
Fast Template Matching Using Brick Partitioning
and Initial Threshold
Fubito Toyama, Hiroshi Mori and Kenji Shoji

Graduate School of Engineering, Utsunomiya University
7-1-2, Yoto, Utsunomiya-shi, 321–8585 JAPAN

fubito@is.utsunomiya-u.ac.jp

Abstract—Template matching is a technique for finding a part
of reference image which matches a template image. This paper
presents a new fast template matching algorithm which can
detect the most similar position. In the proposed method, first,
an effective initial threshold is calculated using Winner Update
Algorithm. Next, very fast template matching is achieved by
using this initial threshold in Multilevel Successive Elimination
Algorithm. Furthermore, Brick Partitioning which is a new
partitioning method is used to reduce the computational cost
of comparing a template with each position within reference
image. Experimental results indicate that the proposed method
can search faster than previous methods.

I. INTRODUCTION

Template matching is a technique that compares the tem-
plate with each position within reference image. The most
similar position to template is found by template matching.
A part of reference image which is compared with template
image is called ”window”. Template matching is a basic
algorithm which is applied to many applications, including
image search, object tracking and machine vision. Many fast
algorithms for template matching have been proposed in the
past [1]–[7].

The Sequential Similarity Detection Algorithm (SSDA) [1]
is one of traditional methods. SSDA reduces the cost of
similarity calculation between a template and windows. Active
Search [2] is a fast template matching method using a color
histogram. By skipping neighborhood windows using upper
bound of similarity, Active Search reduces the number of
comparisons between a template and windows. However, it is
difficult to detect object position precisely because the position
data of color pixels is lost. To solve this problem, Kawanishi et
al. proposed Adaptive Window Skipping method (AWS) [3].
In this method, Sum of Absolute Difference (SAD) is used as
the evaluation of similarity (dissimilarity). The lower bound
of distance between a template and a window is calculated
using a subtemplate and a subwindow. AWS can find the most
similar position faster than SSDA.

There are many methods [4]–[7] based on the lower (or
upper) bound of similarity (dissimilarity). For examples, the
calculation of SAD is skipped by the lower bound of dis-
similarity in Successive Elimination Algorithm (SEA) [4].
The lower bound is calculated by the absolute difference
between sum of pixels in a template and sum of pixels in a
window. Gao et al. extended the SEA to multilevel successive
elimination strategy (MSEA). In MSEA, higher (tighter) lower

bounds are obtained by dividing a template and windows
into multiple blocks. Therefore, many windows are skipped
without calculation of SAD. On the other hand, although
Winner Update Algorithm (WUA) [6] also uses the same lower
bound as MESA, the search order of windows is optimized.
By repeating updating the lower bound of the window which
has the lowest lower bound, the number of calculations of
SAD is minimized. However, when the number of windows
is increased, much time is consumed to sort windows in
ascending order of lower bound. The calculation of lower
bounds is accelerated by an Integral Image [9]. Fast WUA
using an Integral Image is proposed by Jung et al. [7].

Korman et al. proposed Fast-Match [10] which is a fast
template matching algorithm under 2D affine transformations.
However, the search space of 2D affine transformations is huge
compared to that of translations. Therefore, we focus on the
matching algorithm under all possible translations.

In this paper, we propose a new fast template matching
algorithm which can detect the most similar position. The
computational cost of comparing a template with all windows
is reduced using Winner Update Algorithm (WUA) and Mul-
tilevel Successive Elimination Algorithm (MSEA). In the pro-
posed method, first, an effective-initial threshold is calculated
from a small number of windows using WUA. Next, very fast
template matching is achieved by using this initial threshold
in MSEA. Furthermore, Brick Partitioning which is a new
partitioning method is used to reduce the computational cost of
comparing a template with all windows. Brick Partitioning is
applied to the template image. Experimental results indicate
that the proposed method reduces search time substantially.
Furthermore, the proposed method can search faster than fast
WUA with an Integral Image.

