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Abstract—We present a new approach to approximate
continuous-domain mathematical morphology operators. The ap-
proach is applicable to irregularly sampled signals. We define a
dilation under this new approach, where samples are duplicated
and shifted according to the flat, continuous structuring element.
We define the erosion by adjunction, and the opening and
closing by composition. These new operators will significantly
increase precision in image measurements. Experiments show that
these operators indeed approximate continuous-domain operators
better than the standard operators on sampled one-dimensional
signals, and that they may be applied to signals using structuring
elements smaller than the distance between samples. We also show
that we can apply the operators to scan lines of a two-dimensional
image to filter horizontal and vertical linear structures.

I. INTRODUCTION

Mathematical morphology has long been successfully ap-
plied to digital images for processing and analysis [11]. One-
dimensional operators have applications in, for example, line-
detection [13], and path openings [4, 14, 9]. They may also be
used to create more complex operators in higher dimensions
by combining operators along various directions in a higher
dimensional signal [11].

Traditionally, the grayscale morphological operators are
defined as operators on functions from E to D, where E is
the positions of data points (e.g. pixels), and D is the range
of values these points may take. In this paper we will only
consider one-dimensional, sampled signals.

The basic morphological operators may be defined, taking a
signal F : Z→ D and a structuring element (SE) G : Z → D
as arguments [11]. If we restrict ourselves to flat, contiguous
(without holes) structuring elements (i.e. functions G that only
take the values −∞ and 0, and for which there are no three
points x0, x1, and x2, such that x0 < x1 < x2 and G(x0) = 0,
G(x1) = −∞, and G(x2) = 0), the operators may be defined
as:

• Dilation:

(F ⊕G)(x) =
∨

h∈[a,b]

F (x− h), (1)

• Erosion:

(F 	G)(x) =
∧

h∈[a,b]

F (x+ h), (2)

• Opening:

(F ◦G)(x) = ((F 	G)⊕G) (x), (3)

• Closing:

(F •G)(x) = ((F ⊕G)	G) (x), (4)

where x is any point in Z, and [a, b] represents a range of
integers from a to b, where a < b, and a, b ∈ Z. This range
is the extent of the flat structuring element. One may think of
these operators as constructing a new signal by sliding a line-
segment along the original signal in different ways, thereby
tracing out the new signal.

These definitions assume that the signal, F , is defined
for all points in Z, i.e. a regular sampling is required. The
samples represent a continuous, band-limited signal, i.e. this
signal can be reconstructed in the continuous domain from
the samples. However, the samples will not generally fall on
the maxima and minima of the continuous signal, even if the
sampling frequency is high enough to accurately represent the
signal [10, 12], which is a problem, since the morphological
operators depend on local extrema. Thus the discrete operators
will fail to accurately reflect their continuous counterparts. An-
other issue is the fact that the continuous operators may yield
signals with discontinuous first and higher order derivatives,
thereby introducing infinite frequencies, meaning the signals
cannot be accurately represented using traditional sampling.
Finally, the structuring element, too, is dependent on the
sampling, since the interval [a, b] must be a subset of Z. This
means that one cannot, for example, dilate a signal with a
structuring element of non-integer length.

Some attempts to deal with these problems have been
made. In a paper from 1992, Brockett and Maragos [2] develop
partial differential equations that can be evolved to compute
continuous morphology in the discrete domain. Many authors
have improved on this work [16, 3, 8, 1], however, these
methods still yield worse approximations to the continuous-
domain operators than the discrete operators. The main reason
for this is that the results of the morphological operators are
not band-limited, and therefore cannot be represented on a
regular grid. Moreover, these methods are very slow [17].

In his thesis [15], Thurley develops a morphology on
irregularly sampled data using continuous structuring elements.
These operators only shift sample points vertically, thus the
morphologically transformed signal is sampled at the same
points as the original signal. This means that these operators
have some problems similar to the ones of the traditional
morphological operators mentioned above.

