Intelligenza Artificiale I

Modelli minimi e programmazione logica

Marco Piastra

Clausole di Horn in L_{PO}

Definizione <u>quasi</u> identica al caso proposizionale

Forma a clausole (della skolemizzazione di un insieme di enunciati) In ciascuna clausola occorre al massimo un atomo in forma positiva

```
Fatti, regole e goal
```

```
Fatti: clausola con un singolo atomo in forma positiva \{Umano(socrate)\}, \{Pyramid(x)\}, \{Sorella(alba, madreDi(paolo))\}\}
Regole: clausola di due o più atomi, uno in forma positiva \{Umano(x), \neg Filosofo(x)\}, \\ \forall x (Filosofo(x) \rightarrow Umano(x))
\{\neg Femmina(x), \neg Genitore(k(x),x), \neg Genitore(k(y),y), Sorella(x,y)\}\}
\forall x \forall y ((Femmina(x) \land \exists z (Genitore(z,x) \land Genitore(z,y))) \rightarrow Sorella(x,y))
\{\neg Above(x,y), On(x,k(x))\}, \{\neg Above(x,y), On(j(y),y)\}\}
\forall x \forall y (Above(x,y) \rightarrow (\exists z On(x,z) \land \exists v On(v,y)))
Goal: clausola di atomi in forma negativa
\{\neg Umano(socrate)\}\}
\{\neg Sorella(alba,x), \neg Sorella(x,paola)\}
```

Negazione di $\exists x (Sorella(alba,x) \land Sorella(x,paola))$

Universo e base di Herbrand

Termini e atomi di Herbrand

Dato un linguaggio L_{PO}

Un **termine** di Herbrand è un *termine base* (*ground term* = che non contiene variabili)

Esempi:

$$f(a)$$
, $g(a,b)$, $g(f(a),b)$, $g(f(a),g(b,c))$, $g(f(a),g(f(b),c))$, ...

Un **atomo** di Herbrand è un *atomo base* (*ground atom* = che non contiene variabili)

Esempi:

$$P(f(a)), P(g(a,b)), Q(g(f(a),b), g(f(a),g(b,c))), \dots$$

Universo e base di Herbrand

L'universo di Herbrand è l'insieme di tutti i termini di Herbrand

Esempio:

$$\mathbf{U}_{\mathrm{H}} \equiv \{f(a), g(a,b), g(f(a),b), g(f(a),g(b,c)), g(f(a),g(f(b),c)), \dots \}$$

La base di Herbrand è l'insieme di tutti gli atomi di Herbrand

Esempio:

$$B_{H} \equiv \{P(f(a)), P(g(a,b)), Q(g(f(a),b), g(f(a),g(b,c))), \ldots\}$$

Modelli di Herbrand

• Struttura di Herbrand per L_{PO}

Una struttura $\langle \mathbf{U}_{H}, \mathbf{v}_{H} \rangle$ tale che

$$\forall c \in \text{Cost}(L_{PO}), v_{H}(c) = c$$

 $\forall t \in \mathbf{U}_{H}, v_{H}(t) = t$

• Interpretazione $v_{\rm H}$ di Herbrand

Un qualsiasi **sottoinsieme** della base di Herbrand B_{H}

$$v_{\rm H} \equiv \{P(a), P(f(b)), P(c), Q(a,g(b,c)), Q(b,c) \dots \}$$
 (solo formule atomiche chiuse) $v_{\rm H} \subseteq {\rm B}_{\rm H}$

Modello di Herbrand

$$\varphi \in \operatorname{Atom}(L_{PO}), <\mathbf{U}_{H}, v_{H}>[s] \models \varphi \quad \text{sse } \varphi \in v_{H}$$

$$\varphi \in \operatorname{Atom}(L_{PO}), <\mathbf{U}_{H}, v_{H}>[s] \models \neg \varphi \quad \text{sse } \varphi \notin v_{H}$$

$$\begin{aligned}
&<\mathbf{U}_{\mathsf{H}}, v_{\mathsf{H}} > [s] \models \neg \varphi & \text{sse } <\mathbf{U}_{\mathsf{H}}, v_{\mathsf{H}} > [s] \not\models \varphi \\
&<\mathbf{U}_{\mathsf{H}}, v_{\mathsf{H}} > [s] \models \varphi \to \psi & \text{sse } (<\mathbf{U}_{\mathsf{H}}, v_{\mathsf{H}} > [s] \not\models \varphi \text{ o } <\mathbf{U}_{\mathsf{H}}, v_{\mathsf{H}} > [s] \models \psi)
\end{aligned}$$