II. RELATED WORKS

A. Full Search (FS)

Let T be a template image of M × N pixels, where M
and N are the horizontal and vertical size of the template.
I represents the image under examination. Let the size of
the image I be X × Y . The Full Search (FS) algorithm
calculates and compares the similarity (dissimilarity) for all
the search positions (windows). In this paper, SAD is used as

2016 23rd International Conference on Pattern Recognition (ICPR)
Cancún Center, Cancún, México, December 4-8, 2016

978-1-5090-4846-5/16/$31.00 ©2016 IEEE 676

the evaluation of similarity (dissimilarity). The dissimilarity
d(x, y) between a template and a window is defined as

SAD : d(x, y) =

M−1∑
i=0

N−1∑
j=0

|T (i, j)− I(x+ i, y + j)| (1)

where (x, y) represents the position of windows in the image
I , and T (i, j) and I(i, j) are the pixel values at position (i, j)
of the template and window images. The number of windows
in the image I is (X − M + 1) × (Y − N + 1). In FS, the
dissimilarity d(x, y) is calculated for all the windows. Then the
position which has the lowest dissimilarity value is detected.

B. MSEA

MSEA reduces the computation cost by skipping the cal-
culation of SAD. The lower bound of dissimilarity is used
to decide whether the calculation of SAD can be skipped.
When the lower bound between a template and a window
is over a threshold θ, the window can be skipped. θ is the
lowest dissimilarity value at the current search point. When the
lower bound is higher, the probability of skipping a window
is higher. In MSEA, higher lower bounds are obtained by
dividing a template and windows into multiple blocks. Let l be
the number of partitioning blocks (partition level). In the first
partitioning (l = 1), a template and a window are partitioned
into four subblocks with size M/2×N/2. Then, each subblock
is partitioned into four subblocks with size M/4×N/4. This
process is repeated until the size of the subblocks becomes
1× 1 (see Fig. 1). In Fig. 1, UBl represents the lower bound
at partition level l. When the partition level is increased, the
lower bound is also increased. The range of partition level is
from 0 to L− 1, where L = log2N(N < M). The number of
subblocks is Kl = 4l. When the calculated UBl is over the
threshold θ, the window can be skipped without the calculation
of SAD. The partition level starts from 0. If the UBL−1 (final
level) ≤ θ, SAD is calculated. This process is performed for
all windows. Then the window which has the smallest SAD
is found.

1) Calculation of lower bound: Let Tsub(k) and Wsub(k)

be k-th subblock at the partition level l, where the number
of subblocks Kl is 4l. The absolute difference between the
subblock summations of the template and window is defined
as

UBsubl,k(x, y) = |
P−1∑
p=0

T p
sub(k) −

P−1∑
p=0

W p
sub(k)| (2)

Fig. 1. Multilevel partitioning process.

where T p
sub(k) and W p

sub(k) are the p-th pixel values of
subblocks Tsub(k) and Wsub(k), P is the number of pixels in
the subblock. Therefore, the lower bound UBl(x, y) is defined
as

UBl(x, y) =

Kl−1∑
k=0

UBsubl,k(x, y). (3)

2) Relationship between lower bound and SAD: In MSEA,
Minkowski’s inequality is used for decision of skipping win-
dows. By using the following inequality

|a+ b| ≤ |a|+ |b| (a, b ∋ ℜ) (4)

the following relation is obtained

|
P−1∑
p=0

T p
sub(k) −

P−1∑
p=0

W p
sub(k)| ≤

P−1∑
p=0

|T p
sub(k) −W p

sub(k)|

∴
Kl−1∑
k=0

|
P−1∑
p=0

T p
sub(k) −

P−1∑
p=0

W p
sub(k)|

≤
Kl−1∑
k=0

P−1∑
p=0

|T p
sub(k) −W p

sub(k)|

∴ UBl(x, y) ≤ d(x, y) (5)

where the left side of (5) represents the lower bound, and the
right side of (5) indicates SAD. Similarly, the relationships
between the lower bounds at each level are derived:

UB0(x, y) ≤ ... ≤ UBl(x.y)

≤ UBl+1(x, y) ≤ ... ≤ d(x, y). (6)

(6) indicates that when the partition level l is increased, the
lower bound UBl also is increased. In MSEA, the lower bound
UBl is calculated in the order of 0, 1, . . . , L− 1. If UBl > θ,
the calculations of the remaining UBl and d(x, y) are skipped.
The sums of blocks and subblocks are calculated very fast
using an integral image. MSEA reduces the computational cost
by window skipping process using the lower bounds.