Luengo Hendriks and van Vliet [5] define one-dimensional
morphological operators that apply continuous morphology to
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sampled signals by interpolation. Two later papers [6, 7] pro-
posed operations that are not strictly morphological operators,
but their results approximate continuous-domain morphology
better than the traditional discrete operators

In this paper, a new approach to morphology is suggested.
The following sections will give a description of operators
that behave similarly to the traditional ones, however, the new
operators loosen the restrictions of the traditional approach by
allowing for irregular samplings, V = {(xi, yi)}i∈[1,N ], i.e.
sets of N ∈ Z+ pairs from E× D, such that

for any two pairs (xj , yj), (xk, yk) ∈ V, xj = xk ⇒ j = k
(5)

where xi denotes position and yi denotes value. This will
also yield operators that may use structuring elements of
lengths shorter than the minimal distance between samples.
The operators presented in this paper never leave the discrete
domain. This leads to fast, simple implementations.

II. DUPLICATE-AND-SHIFT OPERATORS

In this section we will define four new operators that are
the counterparts of the traditional dilation, erosion, opening,
and closing by flat structuring elements defined in the previous
section. We will call these operators duplicate-and-shift (DAS)
operators, for reasons that will be explained shortly. We will
first define the DAS-dilation (here denoted by ⊕DAS), which
will then be used to construct the other three operators.

A. DAS-Dilation

The dilation of a continuous signal by a flat structuring
element may be thought of as the result of sliding the origin
of the structuring element along the signal and tracing out the
area shaded by the line segment of the SE. The dilation is the
result of taking the maximum of the shaded area. This hints
at a way of defining the dilation for sampled signals. For each
sample do the following:

• Align the origin of the structuring element with the
sample;

• Make two copies (i.e. duplicates) of the sample;

• Shift one of the copies to the left extreme of the SE,
and the other to the right extreme.

Hence the name of the operator. A line segment can be repre-
sented by two points that fall on the endpoints of that segment,
hence the shifted samples define a line segment with its origin
at the original sample. These operations are analogous to the
process of sliding the SE along the signal and tracing the line
segment described above. There is, however, the issue that this
does not create a shaded area. In the continuous case, the final
signal is found by taking the maximum of the traced out area.
In the case of discrete, irregular samples, however, there is no
obvious way of defining a corresponding operation, if only the
samples are considered.

To solve this problem, one may use the information about
the structuring element along with the knowledge of which
sample spawned the copies and which traced signal a sample
is associated with. The idea is to note that the two nodes
spawned by a sample define a line segment. Instead of shifting

SE

"
(a) #

(b)

"
(c)

Fig. 1: DAS-dilation: The black nodes are the samples of the original signal,
the red nodes are the duplicated nodes. The duplicated nodes are shifted
according to the structuring element (SE).

the duplicates to the extremes of the SE, they are only shifted
as far as possible without them falling in the shadow of any
line segment defined by duplicates above. In fact, the right
node may be shifted to the left of the original sample and the
left node may be shifted to the right of it, if this is necessary to
avoid falling in the shadow of a higher line segment. Figure 1
illustrates this process on an irregularly sampled signal. The
duplicated node (a) is not allowed to be moved all the way
to the right extreme, since it would then end up under a line
segment. Similarly, (c) is moved right until it emerges from the
shadow of the line segment defined by the two nodes spawned
by the second original sample. The DAS-dilated signal is given
by the black and red nodes, except node (b), which is deleted
(or equivalently, shifted to the same position as (c)).

B. DAS-Operators

One may use the DAS-dilation defined above to generate
counterparts to erosion, opening, and closing:

• DAS-erosion:

(F 	DAS G) = (F { ⊕DAS Ĝ)
{, (6)

• DAS-opening:

(F ◦DAS G) = ((F 	DAS G)⊕DAS G) , (7)

• DAS-closing:

(F •DAS G) = ((F ⊕DAS G)	DAS G) , (8)

where Ĝ = {−x | x ∈ G} is the reflection of G. Thus,
the erosion is defined by duality, and the opening and closing
may then be defined by composition [11].

III. IMPLEMENTATION

We implemented the four operators in C++ with an inter-
face to MATLAB. Some pseudocode for the DAS-dilation is
shown in Alg. 1. The function takes three inputs:

• NODES: a list containing the samples. Each element
of NODES has a position and a value.

• SE−: the left endpoint of the structuring element.

• SE+: the right endpoint of the structuring element.

The function returns a list DNODES, which contains the
samples of the DAS-dilation. Each element of DNODES has a
position and a value. The implementation can be thought of as
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dropping line segments onto each sample point (from highest
to lowest), and cutting off the parts of the segment that hit
previous segments. The extra amount that is cut off is defined
by ε > 0, which is used since we do not want two nodes to
have the exact same position. Choosing ε small results in a
“staircase” effect (see (a) and (c) in Fig. 1).

