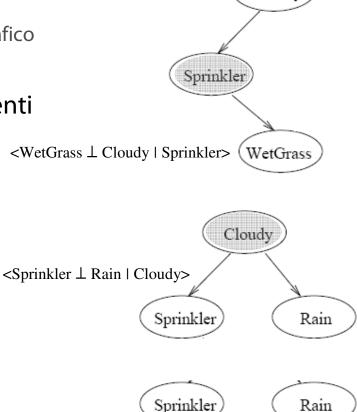
In un modello grafico

Due nodi X e Y sono condizionalmente indipendenti dato un insieme di nodi $\{Z_k\}$ se tutti i percorsi tra X e Y sono bloccati

Nel determinare i possibili percorsi tra due nodi, si ignora il verso degli archi

Un percorso tra X e Y è bloccato se:

- 1) Il percorso contiene una sequenza $X \to Z_i \to Y$ oppure una diramazione (fork) $X \leftarrow Z_i \to Y$ $(Z_i \in \{Z_k\})$
- 2) Il percorso contiene una confluenza (*join*) $X \rightarrow N \leftarrow Y$ in cui N e tutti i discendenti di N non appartengono a $\{Z_k\}$



<Sprinkler ⊥ Rain> se WetGrass non è noto Cloudy

WetGrass

Explaining Away

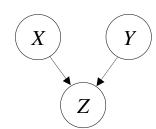
Ulteriori osservazioni sulla condizione 2) della *D-separation*

Modello grafico con un join

Probabilità congiunta, dal grafo:

$$P(X, Y, Z) = P(X)P(Y)P(Z|X,Y)$$

Probabilità marginale rispetto a X e Y (valore di Z incognito):



$$P(X,Y) = P(X)P(Y)\sum_{Z} P(Z|X,Y) = P(X)P(Y)$$

Quindi *X* e *Y* sono marginalmente indipendenti

Ma se il valore di Z è noto, allora X e Y sono dipendenti:

$$P(X,Y|Z=v) = \frac{P(X,Y,Z=v)}{P(Z=v)} = \frac{P(X)P(Y)P(Z=v|X,Y)}{\sum_{X,Y} P(X)P(Y)P(Z=v|X,Y)}$$

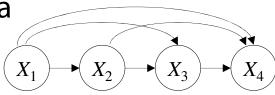
Non è un paradosso.

Esempio:

X e Y sono due lanci della stessa moneta, Z=1 se il risultato è lo stesso, Z=0 altrimenti.

Esempi di modelli grafici

Dipendenza completa



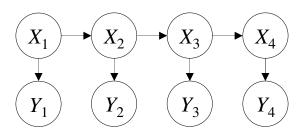
$$P(X_1, X_2, X_3, X_4) = P(X_1)P(X_2 | X_1)P(X_3 | X_1, X_2)P(X_4 | X_1, X_2, X_3)$$

Modello di Markov

$$X_1 \longrightarrow X_2 \longrightarrow X_3 \longrightarrow X_4$$

$$P(X_1, X_2, X_3, X_4) = P(X_1)P(X_2 \mid X_1)P(X_3 \mid X_2)P(X_4 \mid X_3) = P(X_1) \prod_{i=2}^{n} P(X_i \mid X_{i-1})$$

Modello 'Hidden Markov'



In genere, i nodi X_i sono hidden, nel senso di non-osservabili

$$P(X_{1}, X_{2}, X_{3}, X_{4}, Y_{1}, Y_{2}, Y_{3}, Y_{4}) = P(X_{1})P(Y_{1} | X_{1})P(X_{2} | X_{1})P(Y_{2} | X_{2})P(X_{3} | X_{2})P(Y_{3} | X_{3})P(X_{4} | X_{3})P(Y_{4} | X_{4})$$

$$= P(X_{1})P(Y_{1} | X_{1})\prod_{i=2}^{n}P(X_{i} | X_{i-1})P(Y_{i} | X_{i})$$