C. WUA

WUA also uses the lower bounds obtained by partitioning a
template and windows. However, the biggest difference is that
WUA changes the order of window selection (search) based
on the lower bounds. In MSEA, windows are selected and
evaluated in the order of raster scan. On the other hand, in
WUA the window that has the lowest lower bound is selected
and partitioned into subblocks (partition level is increased by
1). Then the new lower bound of the partitioned window is
recalculated. This selection and partitioning process is repeated
until the window which has the smallest SAD value in lower
bounds or SAD values of all windows is found. Therefore, the
number of calculations of SAD is minimized. However, when
the number of windows is increased, much time is consumed
to sort windows in ascending order of the lower bound. The
process of WUA is as follows.

677

1) Sums of pixels in each subblock of a template are
calculated for each partition level.

2) The lower bounds of dissimilarity between a template
and all windows are calculated at partition level 0 (l = 0)

3) The window which has the smallest lower bound
UBl(x, y) is selected.

4) Each block of the selected window is partitioned into
four subblock. Then l = l + 1. If l = L then go to 5),
otherwise go to 6).

5) SAD d(x, y) is calculated. If the d(x, y) is the smallest
in all windows, then the position (x, y) is returned as the
matching result and the process is finished, otherwise go
to 3)

6) The new lower bound UBl(x, y) of the partitioned
window is calculated. Then go to 3).

III. TEMPLATE MATCHING USING BRICK PARTITIONING
AND INITIAL THRESHOLD

In this paper, we propose a fast template matching using an
Effective Initial Threshold and Brick Partitioning (EIT+BP).
Brick Partitioning is a new segmentation method for template
matching. The initial threshold is obtained by WUA. First, a
small number of windows are selected at equal intervals. WUA
is applied to these windows. The time for sorting windows is
very short because the number of windows is small. Therefore,
an effective (small) initial threshold can be obtained very
fast. Next, MSEA is applied to the rest of windows. A large
number of calculations of SAD can be skipped by the effective
initial threshold in MSEA. Furthermore, we propose Brick
Partitioning which is a new partitioning method. The higher
lower bounds can be obtained by Brick Partitioning. Therefore,
many windows can be skipped without calculations of SAD.
The proposed method achieves very fast template matching
by Brick Partitioning and the effective initial threshold. Our
algorithm strictly guarantees the same accuracy as FS.

A. Effective initial threshold estimation using WUA

In the proposed method, the search process is divided into
three stages. A coarse search based on WUA is conducted
in order to obtain an effective initial threshold at stage 1 and
stage 2. Next, MSEA is applied to the rest of windows at stage
3. In the first stage, windows are selected at equal intervals.
Let w(x, y) be the window of position (x, y) in a reference
image. The set of all windows U is defined as

U = {w(x, y)|0 ≤ x ≤ X −M, 0 ≤ y ≤ Y −N} (7)

In the set U, the search windows at first stage are as follows

V1={w(x, y)|x = Sn, y = Sn, n=1, 2, ...} (8)

where S is an interval parameter. Fig. 2(a) shows an example
of target windows at stage 1. WUA is applied to the target
windows. The window position with the smallest SAD value
is obtained from the target windows. The red rectangle of Fig.
2(a) shows an example of the output window at stage 1. In
stage 2, the neighborhood of the window obtained at stage 1 is
searched (Fig. 2(b)). The window position which has smaller

Fig. 2. Target window at each stage.

SAD value is obtained from a small number of windows. Let
the window position obtained at stage 1 be w(x1

min, y
1
min).