Intelligenza Utificiale $[\bar{s}]^A \to V^{0.10-2011}$ se per ogni $c \in \text{Cost}(L_{PO})$ si ha $<\mathbf{U}_{H}, V_{H}^{\text{Modellis}} [\bar{s}]^{\text{Modellis}} [\bar{s}]^{\text{inim}}$ eprogrammazione logica [4]

Clausole di Horn e modelli di Herbrand

■ Teorema di Herbrand (in forma generale)

Data una teoria di enunciati universali Σ , $H(\Sigma)$ ha un modello sse Σ ha un modello

Corollario (forma a clausole di Horn)

Sia Γ un insieme di <u>clausole di Horn</u>, le seguenti affermazioni sono equivalenti:

- Γ è soddisfacibile
- Γ ha un modello <u>di Herbrand</u>

(Notare: si afferma che Γ ha un modello di Herbrand, non $H(\Gamma)$)

Non vale in generale: solo se Γ è un insieme clausole di Horn

In questa forma (finita), è quasi una procedura effettiva ...

Clausole di Horn e modelli di Herbrand

Corollario del teorema di Herbrand

Sia Γ un insieme di clausole di Horn, le seguenti affermazioni sono equivalenti:

- Γ è soddisfacibile
- Γ ha un modello di Herbrand

Non vale in generale: solo se Γ è un insieme clausole di Horn

Modello minimo di Herbrand

Il modello minimo M_{Γ} è l'intersezione di tutti i modelli di Herbrand M_{i} di Γ :

$$M_{\Gamma} \equiv \bigcap_{\forall i} M_{i}$$

■ Teorema (van Emden e Kowalski, 1976)

Sia Γ un insieme di clausole di Horn e φ un atomo <u>base</u>, le seguenti affermazioni sono equivalenti:

- $\Gamma \models \varphi$
- $\varphi \in M_{\Gamma}$ (L'unione degli atomi base φ che sono conseguenza logica di Γ coincide con M_{Γ})
- φ è derivabile da Γ tramite risoluzione con unificazione

Programmi e modello minimo

■ Teorema (Apt e van Emden, 1982)

Sia Π un **programma** (= un insieme di clausole di Horn).

Applicata a Π , la procedura di risoluzione genera il modello minimo M_Π

La procedura termina se M_{Π} è finito (raggiungimento del *punto fisso*)

Esempio:

```
\Pi \equiv \{\{Umano(x), \neg Filosofo(x)\}, \{Mortale(x), \neg Umano(x)\}, \\ \{Filosofo(socrate)\}, \{Filosofo(platone)\}, \{Filosofo(aristotele)\}\}
```

Applicando la procedura di risoluzione in modo esaustivo, si ottiene:

```
\begin{split} M_\Pi &\equiv & \{\{\mathit{Mortale}(x), \neg \mathit{Filosofo}(x)\}, \\ & \{\mathit{Filosofo}(\mathit{socrate})\}, \{\mathit{Filosofo}(\mathit{platone})\}, \{\mathit{Filosofo}(\mathit{aristotele})\}, \\ & \{\mathit{Umano}(\mathit{socrate})\}, \{\mathit{Umano}(\mathit{platone})\}, \{\mathit{Umano}(\mathit{aristotele})\}, \\ & \{\mathit{Mortale}(\mathit{socrate})\}, \{\mathit{Mortale}(\mathit{platone})\}, \{\mathit{Mortale}(\mathit{aristotele})\}\} \end{split}
```

(assomiglia alla generazione di un database, implicitamente descritto da Π ...)

Programmi e goal

Un dimostratore di teoremi, applicato ad un programma logico Π , risponde solo a domande del tipo " $\Pi \models \phi$?"

