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Abstract—Superpixel decomposition methods are generally
used as a pre-processing step to speed up image processing tasks.
They group the pixels of an image into homogeneous regions
while trying to respect existing contours. For all state-of-the-art
superpixel decomposition methods, a trade-off is made between
1) computational time, 2) adherence to image contours and 3)
regularity and compactness of the decomposition. In this paper,
we propose a fast method to compute Superpixels with Contour
Adherence using Linear Path (SCALP) in an iterative clustering
framework. The distance computed when trying to associate
a pixel to a superpixel during the clustering is enhanced by
considering the linear path to the superpixel barycenter. The pro-
posed framework produces regular and compact superpixels that
adhere to the image contours. We provide a detailed evaluation
of SCALP on the standard Berkeley Segmentation Dataset. The
obtained results outperform state-of-the-art methods in terms of
standard superpixel and contour detection metrics.

I. INTRODUCTION

Image segmentation is an essential tool to analyze the
image content. The aim is to split the image into similar
regions with respect to some priors (e.g., object, color or
texture). To decrease the computational time and to improve
the accuracy of unsupervised segmentation, superpixel decom-
position methods have been proposed. These methods group
the pixels into homogeneous regions while trying to respect
image contours. Superpixels drastically decrease the image
content dimension while preserving geometrical information,
contrary to multi-resolution approaches. For instance, small
objects that disappear at small resolution levels, can still be
contained into single superpixels. Hence, superpixels have
naturally become key building blocks of many computer vision
works such as: contour detection [1], face labeling [2], object
localization [3], or multi-class object segmentation [4], [5].

Superpixel methods can be divided in two categories that
provide either irregular or regular decompositions. With irreg-
ular methods, superpixels can be stretched, with very different
sizes, and may overlap with several objects contained in the
image. Moreover, very small superpixels can be extracted, and
without enough pixels, significant descriptors are difficult to
estimate. On the contrary, regular methods provide superpixels
with approximately the same size, and enable to compute more
robust descriptors.

There is no general rule for the definition of an optimal
superpixel method since the desired properties depend on the
tackled application. A compromise must be made between:

computational time, adherence to image boundaries, and size
and shape regularity of the superpixel decomposition.

On the one hand, accurate contour adherence is for instance
reached with irregular methods (e.g., [6]) that allow very
stretched superpixel decompositions based on color similarity.
On the other hand, it appears crucial for superpixel-based
object recognition methods to use regular decompositions [4],
[5]. Moreover, when facing video tracking of superpixels [7],
fast and regular approaches are suitable to consider the time
consistency of the decomposition. Regularity is thus crucial
to accurately analyze object trajectories in a scene. In Figure
1, we show an example of a reconstructed image from the
irregular method SEEDS [6] and from our regular method
SCALP. The image is computed by the average color on each
superpixel. SCALP provides a much more visually satisfying
result due to regularity and accuracy of superpixel boundaries.

Initial image SEEDS [6] SCALP

Fig. 1. Reconstruction from average colors with 200 superpixels on an
example image from the Berkeley Segmentation Dataset [8]

Irregular Superpixel Methods. Classical methods, such
as the watershed approach [9], compute decompositions of
highly irregular size and shape. In this context, starting from
an initial clustering, Mean shift [10] or Quick shift [11]
approaches use histogram-based segmentation but require high
computational time. By considering pixels as nodes of a
graph, faster agglomerative clustering can be obtained [12].
In addition to the lack of control over the superpixels shape,
all these methods present another main drawback. They do not
allow to directly control the number of superpixels, which is a
major issue when using superpixels as low-level representation
to reduce the computational time for a dedicated task.
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More recently, the SEEDS method [6] has been proposed
to produce a decomposition in a reduced computational time.
This approach is initialized with a regular grid and updates
superpixel boundaries with block and pixel transfers. Despite
its initial regular grid, this method provides superpixels with
irregular shapes. Finally, the authors report significantly de-
graded results when trying to regularize the superpixel shape
with compactness constraint [6].

Regular Superpixel Methods. When considering more
general applications than contour adherence, state-of-the-art
superpixel-based methods consider regular decompositions
(e.g., [7], [5]). Classical methods are based on region growing,
such as Turbopixels [13] using geometric flows, or graph-
based energy models [14], [15]. In [16], the watershed method
is adapted to produce regular decompositions using a spatially
regularized gradient.

