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Abstract—Topic models (e.g., pLSA, LDA, SLDA) have been
widely used for segmenting imagery. These models are confined
to crisp segmentation. Yet, there are many images in which
some regions cannot be assigned a crisp label (e.g., transition
regions between a foggy sky and the ground or between sand
and water at a beach). In these cases, a visual word is best
represented with partial memberships across multiple topics. To
address this, we present a partial membership latent Dirichlet
allocation (PM-LDA) model and associated parameter estimation
algorithms. Experimental results on two natural image datasets
and one SONAR image dataset show that PM-LDA can produce
both crisp and soft semantic image segmentations; a capability
existing methods do not have.

I. INTRODUCTION

The goal of unsupervised semantic image segmentation is to
divide an image into semantically distinct coherent regions, i.e.,
regions corresponding to objects or parts of objects. It plays an
important role in a wide range of computer vision applications,
such as object recognition and tracking and image retrieval
[1]–[4]. Yet, in many images, widely used image segmentation
methods fail to perform. Specifically, imagery in which there
are smooth gradients and transition regions are poorly-addressed
with the many crisp image segmentation methods in the literature.
For example, consider the photograph in Fig. 1a where the
gradually thinning fog blurs the boundary between the foggy
sky and the mountain, a sharp boundary between the “fog” and
“mountain” topics does not exist. Similarly, in Fig. 1b consider
the gradually fading sunlight or in Fig. 1c consider the gradually
vanishing sand ripples shown in the Synthetic Aperture SONAR
image of the sea floor. In both of these cases, sharp boundaries
between the “sun” and “sky” topics or “sand ripple” and “flat
sand” topics do not exist. In this paper, we present a Partial
Membership Latent Dirichlet Allocation (PM-LDA) to address
image segmentation in the case of gradients and regions of
transition.

Inspired by the success of Latent Dirichlet Allocation (LDA)
[5] in discovering semantically meaningful topics from docu-
ment collections, many have successfully applied LDA or its
variants to image segmentation [1], [6]–[9]. These unsupervised
semantic image segmentation methods differ from traditional
(i.e., non-hierarchical/flat) segmentation methods (e.g., normal-
ized cuts algorithm [2]) by estimating and describing additional
inter-segment relationships. Namely, unsupervised semantic
image segmentation methods over-segment imagery and then

(a) (b) (c)

Fig. 1: Imagery with regions of gradual transition. (a) Image
with gradual transition from fog to mountain. (b) Sunset image
with gradual transition from sun to sky. (c) SONAR image with
gradually vanishing sand ripples.

group these “visual words” into topic clusters such that small
segments from the same object class can be combined into a
complete object and provide a comprehensive organization of
the larger scene. In other words, unsupervised semantic image
segmentation methods cluster imagery hierarchically in which
the lower level corresponds to an over-segmentation of the
imagery and the higher level groups the over-segmented pieces
into topic clusters.

However, under these existing topic models, a visual word
is only assigned to one topic (i.e., the word-topic assignment
is a binary indicator). Yet, in many images, it is impossible
to assign a crisp boundary between topics. In this paper, we
generalize LDA to allow for partial memberships.

Partial membership models and algorithms have been pre-
viously developed in the literature. One prevalent partial
membership approach is the Fuzzy C-means algorithm (FCM)
[10]. More recently, Heller et al.[11] and Glenn et al.[12]
proposed Bayesian partial membership models (i.e., proba-
bilistic interpretations of FCM) along with their associated
generative processes. Glenn et al.[12] proposed a Bayesian
Fuzzy Clustering (BFC) model and associated algorithms to
bridge and extend probabilistic clustering and fuzzy clustering
methods. Heller et al.[11] derived a Bayesian partial membership
model (BPM) by extending the standard mixture model. The
generative processes for both the BFC and BPM models are
similar. The main difference between the BPM and BFC models
is that the BFC uses both a fixed fuzzifier parameter and a
scaling parameter to control the degree of mixing between
topics. In contrast, in the BPM, the degree of mixing between
topics is controlled only through a scaling hyper-parameter, s,
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Fig. 2: (a) Graphical model for BPM. (b) Graphical model for LDA. (c) Graphical model for PM-LDA

found in the prior distribution on partial membership values.
These existing partial membership methods are non-hierarchical
approaches. The proposed PM-LDA extends these to hierarchical
approaches to allow for semantic image segmentation. PM-LDA
is an extension of both the LDA model proposed by Blei et
al.[5] and the partial membership model proposed by Heller et
al.[11].