The search windows at stage 2 are defined as

V2 = {w(x, y)|x1
min − S ≤ x ≤ x1

min + S,

y1min −S ≤ y ≤ y1min + S} (9)

where S represents the size of the neighborhood. WUA
is applied to these windows as well as stage 1. Then the
window position w(x2

min, y
2
min) with the smallest SAD value

is obtained. w(x2
min, y

2
min) has the smallest SAD value in V1

and V2. In stage 3, the remaining windows defined by equation
(10) are searched.

V3 = {w(x, y)|w(x, y) /∈ V1, w(x, y) /∈ V2}. (10)

Fig. 2(c) shows an example of target windows at stage 3.
MESA is applied to the remaining windows. The SAD value
of w(x2

min, y
2
min) is used as the initial threshold θ in MESA.

In general MESA, it is difficult to perform effective window
skipping while the threshold θ is high. On the other hand,
in the proposed method a large number of windows can be
skipped from the beginning because the small threshold θ
is obtained through stage 1 and stage 2. In general WUA,
when the number of search windows is large, much time is
consumed to sort windows. On the other hand, in the proposed
method, the time for sorting windows is very short because
the number of search windows is small at stage 1 and stage
2. The proposed method achieves very fast template matching
by incorporating the advantage of WUA and MESA. The final
matching result (xmin, ymin) is obtained through stage 3.

B. Brick Partitioning

In general MESA and WUA, the size of subblocks at each
level is the same. But the lower bounds obtained from the
same size partitioning are not effective for skipping windows.
We propose an adaptive partitioning method in which effective
lower bounds can be obtained. If the distribution of pixel
values in each subblock is highly nonuniform, the probability
of obtaining a small lower bound is high. Because there is
a possibility that the absolute difference between the sums
of the two subblocks is smaller even though the dissimilarity
between two subblocks is very high. On the other hand, if each
subblock image is smooth, the probability of obtaining a large
lower bound is high. Therefore, if a template can be partitioned
into subblocks such that the dirtribution of pixel values in each

678

subblock is uniform, the higher (tighter) lower bounds can
be obtained. We propose a new partitioning method, Brick
Partitioning, in which effective lower bounds can be obtained.
In Brick Partitioning, a template is partitioned based on image
complexity. Gradient Magnitude is used to measure the image
complexity. Gradient Magnitude is defined as

∥ G[T (i, j)] ∥ = ∥ ∇T (i, j) ∥

=
√

Gx(i, j)2 +Gy(i, j)2

≈ |Gx(i, j)|+ |Gy(i, j)| (11)

where G[T (i, j)] represents Gradient of the template image
T (i, j). Gx(i, j) and Gy(i, j) denote Gradient of x-axis and y-
axis directions, respectively. Gx(i, j) and Gy(i, j) are defined
as

Gx(i, j) = T (i+ 1, j)− T (i, j) (12)
Gy(i, j) = T (i, j + 1)− T (i, j) (13)

First, partitioning positions along the x axis are calculated.
The sums of Gradient Magnitude in the x direction are
calculated by

Hy(j) =

M−1∑
i=0

∥ G[T (i, j)] ∥ . (14)

The sum of Hy(j) is calculated by equation (15).

SH =
N−1∑
j=0

Hy(j). (15)

u-th partitioning position sply(u) at partition level l is
obtained from equation (16).

spl
y(u)−1∑

j=spl
y(u−1)

Hy(j) =
SH

2l
(16)

where sply(0) = 0, sply(2
l) = N and 0 ≤ u ≤ 2l.

Next, partitioning positions along the y axis are calculated.
The partitioning positions are calculated for each partial region
from sply(u− 1) to sply(u). The sums of Gradient Magnitude
in the y direction are calculated by

Hu
x (i) =

spl
y(u)−1∑

j=spl
y(u−1)

∥ G[T (i, j)] ∥ . (17)

The sum of Hu
x (i) is calculated by equation (18).