The returned list, DNODES, is the nodes that lie on the
endpoints of these segments when they have come to rest upon
their associated sample, along with the original sample, unless
it has been suppressed. An original sample is suppressed unless
it falls between the duplicated nodes after shifting.

Using the dilation and the equations (6) – (8) we may then
implement the remaining operators.

IV. MORPHOLOGICAL PROPERTIES

Consider a signal V under the following assumptions:

1) ε = q · dmin, where q ∈ Q+, q ≤ 1 and dmin is the
smallest distance between samples,

2) ∀(xi, yi) ∈ V , ∃ni ∈ Z such that xi = niε, and
3) the length of the SE is mε, where m ∈ Z+.

The proposed operators have clear ties to the traditional
morphology [11]. First of all, it is clear that the structuring
elements may be decomposed [18]. There are some issues,
since the position of nodes created on plateaus, as well as their
number, may differ depending on whether the SE is applied
directly or decomposed and applied in sequence. However,
ignoring all nodes on a plateau except the nodes at the
endpoints, the results are the same. This stems from the fact
that the DAS-dilation moves nodes to the extremes of the SE.
Shifting nodes twice with distance d1 first, then d2 (or v.v.) is
the same as shifting nodes once with distance d1 + d2.

Idempotence of opening and closing holds if we mask
the filtered samples by removing nodes with a position that
falls outside the range of the original samples (since dilation
extends the filtered samples beyond the limits of the original
signal). We still have the issue of creating additional nodes
on plateaus, however we can deal with this, again, by only
considering the endpoints of plateaus. If there exists a gap
between two neighboring samples that is larger than the SE,
the DAS-opening as well as closing will keep creating nodes
in this gap, for each iterative application, until it is filled. This
breaks idempotency in the sense of the sets of nodes being
equal after removing redundant nodes on plateaus.

An interesting special case is ε = 1 and a regular sampling
rate where the distance between samples is 1. In this case,
choosing a SE of integer length satisfies the assumptions 1, 2,
and 3. The DAS-operators will, under these conditions, give
results equal to the traditional operators (again considering
only endpoints of plateaus) except near the border (see Fig 2).

When breaking the initial assumptions problems arise. If
our initial assumptions do not hold, the shifted samples may
change the endpoints of plateaus by a small distance, which
means the signals will not be equal in the sense discussed
above.

Other issues include the properties of increasingness and
(anti-)extensivity, which are not straightforward to verify, since

there is no immediately obvious way to define a partial order,
�, on the set of irregularly sampled signals. One possibility
might be to define a top, T , of the samples by interpolation,
i.e. for a sampled signal V

T (V )(x) =

{
fV (x), if x ∈ [xinf , xsup]

−∞, otherwise
(9)

where

xinf =
∧

(x,y)∈V

x,

xsup =
∨

(x,y)∈V

x, and

fV (x) is an interpolating function on the samples of V .

Then we may compare a pair of sampled signals, V and W ,
by comparing their tops, i.e.

V � W ⇐⇒ T (V ) ≤ T (W ). (10)

It is not obvious that the DAS-operators will satisfy the
properties of the traditional morphological operators using this
definition of a partial order. In fact, for certain choices of
interpolating function, it is clear that the proposed operators
do not satisfy the morphological properties.

One interpolating function that may be interesting to con-
sider gives the top

T (V )(x) =


min(yi, yi+1), if xi < x < xi+1

yi, if x = xi
−∞, if x < xinf or x > xsup

(11)
where, without loss of generality, we assume that the samples,
V , are in increasing order with respect to position. This
top describes a set of line-segments and isolated points. The
plateaus discussed previously will be extended until they fall
under a higher plateau. Thus, the slight variability of endpoints
defined by the shifted nodes becomes a non-issue.

We shall see that, experimentally, the results are sound also
when not adhering to the assumptions (see V-B and V-C).