II. BAYESIAN PARTIAL MEMBERSHIP MODEL

In a finite mixture model, the data likelihood of xn, is

p(xn|β) =

K∑
k=1

πkpk(xn|βk), (1)

where {πk}Kk=1 are the mixture weights and β =
{β1, β2, ..., βK} are the mixture component parameters.
pk(xn|βk) is the kth mixture component with parameters βk.
In this model, a data point is assumed to come from one
(and only one) of the K mixture components. Thus, given
its component assignment, zn, the probability of a data point,
xn, is defined as p(xn|zn,β) =

∏K
k=1 pk(xn|βk)znk where

znk ∈ {0, 1},
∑K
k=1 znk = 1, and zn = [zn1, zn2, ..., znK ] is

the binary membership vector. If znk = 1, the data point xn is
assumed to have been drawn from mixture component k.

In order to obtain a model allowing multiple cluster member-
ships for a data point, the constraint znk ∈ {0, 1} is relaxed to
znk ∈ [0, 1]. The modified constraints and the inclusion of prior
distributions for several key parameters results in the Bayesian
Partial Membership model [11],

p(π, s, zn,xn|α, λ,β) = p(π|α)p(s|λ)p(zn|πs)
K∏
k=1

pk(xn|βk)znk , (2)

where znk ∈ [0, 1],
∑K
k=1 znk = 1, and π is the cluster mixing

proportion assumed to be distributed according to a Dirichlet
distribution with parameter α, i.e., π ∼ Dir(α). The scaling
factor, s, determines the level of cluster mixing and is distributed
according to an exponential distribution with mean 1/λ, s ∼
exp(λ), and zn ∼ Dir(πs) is the membership vector for data
point xn.

As shown in [11], if each of the mixture components
are exponential family distributions of the same type, then

p(xn|zn,β) =
∏K
k=1 pk(xn|βk)znk with znk ∈ [0, 1] and∑K

k=1 znk = 1, can be written as:

p(xn|zn,β) = Expon

(∑
k

znkηk

)
. (3)

This indicates that the data generating distribution for xn is
of the same exponential family distribution as the original K
clusters, but with new natural parameters

∑
k znkηk. The new

parameters are a convex combination of the natural parameters,
ηk, of the original clusters weighted by znk. This provides the
powerful (and convenient) ability to sample directly from the
unique mixture distribution for each data point if the natural
parameters of the original clusters and the membership vector
for the data point are known. A graphical model of BPM is
shown in Fig. 2a.

III. PARTIAL MEMBERSHIP LDA

In the BPM, data points are organized at only one level, where
each data point is indexed by its corresponding component
distribution. In our proposed model, PM-LDA, (and in LDA)
data is organized at two levels: the word level and the document
level as illustrated in Fig. 2b and 2c. In the proposed PM-LDA
model, the random variable associated with a data point is
assumed to be distributed according to multiple topics with a
continuous partial membership in each topic. Specifically, the
PM-LDA model is

p(πd, sd, zdn,x
d
n|α, λ,β) = p(πd|α)p(sd|λ)p(zdn|πdsd)