Recently, the Simple Linear Iterative Clustering (SLIC) su-
perpixel method was proposed in [17], and its extensions, e.g.,
[18], [19]. This method performs an accurate color clustering,
providing regular superpixels, while being order of magnitude
faster than graph approaches [14] or [15], and achieves state-
of-the-art results on superpixel metrics. However, since a
compactness parameter is set to enforce the superpixel shape
regularity, SLIC can fail to adhere to image contours, as for
other regular methods [13], [14].

Several works have attempted to enhance the performance
of regular methods in terms of contour adherence by using
a contour prior information. Although methods to compute
regions from contours have been proposed (e.g., [20]), they do
not allow to control the size, shape and number of regions, and
therefore cannot be considered as superpixel decomposition
methods. In [21], contour priors are used to compute a pre-
segmentation using the normalized cuts algorithm [22]. This
segmentation is considered as a hard constraint to provide
a finer regular decomposition. However, the decompositions
based on normalized cuts are highly tuned and computationally
expensive, while they are far from state-of-the-art results in
terms of contour adherence. In [23], the decomposition is
constrained to fit to a grid, named superpixel lattice. This
decomposition uses a contour map as input to determine this
lattice, and iteratively refines it using optimal cuts. The method
finally produces superpixels of regular sizes but irregular
shapes, that are visually unsatisfactory [23]. Moreover, the
method appears very dependent on the contour prior. In more
recent works, such as [19], superpixels are locally forced to
adhere to contours by considering a pre-computed gradient
used as constraint to compute the boundaries of superpixels.

Contributions. In this paper, we propose a fast method
to directly include a contour prior in a superpixel clustering
framework, and not as hard prior from a pre-segmentation step.
To that end, the distance computed when trying to associate
a pixel to a superpixel is enhanced by considering image
feature and contour intensity on a linear path to the superpixel
barycenter. The decomposition provides superpixels of regular
sizes and shapes that respect color homogeneity, and their
boundaries are computed according to the contour prior.

We provide a detailed evaluation of our method on the
standard Berkeley Segmentation Dataset [8], compared to
state-of-the-art methods on superpixel and contour detection
metrics. We demonstrate the regularity of our decomposition,
that obtains the best results on most of the compared metrics.

II. SCALP FRAMEWORK

The SCALP framework generalizes the iterative clustering
algorithm of [17]. Thanks to the introduction of the linear
path within the clustering, a more regular decomposition can
be obtained. Moreover, prior information such as contour maps
can be naturally included within the path to softly constrain
the decomposition, as illustrated in Figure 2.

In this section, we first present the iterative clustering
framework. Then, we define the linear path to the superpixel
barycenter. Next, we propose to use this path to include
relevant information for superpixel clustering, by proposing
a new color distance term. We finally propose a fast method
to integrate a contour prior into our framework.

Fig. 2. The SCALP framework. When trying to associate a pixel to a
superpixel, SCALP considers the linear path to the superpixel barycenter with
a color distance. A prior can be used (dotted arrows) to ensure that no image
contour is crossed, leading to an accurate and homogeneous decomposition

A. Simple Linear Iterative Clustering

As previously stated, SLIC [17] is one of the most efficient
and simplest superpixel frameworks. In its default settings,
it only takes the number of superpixels as parameter. The
decomposition is initialized with a regular grid, with blocks of
size r, and an iterative clustering, spatially constrained into a
window of fixed size 2r+1, is performed for all superpixels.
The size r is defined by the ratio between N the number of
pixels and k the number of superpixels, such that r =

√
N/k.

With this constraint, roughly equally sized superpixels are
provided, ensuring the decomposition regularity.

Each superpixel Sk of SLIC is described by a cluster Ck

containing the average feature information and spatial barycen-
ter of all pixels p ∈ Sk. In [17], the clustering is performed
in the CIELab color space. Therefore, each superpixel Sk at a
given iteration is described by its cluster Ck=[lk, ak, bk, Xk],
containing the average CIELab color feature on pixels p ∈ Sk

and Xk=[xk, yk], the barycenter of Sk. At each iteration,
and for each cluster Ck, all pixels p=[lp, ap, bp, Xp], within a
square window of size 2r+1×2r+1 centered on the barycenter
Xk, are tested to be associated to Sk by computing a spatial
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distance ds(p, Ck) = (xp − xk)2 + (yp − yk)2, and a color
distance dc(p, Ck) = (lp − lk)2 + (ap − ak)2 + (bp − bk)2.
The pixel p is assigned to the cluster Ck that minimizes the
sum of these two distances. Despite its basic framework, SLIC
achieves results that are comparable to state-of-the-art methods
and even outperforms irregular approaches such as [6], in the
contour detection evaluation framework of [24].