V. RESULTS

A. Application to Arbitrary Signal

We illustrate the results of the DAS-operators on regularly
sampled signals and compare them to the traditional operators.
For SEs that have a length that is a multiple of the distance
between samples, the results are very similar (as discussed in
the previous section) using ε = d where d is the distance
between consecutive samples. The DAS-operators may skip
samples at plateaus (if this is undesirable, one may simply
interpolate these samples; since it is a plateau the correct
value is easily found). The DAS-operators also extend the
signal outside the original samples. Figure 2 shows the tra-
ditional dilation, erosion, opening, and closing along with the
corresponding DAS-operators on a regularly sampled signal
using a structuring element of length 41 with the origin in the
middle. Note that the result after applying the DAS-operators
is not regularly sampled. Also note that the DAS-opening is
computed by first applying the DAS-erosion on the regularly
sampled signal, yielding an irregularly sampled signal upon
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1: function DAS–DILATE(NODES, SE−, SE+)
2: let DNODES be an empty array
3: sort NODES according to y-value in descending order
4: for each node i ∈ NODES do
5: let i− and i+ be duplicates of i
6: let pos(i−) = pos(i) + SE−
7: let pos(i+) = pos(i) + SE+

8: let NODES− be the list of nodes that precede i
9: for each node j ∈ NODES− do

10: let j+ be pos(j) + SE+

11: let j− be pos(j) − SE−
12: if pos(i−) ≤ j+ and pos(i−) ≥ j− then
13: pos(i−) = j+ + ε
14: end if
15: if pos(i+) ≥ j− and pos(i+) ≤ j+ then
16: pos(i+) = j− − ε
17: end if
18: end for
19: if pos(i−) ≤ pos(i+) then
20: if @n ∈ DNODES : pos(i−) = pos(n) then
21: insert i− into DNODES
22: end if
23: if @n ∈ DNODES : pos(i+) = pos(n) then
24: insert i+ into DNODES
25: end if
26: if pos(i−) < pos(i) < pos(i+) then
27: insert i into DNODES
28: end if
29: else
30: drop nodes i−, i, and i+
31: end if
32: end for
33: return DNODES
34: end function
Alg. 1: Duplicate-and-shift dilation pseudocode. Note that the number of nodes
in NODES− can be reduced by only considering nodes within a neighborhood
the size of the SE. A red-black tree enables quickly querying only the nearest
left and right neighbor, yielding a bound on time complexity of O(N logN).

which the DAS-dilation is applied (and v.v. for the DAS-
closing). The DAS-opening and closing are very similar to the
traditional opening and closing, indicating that the method of
duplicating and shifting is sound also on irregularly sampled
signals.

The original signal is regularly sampled with 201 sample
points. The traditional operators will, of course, produce a sig-
nal with 201 samples as well, however this is not the case for
the DAS-operators, since they can produce irregularly sampled
signals. Thus, the DAS-dilation contains 47 samples, the DAS-
erosion contains 38 samples, the DAS-opening contains 45
samples, and the DAS-closing contains 53 samples. In general,
the number of samples in the DAS-filtered signals will decrease
with increasing size of the SE. This is reasonable, since a
larger SE will create larger plateaus, which do not need many
samples to be accurately represented. On the other hand, if the
SE is small enough, the transformed signal will contain more
samples than the original signal.

In the remaining experiments the length of the SE is chosen
independently of d and ε. We also choose ε = 0.99 ∗ d, since
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Fig. 2: The four DAS-operators (red) and their corresponding traditional
operators (green) applied to the original signal (blue). From top to bottom:
dilation, erosion, opening, and closing.

values less than d, but close to it, give good results (using
ε = d gives slightly worse results, and choosing ε very small
creates a “staircase” effect).

B. Quantifying Errors

To compare the results when using non-integer length
structuring elements, we look at the results of sampling a
sine-wave (approximately 7 samples per 2π) and dilating it.
The results are compared against the analytical solution when
dilating the continuous sine-wave. The samples are quantized
into 256 levels. Figure 3 shows the results. The samples in
the traditionally dilated signal must have the same position on
the horizontal axis as the original sampled signal and can only
use the information of samples that fall within the structuring
element. These restrictions make it unsuitable to the task. If
the SE is too small, the traditional dilation leaves the signal
unchanged (see the lower image of Fig. 3). The DAS-dilation
on the other hand does not require the samples of the dilation
to fall on the same positions as the original signal. Moreover,
it also uses information about the structuring element itself,
meaning the parts of the SE that fall between samples still
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Fig. 3: Two examples of dilations of a sine-wave (black). The samples of the
traditional dilation (green) do not manage to capture the continuous dilation
(red) very well. The samples of the DAS-dilation (blue) fall very close to the
continuous dilation. The upper figure uses a SE with a length corresponding
to π/2. The lower figure uses a length of π/6.

contributes to the result. The effect of this is that SEs are
decoupled from the sampling frequency of the original sampled
signal.