K∏
k=1

pk(xdn|βk)z
d
nk (4)

where xdn is the nth word in document d, zdn is the partial
membership vector of xdn, πd ∼ Dir(α) and sd ∼ exp(λ)
are the topic proportion and the level of topic mixing in
document d, respectively. The parameter α gives the topic
composition across a document. For example, in Fig. 1c, the
image may be composed of 40% “sand ripple” topic and 60%
“flat sand” topic (i.e., α = [0.4, 0.6]). The parameter λ controls
how similar the partial membership vector of each word is
expected to be to the topic distribution of the document. For
example, a small λ would correspond to most words in an
document to have partial membership vectors very close to πd.
During image segmentation, a small λ generally corresponds
to large transition regions (e.g., transition from “flat sand” to
“sand ripple” comprises most of the image). For a large λ, the
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Fig. 3: Partial membership data generating distributions. In (a),
two Gaussian topics with µ1 = [−4,−4];µ2 = [6, 6], Σ1 =
Σ2 = I. In (b), two Gaussian topics with µ1 = [−4,−4];µ2 =
[6, 6], Σ1 = [4, 0; 0, 1],Σ2 = [1, 0; 0, 4] [11].

partial membership vectors for each word can vary significantly
from the document mixing proportions. In general, a large λ
corresponds to very narrow (tending towards crisp) transition
regions during image segmentation (e.g., the SAS image may
have 39% of the visual words as pure “sand ripple”, 59% as pure
“flat sand”, and only 2% mixed). The vector zdn ∼ Dir(πdsd)
represents the partial memberships of data point xdn in each
of the K topics. If each topic distribution is assumed to be of
the exponential family, pk(·|βk) = Expon(ηk), then using the
result in (3), p(xdn|zdn,β) = Expon(

∑
k z

d
nkηk). The graphical

model for PM-LDA is shown in Fig. 2c.

In PM-LDA, the membership zdn is drawn from a Dirichlet
distribution which is in contrast to a multinomial distribution as
used in LDA. With the infinite number of possible values for zdn,
the word generating distributions in PM-LDA are expanded from
only K generating distributions (as in LDA) to infinitely many.
Fig. 3 illustrates this using two Gaussian topic distributions,
where the membership value to one topic is varied from 0 to
1 with an increment 0.1. The two original topics are shown
as the Gaussian distributions at either end. In LDA, words are
generated from only the two original topic distributions. In
PM-LDA, words can be generated from any (of the infinitely
many) convex combinations of the topic distributions. As the
scaling factor s→ 0, the PM-LDA model will degrade to the
LDA model.

Given the hyperparameters Ψ = {α, λ,β}, the full PM-LDA
model over all words in the dth document is:

p(πd, sd,Zd,Xd|α, λ,β) (5)

= p(πd|α)p(sd|λ)

Nd∏
n=1

p(xdn|zdn,β)p(zdn|πdsd).

where πd are the topic proportions, scaling factor sd, partial
membership vectors Zd = {zdn}N

d

n=1 and a set of Nd words Xd

for document d. The log of (5) when considering the specific
forms chosen in our model, is shown in (6). During parameter
estimation, our goal is to maximize L =

∑D
d=1 Ld by estimating

all the model parameters πd, sd, zdn,β. In this paper, we employ
an Metropolis within Gibbs [12], [13] sampling approach.

IV. PARAMETER ESTIMATION FOR PM-LDA

The goal of parameter estimation is to maximize the following
posterior distribution,

p(Π,S,M,β|D,α, λ) ∝ p(Π,S,M,D|α, λ,β), (7)

where D =
{
X1,X2, ...,XD

}
includes all training documents

and Π,S,M include all of the topic proportions, scaling factors
and membership vectors, respectively.

A Metropolis within Gibbs sampler is employed to perform
the MAP inference which can generate samples from the
posterior distribution in (7), [12], [13]. An outline of the sampler
is provided in Alg. 1. The sampler is simple and straight-
forward implement composed only of a series of draws from
candidate distributions for each parameter and then evaluation
of the candidate in the appropriate acceptance ratio. Our
implementation of the sampler has been posted online.1 In
our current implementation, we consider the topic distributions
to be Gaussian with different means, µk, but identical diagonal
and isotropic covariance matrices, Σk = σ2I.