The framework in [17] provides regular superpixels that
can adhere to image contours. However, this adherence can
still be enhanced by considering accurate contour information
as prior. By introducing the notion of linear path, SCALP
computes a generalized color distance term that improves the
homogeneity of the color clustering and the regularity of the
superpixels shape. We also propose to integrate the contour
prior information as a soft constraint in this new color distance
to enforce the adherence to image contours.

B. Linear Path to the Cluster Center
To enforce the color homogeneity within a superpixel and

contour adherence, we consider the color and contour intensi-
ties on the linear path between pixels and their corresponding
superpixel barycenter.

We thus define the path Pk
p of pixels between a pixel p

and a superpixel barycenter Xk. By considering information
along this path, SCALP is able to enhance the relevance of
the color distance. Note that the more pixels are considered in
Pk

p , the higher the computational cost is. Hence, we propose
to use [25] to only get the positions of pixels on the direct
path between the pixel p and the barycenter of superpixel Sk,
as illustrated in Figure 3. The considered pixels q (in red)
are those that intersect with the segment (red arrow) between
Xp, the position of pixel p (in black), and Xk, the barycenter
of superpixel Sk (in blue). By considering this simple linear
path instead of a more sophisticated geodesic one [26], we
limit the computational cost and enforce the decomposition
compactness.

Fig. 3. Illustration of linear path to cluster center (see text for more details)

C. Improved Color Distance to Cluster
As in [17], the spatial distance ds between a processed pixel

p and a cluster Ck is only computed between positions of p
and its barycenter Xk. However, the CIELab color distance dc
may now be computed on Pk

p , the set of pixels on the path
to the superpixel barycenter. The new color distance is thus
defined as:

dc(p, Ck,P
k
p) = λdc(p, Ck)+(1−λ) 1

|Pk
p|
∑
q∈Pk

p

dc(q, Ck), (1)

where λ ∈ [0, 1] weights the influence of the color distance
along the path between Xp and Xk. Since color on the linear
path to the barycenter should be close to the average color of
the superpixel, SCALP naturally enforces the decomposition
compactness and favors uniform color distribution.

D. Adherence to Contour Prior

When associating a pixel to a superpixel cluster, we want
to favor the color homogeneity, the proximity to the cluster
barycenter and the adherence to image contours. We assume
that a soft contour prior map C is available. Such map
typically sets C(p) → 1 if a contour is detected, otherwise
C(p) → 0, at pixel p. A fast and efficient way to integrate
this prior information is to weight the color distance (1) by
dC(p, Ck,P

k
p), the sum of contour intensity on Pk

p defined as:

dC(p, Ck,P
k
p) = 1 +

γ

|Pk
p|
∑
q∈Pk

p

(
1− exp(−C(q)2/σ2)

)
, (2)

where γ ≥ 0 and σ > 0 are parameters that weight the influ-
ence of the contour prior along the linear path. When a contour
intersects the path between a pixel p and a cluster barycenter,
such term tends to prevent this pixel to be associated to the
cluster Ck. The proposed distance D to minimize during the
clustering is finally defined as:

D(p, Ck) = dc(p, Ck,P
k
p)dC(p, Ck,P

k
p) + ds(p, Ck)

m2

r2
, (3)

where m is the compactness parameter, i.e., setting the trade-
off between color distance dc and spatial distance ds. The
higher m is, the more regular, i.e., compact, is the superpixel
shape. On the other hand, small values of m allow a better
adherence to image color boundaries, producing superpixels of
more variable sizes and shapes. By setting λ = 1 in (1) and
γ = 0 in (2), the proposed distance (3) reduces to the standard
distance used in [17]. The SCALP algorithm is summarized
in Algorithm 1.