Si rammenti che, se $\Pi \models \phi$, allora $\Pi \cup \{\neg \phi\}$ è insoddisfacibile

 \blacksquare Un sistema di programmazione logica è in grado di generare un particolare sottoinsieme di M_{Π}

```
Un goal \{\neg \alpha_1, \neg \alpha_2, ..., \neg \alpha_m\}, dove occorrono le variabili x_1, x_2, ..., x_m equivale all'enunciato \forall x_1 \forall x_2 ... \forall x_n (\neg \alpha_1 \lor \neg \alpha_2 \lor ... \lor \neg \alpha_m) che equivale a \neg \exists x_1 \exists x_2 ... \exists x_n (\alpha_1 \land \alpha_2 \land ... \land \alpha_m)
```

Un sistema di programmazione logica genera tutte le sostituzioni

 $[x_1/t_1, x_2/t_2, ..., x_n/t_n]$ tali per cui $\Pi \cup \{\neg(\alpha_1 \land \alpha_2 \land ... \land \alpha_m)[x_1/t_1, x_2/t_2, ..., x_n/t_n]\}$ è insoddisfacibile

(vale a dire
$$\Pi \models (\alpha_1 \land \alpha_2 \land ... \land \alpha_m)[x_1/t_1, x_2/t_2, ..., x_n/t_n]$$
)
(vale a dire $(\alpha_1 \land \alpha_2 \land ... \land \alpha_m)[x_1/t_1, x_2/t_2, ..., x_n/t_n] \in M_\Pi$)

Il goal agisce da filtro, caratterizzando il sottoinsieme di ${
m M}_{\Pi}$

Goal diverso, sottoinsieme diverso

Esempio

• Un programma logico Π :

```
\Pi \equiv \{\{Umano(x), \neg Filosofo(x)\}, \{Mortale(y), \neg Umano(y)\}, \\ \{Filosofo(socrate)\}, \{Filosofo(platone)\}, \{Filosofo(aristotele)\}\} 
\phi \equiv \exists x \, Mortale(x)
\neg \phi \equiv \neg \exists x \, Mortale(x)
\equiv \forall x \, \neg Mortale(x)
\equiv \{\neg Mortale(x)\} \quad \text{(goal in forma di clausola di Horn)}
```

Applicando la procedura di risoluzione in modo esaustivo Si ottengono le sostituzioni:

```
\Sigma \equiv \{[x/socrate], [x/platone], [x/aristotele]\}
```

Assomiglia alla query su un database, implicito ...

Risoluzione SLD

Un metodo per la risoluzione di <u>programmi</u>

S: selection function, una funzione di selezione degli atomi da unificare

L: linear resolution, risoluzione lineare, cioè in sequenza

D: definite clause, clausole di Horn con esattamente un letterale positivo

Descrizione

Programma (*definite clauses:* regole + fatti): Π

Regole: $\beta \vee \neg \gamma_1 \vee \neg \gamma_2 \vee ... \vee \neg \gamma_n$

Fatti: δ

Goal: $\neg \alpha_1 \lor \neg \alpha_2 \lor \dots \lor \neg \alpha_k$

Caratteristiche della procedura:

- I goal vengono considerati secondo l'ordine definito dalla selection function
- Per ciascun goal $\neg \alpha_i$ viene tentata la risoluzione (con unificazione) di <u>tutte</u> le regole (o fatti) che hanno un letterale positivo compatibile (esplorazione delle alternative)
- Le risposte sono le assegnazioni che permettono di derivare la clausola vuota
- L'insieme delle risposte è un sottoinsieme di M_Π Intelligenza Artificiale I A.A. 2010-2011

