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Abstract—Cascade regression framework has been successfully
applied to facial landmark detection and achieves state-of-the-
art performance recently. It requires large number of facial
images with labeled landmarks for training regression models.
We propose to use cascade regression framework to detect eye
center by capturing its contextual and shape information of
other related eye landmarks. While for eye detection, it is time-
consuming to collect large scale training data and it also can
be unreliable for accurate manual annotation of eye related
landmarks. In addition, it is difficult to collect enough training
data to cover various illuminations, subjects with different head
poses and gaze directions. To tackle this problem, we propose
to learn cascade regression models from synthetic photorealistic
data. In our proposed approach, eye region is coarsely localized
by a facial landmark detection method first. Then we learn
the cascade regression models iteratively to predict the eye
shape updates based on local appearance and shape features.
Experimental results on benchmark databases such as BioID
and GI4E show that our proposed cascade regression models
learned from synthetic data can accurately localize the eye
center. Comparisons with existing methods also demonstrates our
proposed framework can achieve preferable performance against
state-of-the-art methods.

I. INTRODUCTION

Human eyes play an important role in our everyday life
for communication, interaction and other daily routines. Eye
detection aims to estimate the pupil location in a image. It
is becoming an increasingly important research topic due to
its various applications, including iris recognition, eye gaze
estimation and human-computer interaction. Learning-based
methods is a promising solution for eye detection. How-
ever, learning-based methods need large number of annotated
training data to cover various appearance of eyes. Although
much work has been done for eye detection, they still are
challenging tasks due to illumination, head pose and various
gaze directions.

In this paper, we propose an effective coarse-to-fine frame-
work for eye detection, based on learning cascade regression
models from synthetic eye images. Our main contributions are
summarized as follows: (I) integrate the cascade regression
framework for accurate pupil detection; (II) incorporate local
appearance features of pupil, shape and contextual information
of eyelids as well as eye corners for eye detection; (III) learn
from pure synthetic data.

The remainder of this paper is arranged as follows. Re-
lated works on eye detection are reviewed in section II. Our
proposed approach is described in section III. Section IV

reports the experimental results with discussions. We draw
conclusions in section V.

II. RELATED WORK

Eye detection has been studied for decades and numerous
methods have been proposed. In this section, we focus on
reviewing most of the recent works. A detailed review of
earlier techniques devoted to this topic can be found in [1],
[2].

Valenti and Gevers [3] use curvature of isophotes in the
intensity image and design a voting-based method for pupil lo-
calization. SIFT-based features are extracted in each candidate
pupils followed by binary classification to eliminate the false
centers. Timm and Barth [4] propose an objective function
based on intensity gradients and squared dot products. It is
maximised for iris centers of circular regions. By using the
isophote and gradient features of pupils, Zhang et al. localize
the eye center through two response map from two modalities
operations on face images. These shape-based methods can
fail when pupils are partly occluded or subject with head
poses. Araujo et al. [5] propose an inner product detector
for eye localization on the basis of correlation filters. This
appearance-based method is robust to small variance of the
desired eye images with a low computational cost. But it is
limited to eyes with multiple appearance in the wild. In [6], the
authors use Support Vector Regressor (SVR) to estimate the
distance of patch center to the pupil center using the extracted
HOG features. Zhou et al. [7] employ a coarse-to-fine strategy
for eye center detection, on the basis of Supervised Decent
Method (SDM) [8]. They jointly use two eye related 14 points
of multi-scale feature to capture the contextual information for
eye center detection on given eye regions. In [9], Wood et al.
propose learning-by-synthesis for eye shape registration and
gaze estimation. They train a Constrained Local Neural Field
(CLNF) [10] deformable model on synthetic eye images with
annotated landmarks. The authors [11] extract discriminatory
Haar features from 2D Haar wavelet transform and a new
efficient Support Vector Machine (SVM) is proposed for eye
detection. These learning-based methods require large amounts
of training data and it can be unreliable for manual annotation
especially for labeling the pupil center.