Remark: Note that although the algorithm starts from an
initial regular grid, the spatial barycenter of a superpixel
may, in very rare cases, fall outside the superpixel after a
few iterations. Having a cluster center outside the superpixel
impacts the computation of the linear path. Hence, if the
barycenter Xk is not contained into the superpixel Sk, we
consider the projected position X∗k to compute the linear path
to the center Pk

p , which is computed as:

X∗k = argmin
Xp,p∈Sk

‖Xp −Xk‖2. (4)

E. Contour Prior

SCALP can directly consider a contour prior into the
clustering framework. Therefore, our decomposition is not
constrained by a pre-segmentation step. This contour prior
can either be soft or hard, i.e., having values between 0
and 1 or being binary, and can be computed by any contour
detection method (see for instance [1] and references therein).
In Section III-B, we report results obtained using different
contour detection methods [27], [28], [29].
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Algorithm 1: SCALP method
inputs : Number of superpixels k, Contour prior C
output: Superpixel decomposition S
Initialization of clusters Ck ← [lk, ak, bk, Xk] from a regular grid
Initialization of superpixel labels S ← 0
for each iteration do

Distance d←∞
for each Ck do

for each p in a 2r + 1×2r + 1 window centered on Xk do
Compute D(p, Ck) using C and Pk

p (3)
if D(p, Ck) < d(p) then

d(p)← D(p, Ck) and S(p)← k

Update [lk, ak, bk, Xk] for all clusters Ck

Compute if necessary the projection X∗k of centers Xk into Sk (4)

III. RESULTS

A. Validation Framework

1) Dataset: We evaluate our method on the standard Berke-
ley Segmentation Dataset (BSD) [8]. The BSD contains 500
images of 321×481 pixels divided into three sets: 200 for
training, 100 for validation and 200 for testing. For each
image, at least 5 ground truth decompositions from manual
segmentations are also provided to compute evaluation met-
rics. We report results of SCALP and other compared methods
on the 200 images of the test set.

2) Metrics: To evaluate the performances of our framework
and compare to the state-of-the-art methods, we use the
standard superpixel evaluation metrics: boundary recall (BR),
undersegmentation error (UE) and achievable segmentation
accuracy (ASA). To compare the regularity of superpixel
shape of different decompositions, we report the compact-
ness measure introduced in [30]. In the following, for an
image I , a human ground truth segmentation is denoted
G = {Gi}i∈{1,...,nG}, where Gi is a segmented region of the
scene, nG is the number of regions within the decomposition,
and |.| denotes the cardinality. Reported values are averaged
results on all ground truths. To quantify the results of contour
detection performance, we report the precision (P) recall (R)
curves [24].
Boundary Recall. This measure evaluates the percentage of
ground truth contours B(G) that overlap, within an ε-pixel
distance, with the boundaries of the computed superpixel
decomposition B(S). The BR metric is defined as follows:

BR(S,G) =
∑

p∈B(G) δ[minq∈B(S) ‖p− q‖ < ε]

|B(G)| , (5)

with δ[a]=1 when a is true and 0 otherwise, and ε=2 as in [6].
Achievable Segmentation Accuracy. The ASA is an upper
bound measure that computes the maximum object segmen-
tation accuracy by taking superpixels as units. For each
superpixel Sk, the largest possible overlap with a ground truth
segment Gi is computed and averaged as follows:

ASA(S,G) =
∑

k maxi |Sk ∩Gi|∑
i |Gi|

. (6)

Undersegmentation Error. This measure evaluates the per-
centage of pixels that cross ground truth boundaries. With
an accurate superpixel decomposition with respect to a given
ground truth, superpixels should overlap with only one object.
The undersegmentation error (UE) is computed as:

UE(S,G) =
∑

i

∑
k:Sk∩Gi 6=∅ |Sk −Gi|∑

i |Gi|
. (7)

Compactness measure. The compactness (CO) measure for
a superpixel decomposition S is defined as in [30]:

CO(S) = 1

|I|
∑
Sk∈S

4π|Sk|2

|P (Sk)|2
, (8)

where P (Sk) defines the perimeter of the superpixel Sk. High
values indicates more compact superpixels.
Precision-Recall. The PR framework [24] evaluates the con-
tour detection accuracy. It can be used to measure the contour
detection performances of segmentation or superpixel algo-
rithms. The PR curves are computed from a set of input
maps, which values represent the confidence in being on an
image boundary. When evaluating superpixel methods, these
maps can be computed by averaging superpixel boundaries
obtained from decompositions at multiple scales. As in [6],
we considered 12 scales, ranging from 6 to 600 superpixels, to
compute the boundary maps. We rank the methods according
to their maximum F -measure defined as (2.P.R)/(P + R),
where P (precision) is the percentage of accurate detection
among the computed contours, and R (recall) is the percentage
of detected ground truth contours.