The proposed Metropolis within Gibbs scheme will return the
full distribution of parameter values given the desired posterior.
We use the MAP sample (i.e., the sample with the largest log
posterior value) as the final estimate, {Π∗,S∗,M∗,µ∗,Σ∗}.

V. DATA & EXPERIMENTAL RESULTS

In this section, we show results of image segmentation on
three datasets: (i) Synthetic Aperture SONAR (SAS) imagery,
(ii) Sunset imagery, and the (iii) MSRC dataset [14].

a) Synthetic Aperture Sonar (SAS) Imagery Dataset: From
our SAS image dataset, we selected 4 images (shown in the
first column in Fig. 4) and compute the average intensity value
and entropy within a 21 × 21 window as feature values. The
average intensity value is scaled (×10) to roughly the same
magnitude of the average entropy value. Each image is divided
into multiple documents using a sliding window approach. A
document consists of all of the feature vectors associated with
each pixel (i.e., visual words) in the window. The number of
topics in this dataset is set to 3. For LDA, a dictionary of
size 100 is built by clustering all the computed feature values
using the K-means. FCM results with m = 1.5. Parameters
for LDA and FCM were selected manually to provide the best
results. Due to the lack of ground-truth, qualitative segmentation
results in Fig. 4 is provided. In the first row, Subfigures (b),
(c), and (d) show the partial membership maps in the “dark
flat sand” , “sand ripple” , and “bright flat sand” topics using
PM-LDA, respectively. Subfigures (f), (g), and (h) show the
partial membership maps in each of the three clusters using
FCM, respectively. In (b) - (d) and (f) - (h), the color indicates
the degree of membership of a visual word in a topic where
red corresponds to a full membership of 1 and dark blue color
corresponds to a membership value of 0. The LDA result is
shown in (e) where color indicates topic assignment. Subfigures
in Row 2-4 follow the same subfigure captions in Row 1.

1Code can be found at: https://github.com/TigerSense/PMLDA
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Ld = ln(p(πd, sd,Zd,Xd|α, λ,β)) = ln Γ

(
K∑
k=1

αk

)
−

K∑
k=1

ln Γ (αk) +

K∑
k=1

(αk − 1) lnπdk + lnλ− λsd

+

Nd∑
n=1

ln p(xdn|zdn,β) +

Nd∑
n=1

{
ln Γ

(
K∑
k=1

sdπdk

)
−

K∑
k=1

ln Γ(sdπdk) +

K∑
k=1

(sdπdk − 1) ln zdnk

}
(6)

Algorithm 1 Metropolis-within-Gibbs Sampling Method for
Parameter Estimation
Input: A corpus D, the number of topics K, and the number

of sampling iterations T
Output: Collection of all samples: Π(t),S(t),M(t), β(t) ={

µ
(t)
1 ,Σ

(t)
1 , µ

(t)
2 ,Σ

(t)
2 ..., µ

(t)
K ,Σ

(t)
K

}
.

1: for t = 1 : T do
2: for d = 1 : D do
3: Sample πd: Draw candidate: π† ∼ Dir(α)

Accept candidate with probability:
aπ = min

{
1, p(π

†,s(t−1),Z(t−1),X|Ψ)p(π(t−1)|α)
p(π(t−1),s(t−1),Z(t−1),X|Ψ)p(π†|α)

}
4: Sample sd: Draw candidate: s† ∼ exp(λ)

Accept candidate with probability:
as = min

{
1, p(π

(t),s†,Z(t−1),X|Ψ)p(s(t−1)|λ)
p(π(t),s(t−1),Z(t−1),X|Ψ)p(s†|λ)

}
5: for n = 1 : Nd do
6: Sample zdn: Draw candidate: z†n ∼ Dir(1K)

Accept candidate with probability:
az = min

{
1,

p(π(t),s(t),z†n,xn|Ψ)

p(π(t),s(t),z
(t−1)
n ,xn|Ψ)