For the learning-based methods, learning-by-synthesis is a
promising solution for large training data collection and has
been widely used for appearance-based eye gaze estimation
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[12], [9], [13]. Computer graphics techniques are applied
to automatically generate large amounts of synthetic labeled
photorealistic eye images. These synthetic eye images can
cover various appearance respect to different gaze directions,
head poses and illumination conditions. In addition, the eye
related landmarks as well as pupil center can be perfectly
labeled. Hence, we propose to learn from synthetic eye images
for eye detection.

III. PROPOSED FRAMEWORK

Discriminative regression-based models for facial alignment
are well-studied and achieve state-of-the-art performance on
facial landmark detection. In this work, motivated by fa-
cial landmark detection [14] and learning-by-synthesis for
appearance-based gaze estimation [12], we propose to learn
cascade regression models from synthetic data for accurate eye
detection. Different from [7] which learns regression models
from real labeled data and tests on given eye regions, our
model learned from pure synthetic data can automatically
predict the eye center on a real image. Moreover, in this
work, we capture shape information of eye related landmarks
for eye center detection. In this section, we firstly give a
brief introduction about our synthetic training data. Then more
details of our proposed approach are discussed.

A. Synthetic Eye

Existing work aim to learn appearance-based eye detector
from few samples [11], [7]. Collecting large amounts of
training data with ground truth of eye center and other eye
landmarks locations is costly, very time-consuming and also
can be unreliable. In addition, it is difficult to collect enough
training samples to cover various illuminations and subjects
with different head poses, eye states or gaze directions. Hence,
existing learning-based eye detection methods are not general
to in-the-wild scenarios since the specific collected training
samples are limited.

Recently, learning from synthetic eye images for
appearance-based eye gaze estimation achieves state-of-
the-art results [9], [12]. They synthesize large scale variable
eye images, which make it possible to cover all the appearance
respect to different head poses, illumination conditions and
gaze directions. In [12], the authors present a novel method
named UnityEyes for rapidly synthesizing variable eye
regions images. They derive 3D eye region model from
high-resolution 3D face scans. Eyeballs are modeled using
a single 3D mesh which corresponds to the eye’s external
surface. In addition, the shape of 3D mesh is defined by two
spheres representing the cornea and the sclera. By scaling
the iris boundary and texture-shape offset, variable eyeball
shape and texture including iris width and dilation can be
generated in UnityEyes. Eyelid animation is achieved through
geometric methods from anatomy. Different head poses can
be simulated by using spherical coordinates and pointing it
towards the eyeball center of 3D model as shown in the firs
row of Fig. 1. Another important factor is the illumination
condition especially for the appearance based methods for

Fig. 1. Samples of synthetic eyes with different head poses (first row), various
illuminations (second row) and eye appearance (third row).

(b)(a)

Fig. 2. Sample of flipped right eye (a) and corresponding original synthetic
left eye (b), with 2D facial landmarks (in this work, 11 landmarks indexed
by [3-6 9 12-15 18 40] are used).

eye detection. They produce highlights and soft shadows by
simulated light sources pointing in a random direction towards
the eye regions. They further choses panoramic photographs
and randomly vary the rotation and exposure levels to
render the reflections and environmental ambient light. Some
synthetic images are shown in Fig. 1. Their experimental
results show that even K-nearest-neighbor algorithm training
on these synthetic data for eye gaze estimation outperforms
other deep learning based methods training on real data.
More details about UnityEyes can be found in [12].

In this paper, we propose to learn cascade regression models
from synthetic eyes. We use the UnityEyes [12] to synthesize
10730 eye region images. Some synthetic training samples are
shown in Fig. 1. In addition, 2D facial landmarks such as eye
corners and eye center are available. Since UnityEyes generates
eye region images of left eye, we flip them to train the right
eye model (see Fig. 2). During the testing, left and right eye
are located separately using corresponding model.