Alberi SLD

Una traccia del metodo di risoluzione SLD

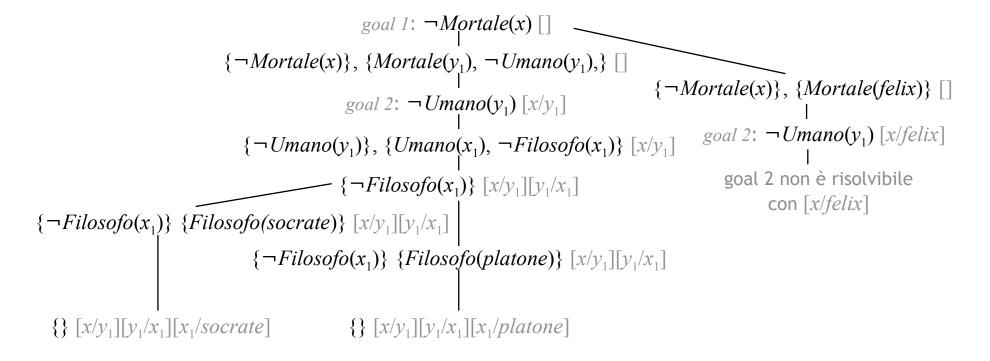
```
Esempio: \Pi \equiv \{\{Umano(x), \neg Filosofo(x)\}, \{Mortale(y), \neg Umano(y)\}, \{Tilosofo(x)\}, \{Tilosofo(x)
```

 $\{Filosofo(socrate)\}, \{Filosofo(platone)\}, \{Filosofo(aristotele)\}\}\$ $goal \equiv \{\neg Mortale(x), \neg Umano(x)\}$ "Chi è mortale ed umano?"

Esempio

Non tutti i rami SLD si chiudono con successo

```
\Pi \equiv \{\{Umano(x), \neg Filosofo(x)\}, \{Mortale(y), \neg Umano(y)\}, \\ \{Filosofo(socrate)\}, \{Filosofo(platone)\}, \{Mortale(felix)\}\} \\ goal \equiv \{\neg Mortale(x), \neg Umano(x)\}  "Chi è mortale ed umano?"
```



Esempio

Non tutti gli alberi SLD sono finiti

```
\Pi \equiv \{\{Loop(x), \neg Loop(x)\}\}\
goal \equiv \{\neg Loop(x)\}\
```

```
goal: \neg Loop(x) [] 

\{\neg Loop(x)\}, \{Loop(x_1), \neg Loop(x_1), \} [] 

\{\neg Loop(x_1)\} [x/x_1] 

\{\neg Loop(x_1)\}, \{Loop(x_2), \neg Loop(x_2), \} [x/x_1] 

\{\neg Loop(x_2)\} [x/x_1] [x_1/x_2]
```

SLD e programmazione logica

Insieme delle risposte

Insieme di tutte le sostituzioni complete delle variabili, nei rami dell'albero SLD che si chiudono con successo (= con una clausola vuota)

Metodo effettivo (semantica procedurale)

Selection function delle clausole

Si usa (quasi) sempre la leftmost sub-goal first, con sostituzione del sub-goal

Strategia di esplorazione delle alternative

- in *ampiezza* (breadth-first)
- in *profondità* (depth-first)

Il metodo SLD con selezione in *ampiezza* è **completo** (si dice anche SLD **fair**)

Trova tutti i rami finiti (con successo o meno) dell'albero SLD (= procedura completa di semi-decisione per $\Pi \models \phi$, con $\Pi \in \phi$ a clausole)

In pratica si utilizza la selezione in *profondità*

(Il metodo SLD <u>non</u> è completo - può divergere anche quando $\Pi \models \phi$)

Risoluzione SLD in Prolog

Metodo effettivo

Selection function: leftmost sub-goal first

Esplorazione depth-first delle alternative

Si esplora una sola alternativa alla volta, e si risparmia memoria (backtracking)

E` una strategia incompleta:

Un ramo divergente impedisce di trovare tutte le risposte dei rami 'alla destra'

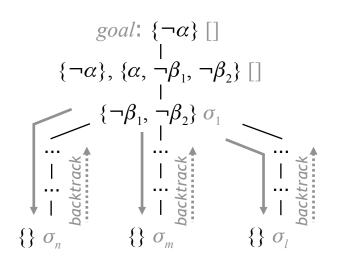
Scelta tra risoluzioni alternative

(= ordine di esplorazione dei sotto-alberi)

Ordine di definizione della clausola applicata

(≈ quella che compare prima nel file)

Il metodo SLD depth-first non troverà la risposta σ_I



Risposte diverse: $\sigma_n \sigma_m \sigma_l$