}
7: end for
8: end for
9: for k = 1 : K do

10: Sample µk: Draw proposal: µ†k ∼ N (·|µD, fΣD)
µD and ΣD are mean and covariance of the data
Accept candidate with probability:

ak = min

{
1,

p
(
Π(t),S(t),M(t),D|µ†

k

)
N (µ

(t−1)
k

|µD,ΣD)

p
(
Π(t),S(t),M(t),D|µ(t−1)

k

)
N (µ

†
k
|µD,ΣD)

}
11: end for
12: Sample covariance matrices Σ = σ2I:

Draw candidate from:
σ2 = 1

2

{
maxxn d

2(xn − µD)−minxn d
2(xn − µD)

}
Accept candidate with probability:

aΣ = min

{
1,

p(Π(t),S(t),M(t),D|Σ†)
p(Π(t),S(t),M(t),D|Σ(t−1))

}
.

13: end for

From the experimental results, we can see that PM-LDA
achieves much better results than FCM and LDA. As shown in
Fig. 4c and 4k, the segmentation results of PM-LDA show a
gradual change from “sand ripple” to “dark flat sand”. FCM
captures the gradual transition to some extent but is not able to
clearly differentiate between clusters. For example, as shown in
Fig. 4o - 4p and Fig. 4w - 4x, using FCM, the rippled region in
Images 2 and 3 is assigned to 2 clusters with nearly equal partial
memberships. As LDA cannot generate partial memberships,
in Fig. 4e and 4m, Image 1 and 2 are simply partitioned into
different topics using LDA. Yet, by comparing Fig. 4u with

4t and Fig. 4ac with 4ab, we can see that on Image 3 and 4
that do not contain transition regions, LDA achieves similar
segmentation result to PM-LDA.

As discussed in Section III, the scaling factor sd determines
the similarity of the partial membership vector of each word, zdn,
to the topic proportion πd. In this experiment, we investigated
the effect of s by estimating the memberships and topics
with fixed topic proportion. A subregion consisting of three
superpixels [15] are used in this experiment and shown in Fig. 5.
Each superpixel is treated as a document. The topic proportion
πd is set to be [1, 1, 1]/3 and the scaling factor s is varied to be
3, 10, 300, 30000. The membership estimation results are shown
in Figure 6. As can be seen, as the scaling factor s increases,
the partial memberships gradually approach the topic proportion
[1, 1, 1]/3 and become more smooth.

b) Sunset Dataset: Experimental results on Sunset dataset
show the ability of PM-LDA to perform partial membership
segmentation given visual natural imagery. Two sunset themed
images from Flickr (with the necessary permissions)2 3 were
used in this experiment. For each visual word, the first order
Gaussian gradient (σ = 2) with respect to y-axis and R and B
channels are used as the feature vectors. The number of topics is
set to be 3. Experiments are run on each image individually and
results are shown in Fig. 7. Columns 2-4 show the segmentation
results of PM-LDA. Column 5 is the LDA results with 3 topics.
Comparing Column 3 and Column 5 in Fig. 7, we can see that
PM-LDA can generate continuous partial membership according
to the extent to which the sky is colored by sunlight. The
partial membership map illustrates how the topic gradually shift
from one to the other. In contrast, LDA can only produce 0-1
segmentation.

c) Microsoft Research Cambridge data set version one
(MSRCv1): The MSRCv1 database consists of 240, 213× 320
pixel images. A subset from this database consisting of all
images that include the “grass”, “cow”, and “sky” topics was
used in this experiment. The local descriptors proposed in [16],
the output of a set of filter bank responses made of 3 Gaussians,
4 Laplacian of Gaussians (LoG) and 4 first order derivatives of
Gaussians were used as the feature vectors. The filter window
size used was 15 × 15. In this experiment, instead of using
each image as a document, we apply normalized cuts method
to get 40 super-pixel segments from each image and treat each
super-pixel as a document. The topic number is set to be 3, and
for LDA, we densely sample the filter bank output and build
a dictionary of size 200. Quantitative comparison results on