The errors of the dilations are quantified on the sampled
sine-wave in Fig 3. Using SEs of varying lengths, we measure
the mean square error between the analytic dilation and the
traditional dilation as well as the DAS-dilation. The discrete
dilations are interpolated in order to be comparable to the
continuous dilation. The continuous dilation contains cusps,
therefore a linear interpolation is used, since it can construct
points where the derivative is discontinuous. The results of
these experiments are summarized in Figure 4.

Finally, we ran a similar experiment while adding noise to
the sine-wave. The performance of the proposed DAS-dilation
seems to be robust with regard to noise. Figure 5 shows the
result when adding uniform noise.

C. DAS-Closing vs. Traditional Closing Using Linear SE

We applied the DAS-closing and the traditional closing to
a 654×840 pixels, 8-bit 2D-image of a piece of graph paper
with a curved line. A linear structuring element of length
201 with the origin in the middle was used. Since this is a
one-dimensional structuring element, we may apply the 1D
operators defined in this paper by extracting the line of pixels
that will be affected and applying the DAS-closing line by line.
The squares of the graph paper are roughly aligned such that
the sides are horizontal/vertical. Therefore, we combine two
closings: one where the SE is horizontally aligned, and one
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Fig. 4: Green is the mean square error (MSE) of the traditional dilation,
and blue is the MSE of the DAS-dilation. Using linear interpolation between
samples in the dilations we find the mean square error for structuring elements
of different lengths with increasing distance between samples when dilating
the sine-wave shown in Fig. 3.
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Fig. 5: The mean square error when dilating the sine-wave shown in Fig. 3
with added uniform noise between 0 and 0.5 before quantization. Green is the
MSE of the traditional dilation, and blue is the MSE of the DAS-dilation.

where it is aligned vertically. Since the DAS-closing yields
irregularly sampled signals, we have to resample the closings
onto the square grid. Linear interpolation is used for this
purpose (line by line).

The original image, as well as the resulting images of the
traditional closing and the DAS-closing, is shown in Fig. 6.
Because of different boundary conditions the DAS-closing
preserves some parts of the curve near the edges. A bright
border around the image will give behavior similar to the
traditional closing near the edges.

VI. CONCLUSION

In this paper a new approach to mathematical morphol-
ogy on one-dimensional, sampled signals is presented. Four
operators are defined, which correspond to the traditional
morphological operators of dilation, erosion, opening, and
closing. We show that the proposed operators can yield more
accurate results on sampled, one-dimensional signals. The
proposed operators are not restricted to regular samplings and
structuring elements are not required to be of lengths that are
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Fig. 6: Left to right: Original image, traditional closing with vertical and
horizontal line SE, DAS-closing along vertical and horizontal lines (resampled
onto square grid). The DAS-dilation yields similar results, except on the edges,
where parts of the curve are preserved. This difference stems from the different
boundary conditions used (see Fig. 2). For display purposes, the contrast of
these images has been increased in a post-processing step.

multiples of the distance between samples.

The operators use flat structuring elements without holes.
Allowing for holes (i.e. using SEs consisting of multiple line
segments) should be possible by creating more copies in the
duplication step and carefully shifting these in a similar manner
as the two copies in Fig. 1. It should also be possible to allow
for non-flat structuring elements by shifting duplicated nodes
along both axes. We would like to develop the operators in
this direction as well.

In the future, a more thorough examination of the pro-
posed operators and their relation to traditional morphology is
planned. Section IV briefly discusses these issues, however a
more rigorous, theoretical examination is desirable. Especially
interesting is what happens when we move away from the
assumptions we initially make in Section IV (which, for
example, traditional morphology satisfy). The experiments in
sections V-B and V-C show promising results for such cases.
Defining a suitable complete lattice structure on the set of
irregularly sampled signals is also desirable.

We are also interested in generalizing these operators to
higher-dimensional signals. There is an abundance of irregu-
larly sampled 3D data and being able to apply morphology
directly to such data is of interest.

Finally, we would like to examine the results of adaptively
sampling signals, such that plateaus are sparsely sampled while
parts of the signal that vary quickly are sampled with a higher
frequency. This should lead to discrete operators that better
approximate their continuous counterparts while not sacrificing
speed by generating a huge number of samples.
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