SHu =

M−1∑
i=0

Hu
x (i). (18)

In the partial region from sply(u − 1) to sply(u), u-th
partitioning position splx(u, v) at partition level l is obtained
from equation (19).

spl
x(u,v)−1∑

i=spl
x(u,v−1)

Hu
x (i) =

SHu

2l
(19)

Fig. 3. Example of template partitioning results by each method.

TABLE I
DESCRIPTION OF EXPERIMENTAL DATA.

Template Reference Template Correct point
size size (x,y)

Lenna1 512×512 128×128 (231, 244)
Lenna2 512×512 64×64 (96, 128)
Object1 800×600 160×120 (240, 60)
Object2 800×600 200×150 (440, 405)
Bread1 800×600 100×75 (100, 150)
Bread2 800×600 160×120 (320, 360)
Face1 896×592 64×64 (118, 305)
Face2 896×592 400×300 (150, 515)

Cabriolet1 896×592 112×74 (303, 296)
Cabriolet2 896×592 224×148 (672, 148)

SUV1 896×592 112×74 (516, 385)
SUV2 896×592 224×148 (448, 148)
Road1 1760×1168 224×148 (775, 980)
Road2 1760×1168 400×300 (280, 575)
Yard1 1760×1168 200×150 (1065, 900)
Yard2 1760×1168 400×300 (150, 515)

where splx(u, 0) = 0, splx(u, 2
l) = M and 0 ≤ v ≤ 2l. The

sums of Gradient magunitude in each subblock partitioned by
sply(u) and splx(u, v) is almost the same. Therefore, obtaining
higher lower bounds is expected. Fig. 3 shows an example of
template partitioning results by normal partitioning and Brick
Partitioning. The subblock size of smooth region is large in
Brick Partitioning.

IV. EXPERIMENTAL RESULTS

In our experiments, we compared the proposed method with
the previous methods. FS and WUA [7] with Integral Image
were selected as the previous methods. Furthermore, in WUA
and the proposed method, normal (equal) partitioning (WUA,
EIT) and Brick Partitioning (WUA+BP, EIT+BP) are applied
and compared. Integral Image [9] was used in the calculation
of the lower bound. The parameter S in the proposed method
was set to 8. All of the algorithms in the experiments were
run on the same machine (CPU: Intel(R) Xeon(R) X5650
2.67GHz). The programs for all methods were written in C++
and compiled in g++ with option -O3. ”Lenna” image and
images from Caltech dataset were used in the experiments.
Each image was converted from RGB to gray-scale. Two
template images were selected from an image. Gaussian noise
was added to each template image. Therefore, the minimum
value of SAD is over 0 (d(xmin, ymin) > 0). Dataset used for
the experiments are shown in Table I. Fig. 4 shows examples of

679

TABLE II
COMPUTATION TIME [MS] AND RATIO OF COMPUTATION TIME(SET FS TO 100%).

Template FS WUA WUA+BP EIT EIT+BP
Time % Time % Time % Time % Time %

Lenna1 4551 100.00 93 2.04 87 1.91 34 0.74 27 0.59
Lenna2 1643 100.00 130 7.91 121 7.36 40 2.43 34 2.06
Object1 10441 100.00 182 1.74 172 1.64 62 0.59 55 0.52
Object2 14009 100.00 172 1.22 168 1.19 61 0.43 50 0.35
Bread1 5075 100.00 224 4.41 179 3.52 97 1.91 88 1.73
Bread2 10270 100.00 204 1.98 182 1.77 61 0.59 53 0.51
Face1 3044 100.00 147 4.82 148 4.86 50 1.64 33 1.08
Face2 15692 100.00 114 0.72 101 0.64 36 0.22 33 0.20

Cabriolet1 6236 100.00 251 4.02 243 3.89 82 1.31 84 1.34
Cabriolet2 17333 100.00 197 1.13 165 0.95 70 0.40 53 0.30

SUV1 6200 100.00 260 4.19 244 3.93 80 1.29 62 1.00
SUV2 17032 100.00 189 1.10 178 1.04 85 0.49 57 0.33
Road1 87265 100.00 527 0.60 522 0.59 221 0.25 203 0.23
Road2 242396 100.00 396 0.16 401 0.16 130 0.05 121 0.04
Yard1 80851 100.00 650 0.80 607 0.75 170 0.21 168 0.20
Yard2 240544 100.00 465 0.19 432 0.17 177 0.07 166 0.06