B. Cascade Regression for Landmark Detection from Synthe-
sis

Although we focus on eye center detection, other contextual
information such as eye corners and eyelids can be helpful for
eye center detection. Cascade regression has been success-
fully applied for numbers of facial landmarks detection and
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Fig. 3. Framwork of our proposed approach. (a) Face detection and 51 facial landmrk detection. (b) Crop eye region and initialize 11 points. (c) Output of
first iteration. (d) Final eye landmarks detection.

achieves state-of-the-art results [8], [14], [15]. Similar to face
alignment, eye related landmarks including the eye centers can
be detected by cascade regression frame work. Our proposed
coarse-to-fine framework for eye detection is summarized as
shown in Fig. 3. We use a fast Deformable Part Models (DPM)
based face detector [16] provided in [17] for face detection.
Then facial landmark detection [14] is adopted to coarsely
localize the eye region. After cropping out both right and
left eye regions, cascade regression frame work is applied for
accurate eye detection. More details are described below.

The overall framework of cascade regression for eye detec-
tion is shown in Algorithm 1. In this work, we select out
11 eye related key points (see Fig 3) consisting of 2 eye
corners, 8 eyelid points and 1 pupil center. After extracting eye
regions based on coarse landmark detections, the 11 key point
locations x ∈ℜ2·11 are initialized by mean eye of the training
data. Since there are various eye shapes respect to the position
of eyelids and head poses, similar to [14] for facial landmark
detection, we propose to iteratively update the regression
parameters. In cascade regression, key points locations are
iteratively updated based on the learned regression models.
At each iteration t, shape features (Euclidean distance of each
pair of points), local appearance features (SIFT) from the eye
centers as well as contextual features (SIFT) from eyelids and
eye corners are jointly used to predict the key point locations.
A linear regression model ft is used to predict the location
updates ∆xt on the basis of current key point locations xt−1.
ft is defined as below:

ft : ∆xt = α
t
Φ(I,xt−1)+β

t
Ψ(xt−1)+ ct (1)

where Φ(I,xt−1) ∈ℜ11·128 denotes the corresponding local
appearance of pupil and contextual features of other key
points, and Ψ(xt−1) ∈ ℜ11·10 represents the shape features.
α,β and c are the parameters of regression model.

For the training, given ith synthetic eye image Ii with 11
ground truth landmark locations x∗i , at tth iteration, the ground
truth eye shape updates can be calculated by:

∆xt,∗
i = x∗i −xt−1

i (2)

where when t equals 1 at the first iteration, x0
i is the mean

locations of key points calculated from all training data. We

Algorithm 1 Cascade regression for eye detection.
Input:

Give the eye image I. 11 key point locations x0 are
initialized by mean eye.

Do cascade regression:
for t=1,...,T do

Estimate the key point location updates given the current
key point locations xt−1.

ft : I,xt−1→ ∆xt

Update the key point locations.
xt = xt−1 +∆xt

end for
Output:

Acquire locations xT of eye landmarks including the eye
center.

learn the parameters of regression model by a standard least-
square formulation with closed form solution:

α
t∗ ,β t∗ ,bt∗ =arg min

αt ,β t ,ct

K

∑
i=1
‖ ∆xt,∗

i −α
t
Φ(I,xt−1)

−β
t
Ψ(xt−1)− ct ‖2

(3)

Then for the testing, in this paper, we empirically set the
number of iterations T as 4. At iteration t, 11 key point
location updates ∆xt can iteratively be estimated according to
Equation 1. Then key point locations for current iteration can
be acquired though xt = xt−1 +∆xt . x0 is the mean location
of 11 key points from the synthetic training data.

IV. EXPERIMENTAL RESULTS

A. Evaluation Database and Measurement Criteria

We evaluate the proposed eye localization method and
compare it with the state-of-the-art methods on two widely
used benchmark databases, including GI4E [18] and BioID
[19]. GI4E [18] images have a resolution of 800×600 in pixel
and are representative for the ones that can be acquired by a
normal camera. It contains 1236 images of 103 subjects with
12 different gaze directions. BioID is one of the most widely
used database for eye center localization which contains 1,521
gray, 23 subjects and 384 × 286 resolution images. This
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database is very challenging with different face sizes, various
illuminations and subjects with glasses or closed eyes.