3) Parameter Settings: SCALP was implemented with
MATLAB using C-MEX code, on a standard Linux computer.
The number of clustering iterations is set to 5. We set λ to 0.5
in the proposed color distance (1), σ to 0.25 in (2), and γ to
2r, to adjust to the superpixel size. The compactness parameter
m is set to 10 in (3) as in [17]. These parameters offer a good
trade-off between adherence to contour prior and compactness.
In the following, if not mentioned, we use a prior from the
contour detection method of [29].

B. Influence of Parameters
We first measure the influence of parameters within the

proposed framework. In Figure 4(a), we provide PR curves for
different distance settings. Contributions of the new the color
distance (1) and the additional contour intensity (2) computed
on the linear path to the superpixel barycenter both increase
the accuracy of the decomposition with respect to ground truth
segmentations. The complete SCALP algorithm, i.e., using
color distance and contour intensity, provides the best results
and outperforms the standard method proposed in [17].

We also investigate the influence of the contour prior. In
Figure 4(b), we provide PR curves obtained by using the glob-
alized probability of boundary algorithm [27], a method using
learned sparse codes of patch gradients [28], and a structured
forests approach [29] for contour detection. Results are also
improved with respect to the contour detection accuracy. In
the following, results are computed using [29].
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Fig. 5. Comparison between the proposed SCALP framework and state-of-the-art methods on contour detection and superpixel metrics on the BSD test set
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C. Comparison with State-of-the-Art Methods

We compare the proposed approach to the following state-
of-the-art methods: Quick shift (QS) [11], Turbopixels (TP)
[13], a graph cut approach (GC) [14], SLIC [17] and SEEDS
[6]. Note that TP and GC enforce regularity and thus provide
very consistent decompositions at the expense of lower contour
adherence. All provided results are computed with the same
validation framework, described in Section III-A, with codes
provided by the authors and used with their default settings.

In Figure 5, we provide PR curves with their maximum F -
measure, and report the standard BR (5), ASA (6) and UE
(7) metrics. SCALP is ranked 1st on PR, providing the higher
F -measure (0.676). On superpixel metrics, it is ranked 1st on
ASA and UE, and 2nd on BR.

Although high BR results indicate that ground truth bound-
aries are well detected by the superpixels, this measure does
not consider the false detection. Therefore, irregular methods
such as [6], that produces very stretched superpixels with
much more boundary pixels can obtain higher BR results.
Better PR performances indicate that SCALP very accurately
detects object contours with a lower false detection rate.
The UE metric is penalized when superpixels overlap with
multiple objects. Hence, SCALP superpixels overlap with a
lower number of ground truth segments. The ASA evaluates
the consistency of a decomposition with respect to the objects
within an image, thus enhancing the largest possible overlap.
Higher ASA results for SCALP also indicate that the produced
superpixels are better contained in the image objects.

The regularity of the proposed SCALP framework is con-
firmed with Table I, which reports the compactness measure
(8) for the best compared methods. The provided results
are averages obtained on all image decompositions, on the
same scales as the ones used to compute the PR curves.
SCALP obtains the most regular superpixels, even improving
the results of SLIC [17].

TABLE I
COMPARISON OF SUPERPIXEL REGULARITY, CO (8)

SEEDS [6] QS [11] SLIC [17] SCALP
0.201 0.205 0.269 0.278

Finally, Figure 6 illustrates the decomposition results ob-
tained with SCALP and the compared approaches on example
images. SCALP appears to provide more regular superpixels
while tightly following the image contours.

SCALP achieves the best state-of-the-art segmentation and
contour detection performance, while providing a regular
superpixel decomposition, in a limited computational time, i.e.,
less than 0.4s per image of the BSD.

IV. CONCLUSION

In this work, we propose a generalization of the superpixel
clustering framework of [17], by considering image feature
and contour intensity on the linear path from the pixel to the
superpixel barycenter. The contour prior information enhances
the adherence to the object boundaries.

The proposed SCALP method provides superpixels of more
regular shape, according to the compactness measure. SCALP
also obtains state-of-the-art results, outperforming [17] on
superpixel metrics, and obtains the higher F -measure among
the compared methods. Finally, our fast integration of the
contour prior within the framework enables to obtain the
decomposition in a limited computational time.

Future works will focus on SCALP adaptation to supervoxel
decomposition, for video and 3D image processing.
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