Average 47661 100.00 263 0.55 247 0.51 91 0.19 81 0.16

Fig. 4. Reference image and corresponding templates.

reference and template images. The proposed method, FS and
WUA were applied to the dataset. These methods guarantee
the global optimality of the best match. Therefore, matching
resluts of all experiments were the same in all algorithms
(Correct points of Table I are obtained in all algorithms).
Table II shows the computation time [ms] and the ratio of
the computation time compared to that of FS algorithm (set
FS to 100%). The best values are printed in boldface. The
computation time of EIT and EIT+BP are reduced dramatically
by the proposed initial threshold estimation. The proposed
EIT+BP was the fastest method on average time. The average
time of EIT+BP was only 0.16% of that of FS (about 600 times
speedup). Furthermore, the computation time of EIT+BP was
0.04% and 0.06% of that of FS with respect to Road2 and
Yard2 templates. The size of these template and reference
images is larger than others. Thus the proposed method
works effectively for large size images. In comparison of the
partitioning methods, the average time of EIT+BP was 89% of
that of EIT. Furthermore, the average time of WUA+BP was
93.9% of that of WUA. These results indicate that the proposed
Brick Partitioning is an effective partitioning method for the
lower bound based template matching.

V. CONCLUSION

In this paper, we have proposed a fast template matching
algorithm using Brick Partitioning and an effective initial
threshold. An effective-initial threshold is calculated from
a small number of windows using WUA. Then, very fast
template matching is achieved by using this initial threshold
in MSEA. Furthermore, Brick Partitioning which is a new
partitioning method is used to reduce the computational cost of
comparing a template with all windows. Experimental results
showed that the proposed method reduced the computational
time dramatically.

REFERENCES

[1] D. I. Barnea and H. F. Silverman, ”A class of algorithm for fast digital
image registration”, IEEE Trans.Comput., Vol.C-21, No.2, pp.179-186,
1972.

[2] V. V. Vinod, H. Murase, “Focussed color intersection with efficient
searching for object extraction”, Pattern Recognition, 30(10), pp.1787-
1797, 1997.

[3] T. Kawanishi, T. Kurozumi, K. Kashino and S. Takagi, “A fast template
matching algorithm with adaptive skipping using inner-subtemplates’
distances”, Proceedings of the 17th IAPR International Conference on
Pattern Recognition (ICPR2004), Vol.3, pp.654-657, 2004.

[4] W. Li and E. Salari, “Successive elimination algorithm for motion
estimation”, IEEE Trans.ImageProcess., Vol.4, No.1, pp.105-107, 1995.

[5] X. Q. Gao, C. J. Duanmu, C. R. Zou, “A multilevel successive elimination
algorithm based on the block sum pyramid”,IEEE Trans.ImageProcess.,
Vol.9, No.3, pp501-504. 2000.

[6] Y. Chen, Y. Hung, and C. Fuh, “Fast block matching algorithm based on
the winner-update strategy”, IEEE Trans. Image Process., vol. 10, No. 8,
pp.1212-1222, 2001.

[7] J. Jung, H. Lee, J. Lee and D. Park, “A Novel Template Matching
Scheme for Fast Full-Search Boosted by an Integral Image”, IEEE single
processing letters, Vol.17, No.1, pp.107-110, 2010.

[8] http://www.vision.caltech.edu/archive.html
[9] P. Viola and M. Jones, “Rapid object detection using a boosted cascade

of simple features”, Proceedings of the 2001 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR2001),
Vol.1, pp.511-518, 2001.

[10] S.Korman, D.Reichman, G.Tsur and S.Avidan, “FasT-Match: Fast Affine
Template Matching”, The IEEE Conference on Computer Vision and
Pattern Recognition(CVPR), pp.2331-2338, 2013.

680