2Photo can be found at: https://www.flickr.com/photos/aoa-/6104409480/
3Photo can be found at: https://www.flickr.com/photos/frenchdave/8482336933/
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(y) Image 4 (z) PM-LDA:1 (aa) PM-LDA:2 (ab) PM-LDA:3
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Fig. 4: Segmentation results of Image 1 - 4 using PM-LDA, FCM and LDA. (a): SAS Image. (b)-(d): PM-LDA partial membership
map in the “dark flat sand,” “sand ripple,” “bright flat sand” topics, respectively. (e): LDA result where color indicates topic label.
(f)-(h): FCM partial membership map in the first, second, and third cluster, respectively. Subfigure captions in Row 2 - 4 follow
those in Row 1. In PM-LDA and FCM results, color indicates the degree of membership of a visual word in a topic or cluster.

Fig. 5: A subregion of three superpixels

(a) s = 3 (b) (c)

(a) s = 10 (b) (c)

(a) s = 300 (b) (c)

(a) s = 30000 (b) (c)

Fig. 6: Partial membership maps with varying s. Each row
shows the estimated membership maps of the three estimated
topics. The black contour indicates the superpixel boundary.
The superpixels are results published in [15].

accurate detection of the “cow” class are shown in Fig. 9. ROC

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 7: Examples of segmentation result on Sunset dataset. (a):
Sunset Image 1. (f): Sunset Image 2. (b)-(d) and (g)-(i) are the
PM-LDA partial membership maps in the estimated three topics
for Sunset Image 1 and Sunset Image 2, respectively. The color
indicates the degree of membership of a visual word in a topic
or cluster. (e) and (j) are the LDA results where color indicates
the topic.

curve analysis of PM-LDA using the “cow” membership map
was conducted. The red star indicates the quantitative LDA result
(a ROC curve cannot be generated due to the crisp segmentation
of the LDA method). Example results are shown in Fig. 8. In
Subfigure (e), transition regions are highlighted by indicating
the pixels with at least one membership value in range [0.4, 0.6].
As shown in (e), these partial membership values mostly occur
at the boundary between two topics. Thus, PM-LDA is able
to identify when the feature vector contains information from
multiple topics (as the feature vector is being computed over a
window that contains more than one topic). This is a powerful
result showing the effectiveness of PM-LDA to provide semantic
image understanding. For comparison with LDA, we modified
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(e) transition (f) max (g) LDA
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Fig. 8: Example of PM-LDA and LDA results. (a) Original image. (b)-(d) Results of PM-LDA, the partial membership maps in
“grass”, “sky”, and “cow” topics, respectively. The color indicates the degree of membership in a topic. (e) Transition regions
consisting of visual words with at lease one partial membership value in range [0.4, 0.6] (f) Modified segmentation result of
PM-LDA by assigning each visual word to the topic with the largest membership. The colors indicate topics. (g) Result of LDA.
The colors indicate topics.
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Fig. 9: ROC curve of PM-LDA for cow detection evaluated at
the pixel level. The red star represents the LDA cow detection
results.

the segmentation result of PM-LDA by assigning each visual
word to the topic with the largest membership. As shown in
(f) and (g), PM-LDA can achieve similar results to LDA. So
on these images with crisp boundaries, PM-LDA can generate
binary membership values, and learn the three semantic topics
comparable to LDA. Thus, PM-LDA also is effective for use
in crisp labeling problems.

VI. CONCLUSION

In this paper the PM-LDA model is introduced for soft image
segmentation. PM-LDA improves upon the LDA model by
introducing a partial membership rather than requiring a single
topic label for each word. Experimental results on three image
datasets demonstrate the capacity of PM-LDA model in both
soft and crisp image segmentation. Future work will include
developing a more efficient sampling approach, e.g., a collapsed
Gibbs sampler, to accelerate the parameter estimation procedure.
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