In the following experiments, we use the maximum normal-
ized detection error [19] to evaluate the performance of eye
detection. It is calculated as below:

deye =
max(Dr,Dl)

‖Lr−Ll‖
(4)

where Dr and Dl are the Euclidean distances between the
estimated right and left eye centers and the ones in the ground
truth, and Lr and Ll are the true centers of the right pupil and
left pupil respectively. deye is normalized by the inter-ocular
distance. It measures the error obtained by the worst of both
eye estimation. In this measure, deye ≤ 0.25 corresponds to
the distance between eye center and eye corner, deye ≤ 0.1
corresponds to the range of iris, and deye ≤ 0.05 corresponds
to the range of pupil diameter.

B. Experiments and Comparisons
The experimental results of GI4E and comparisons with

other methods are listed in Table I. The best performance
for evaluation criteria is highlighted in bold in Table I. Our
approach achieves the best results when deye ≤ 0.05(98.2%)
and deye ≤ 0.1(99.8%) on GI4E database. At deye ≤ 0.25, the
accurate detection rate is close to the best one reported in
[20]. Actually, we further investigate that there are two false
positives for face detection which result in the detection rate
of 99.8%. Although our improvement is marginal compared
with the method proposed in [20], our method is more robust
because it performs much better on more challenging BioID
database.

The first step for face detection is very important for final
eye detection. Since most of existing works test on BioID
database using Viola Jones face detector [21] for face detec-
tion, to fairly compare with state-of-the-art method, we apply
VJ face detector in this work. The evaluations and further
comparisons with state-of-the-art eye localization methods on
BioID are shown in Table II and Fig. 4. As shown in Table II,
for normalized error deye≤ 0.05, deye≤ 0.1 and deye≤ 0.25, our
method achieves a detection rate of 89.2%, 98.0% and 99.8%
respectively, which are better than state-of-the-art methods.

Figure 5 shows some examples of eye detection on GI4E
and BioID database, where the white dot represents the manual
annotation and red dot denotes the estimated eye location.
Even though the eye is closed or subject with glasses, our
proposed method can still predict the eye center locations.
From the qualitative results in Fig. 5, the predicted eye center
locations are even more reasonable than the manual annotation
of ground truth in some cases. As shown in Fig. 6, for the
first sample, it fails to detect the eye center when the eyelids
and pupils are not apparent. Learned regression models fail
to capture the contextual and local appearance information
for accurate eye detection. Moreover, not so accurate face
detection is more likely to result in failure of landmark
detection, and leads to false eye center detection because of
wrongly cropped eye region (see Fig. 6). It is feasible to tackle
this problem by applying more accurate face detector.

TABLE I
EYE LOCALIZATION COMPARISON ON GI4E DATABASE

Method deye ≤ 0.05 deye ≤ 0.1 deye ≤ 0.25

Timm2011 [4] 92.4% 96.0%* 97.5%*

Villanueva2013 [18] 93.9% 97.3%* 98.5%*

Zhang2016 [20] 97.9% 99.6% 99.9%

Ours 98.2% 99.8% 99.8%

* are estimated from the accuracy curves in corresponding paper
[18].

TABLE II
EYE LOCALIZATION COMPARISON ON BIOID DATABASE

Method deye ≤ 0.05 deye ≤ 0.10 deye ≤ 0.25

Campadelli2009 [22] 80.7% 93.2% 99.3%

Timm2011 [4] 82.5% 93.4% 98.0%

Valenti2012 [3] 86.1% 91.7% 97.9%

Araujo2014 [5] 88.3% 92.7% 98.9%

Ren2014 [23] 77.1% 92.3% 99.0%

Chen2015 [11] 88.8% 95.2% 99.0%

Zhang2016 [20] 85.7% 93.7% 99.2%

Ours 89.2% 98.0% 99.8%
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Fig. 4. Eye detection rate of the proposed method on the BioID database, in
comparison with other state-of-the-art methods.

C. Further Discussion

We also apply the face detector [17] for testing on BioID,
which is the same detector as tests on GI4E. It achieves a
final eye detection rate of 87.6% of deye ≤ 0.05 on BioID. It
is lower than the results reported in Table II because for low
resolution images, face detection affects more on eye region
extraction after normalizing the eye width to 25 in pixel. By
further investigation, the facial landmark detection model is
trained from VJ face detector which affects the facial landmark
detection. In a word, face detection affects initialization of eye
landmarks which is important for final eye detection especially
in low resolution images. In this paper, false negatives of
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Fig. 5. Eye deteciton examples of successes on GI4E and BioID database. The white dot represents the grund truth and red dot represents estimated eye
locations.

Fig. 6. Eye detection examples of failure on BioID (first two samples) and
GI4E (last two samples) database. The white dot represents the grund truth,
red dot represents estimated eye locations and green bounding box is detected
face (best view in color).

face detection are discarded similar to other literatures. Face
detection rates are 97.5% and 99.8% on BioID and GI4E
database respectively.

As discussed aforementioned, the proposed framework for
eye detection is sensitive to eye region detection since the
initialization of key points is very important. If the initializa-
tion is far away from the ground truth, it can not converge
to the global optimization. Another existing method [7] based
on SDM [8] do the eye center detection on given eye region
images of BioID. We do a similar experiments and crop the
eye region based on ground truth landmark locations instead
of automatically detection of eye related landmarks. Here
we achieve a detection rate of 94.2% on BioID database
which is better than 93.8% reported in [7] at normalized error
deye ≤ 0.05. It should be noted that our model learn from pure
synthetic data while they train from more than 10,000 real
images with manual annotations.

In our experiments, we first generate 2218 training images
by UnityEyes and acquire a detection rate of 94.2% on GI4E
dataset. It is not preferable for real application. By further
investigation, we find out that the generated synthetic images
is limited in covering the variance for our learning based
methods. To cover the variance of most realistic eyes with
different poses and illuminations, we learn our model from
10730 synthetic eye images which are randomly generated
and get a detection rate of 98.2%. However, pure synthetic
data has some disadvantages. UnityEyes is not possible to
model subjects with glasses which make it clearly lacks some
variance that may occur in natural real data. We further train
a model form combination of synthetic data and real data
(BioID) using 5 eye landmarks and test on GI4E. It only
achieve a detection rate of 95.4% which performs worse than
training from synthetic data with a detection rate of 98.2% at
normalized error deye ≤ 0.05. The reasons come that only 5
eye landmarks are available which captures less contextual

information and annotations of real data are not all very
accurate. Further works will focus on theses experiments.

Our contributions over a similar work presented in [9] are
in three folds. First, compared with the work presented in
[9] which focus on learning-by-synthesis for gaze estimation,
we contribute to eye detection and conduct quantitative and
qualitative experiments on benchmark datasets. Second, we
utilize the cascade regression framework on 11 landmarks to
boost the performance and efficiency while they achieve eye
shape registration by training separate CLNF patch experts to
fit the 28 landmarks. Moreover, except for capturing the local
appearance features, we incorporate the shape features for eye
center locations. Their public available method is provided
without trained model for iris registration. We will implement
the training method and further conduct experiments with [9]
for comparisons.

All experiments are conducted with nonoptimized Matlab
codes on a standard PC, which has an Intel i5 3.47GHz CPU.
15 frames per second on BioID can be achieved when applying
Viola Jones face detector in our proposed framework, which
allows for near real time eye detection.

V. CONCLUSIONS

In this paper, we present a novel and effective framework for
accurate eye detection based on the cascade regression model
learned from pure synthetic data. Coarse-to-fine strategy is
employed. Facial landmarks are firstly detected and then the
eye related detected landmarks are used to localize the eye
regions. Cascade regression starts from the initial eye shape at
eye region and iteratively updates the eye related key points
based on the regression models learned from synthetic eye im-
ages. Experimental results show that our method outperforms
state-of-the-art methods for eye detection.

Future work will focus on its extensive applications like
gaze estimation and eye tracking. In addition, learning from
appropriate combination of synthetic data and real data will
potentially improve the results.
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