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Abstract—In compressive tracking algorithms, a feature re-
duction projection matrix is constructed by using compressed
sensing theory. Target and non-target objects are discriminated
by using a naive Bayesian classifier. Such an algorithm may
ensure accuracy of target tracking in real-time. But it is not
adaptive for tracking with respect to scales and rotations. In this
paper, we propose a novel adaptive algorithm based on feature
point matching for tracking objects which appear with various
changes. We combine weight-average and improved compressive
tracking algorithms together for tracking objects, then calculate
the corresponding feature points between two subsequent frames
of the same object for obtaining the target changes related
to various scales and rotations. Our experimental results show
that the improved algorithm effectively improves the accuracy
of target tracking and ensures adaptability of the tracking
algorithm.

I. INTRODUCTION

Target tracking technologies have manifold applications, for
example in intelligent video surveillance, traffic systems, or
mobile robotics. They are mainly employed to locate and
understand targets of interest in video data for quantitative
analysis. Object tracking is a fundamental step of target
analysis. In the past decades, object tracking has been an
extremely important research topic; for example, see [1]-[3]
in computer vision.

Over years, significant progress has been achieved in tar-
get tracking. For instance, meanshift [4] has been typically
applied to object tracking: the kernel density of a reference
model and a candidate model (in a specific feature space)
are employed, and matching scores of reference model and
candidate model are compared. That candidate model with the
maximum matching score was identified with the final position
of the target.

Because the meanshift algorithm is not adaptive to scale
changes of the target, Bradski [S] proposed the camshift
algorithm, Zhang [7] presented a fast object tracking algorithm
with spatio-temporal context [6] (STC) which extracted a
model of the target position and its regional context based
on Bayesian theorem according to the statistical correlation
between the target and its context. Additionally it applied a
confidence map to determine the final position of the target.

A tracking algorithm based on consistency of feature point
matching is proposed in [8] which can process hundreds of
frames per second. It combines pyramidal optical flow tracking
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and feature point matching to determine the position of the
target preliminarily, and then assigns to each feature point a
vote. Those feature points which satisfy the consistency using
a clustering algorithm are selected as the target position.

A kernel-related filter [10] leads to a fast object tracking
algorithm; it is based on target detection [9] which extracts
features of positive and negative samples by the circular
shift method, and combines those by using the fast Fourier
transform for training the classifier (for locating a target).

In recent deep learning, Convolutional Neural Networks
(CNNs) achieve remarkable results for target tracking [11]-
[13]. Due to the high computational complexity of neural
networks, there are still real-time issues for these algorithms
to be resolved.

Kalal [14] proposed a long-term stable tracking (TLD)
algorithm which combined tracker and detector effectively.
A compressive tracking algorithm [15] selects a proper fea-
ture space to establish a target model, and then constructs
a classifier to discriminate the target and the background.
This method combines generative models and discriminative
models together effectively [16], [17].

Original compressive tracking cannot deal with changes
in scale and rotation. For solving this problem, there are
various improvements [18]-[20]. For example, Zhang [18]
uses structure constraints for the target to ensure multiscale
samples. In [19], Affine transforms of samples were adopted
to obtain different scales and rotations.

Different to existing work, in order to achieve the real-time
effect (i.e. to reduce the computational complexity), in this pa-
per we use feature points to obtain scaling and rotation factors
of tracking targets. To the best of our knowledge, this is the
first time to improve the adaptability of a compressive target
tracking algorithm. We implemented the improved algorithm
and report our promising experimental results.

The paper is structured as follows. Section II outlines
compressive tracking. Section III provides our novel additions
to the approach. Our work in this paper is discussed in
Section IV. Section V concludes.

II. COMPRESSIVE TRACKING

A. Feature Extraction

Feature extraction requires convolutions using multiscale
rectangular filters designed by using positive and negative
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samples. Based on the convolutions, we obtain feature vectors
of different lengths. These vectors are concatenated to form a
high-dimensional vector, named as the vector of a multiscale
rectangular feature. For a sample: z € R¥*" the multiscale

rectangular filter is a set of functions {h11,h1,2,..., hwn} ,
defined as
1 ifl<z<iandl1<y<j
hij(@,y) = { 0 otherwise M

where 0 < 7 < w and 0 < j < h represent the width and
height of the rectangular filter, respectively, and x and y are
the pixel coordinates in a multiscale rectangular filter. Then,
we represent each filtered image as a column vector X in a
very high-dimensional image space R™. The dimensionality
m is typically in the order of 10° to 10%°.

In order to ensure real-time tracking, compressive sensing
theory [21] was used to reduce the dimension of the image
vectors X. The compressive sensing theory [21] analyses
mappings of signals X by a special projection matrix P for
redundancy reduction. The result V = PX maps a high-
dimensional vector from image space into a low-dimensional
(say, n-dimensional) space of feature vectors, with assuming
that n << m. The original signal X can be reconstructed from
V with very high probability [22].

The random projection matrix P = [p;;] is as follows:

1
1 with probability %5
S

1
pij=1vsx< 0 with probability 1 — = 2)
S

1
—1 with probability %5
s

where s is often recommended to be equal to 2 or 3. The
matrix P is very sparse and satisfies the restricted isometry
property (RIP). The literature also discusses s = m/4 which
means that we only have four non-zero numbers at most
in the projection matrix P; thus this greatly reduces the
computational complexity.

B. Design of the Classifier

Compressive target tracking adopts a naive Bayesian clas-
sifier which is based on the assumption that elements of
the feature vector are independent on the sense of a normal
distribution. The specific classifier is modeled in [14] as
follows:

[T, p(vily = Dp(y

1
H{V)=lo g(l_[z L p(vily = 0)p(y = 0)) )
- vz =1
Z og( vlr; - 0))

where y represents a sample label, and p(y = 1) = p(y =
0) = 0.5 are the prior probabilities of positive and negative
sample, respectively. v; represents the ¢-th detected sample
feature, then the current target position was the sample with
the biggest H(V).

The random projection of a high-dimensional random vec-
tor almost satisfies a Gaussian distribution p(v;|ly = 1) ~

N(pt,63), p(vily = 0) ~ N(uf,8?). Therefore, the condi-
tional probability of the positive and negative samples is also
consistent with the Gaussian distribution. The parameters of
these Gaussian distributions are constantly updated as follows:

pi = Mg + (1= At
“4)
5= AN+ (1= D)2 + A1 = Nl — )2

where p! and &' represent mean and variance of the
dimension-reduced feature vectors of the i-th sample, respec-
tively, and ) is a learning factor. u} and 4} are the updated
mean and variance.

Finally, that object region (of rectangular shape) having
the biggest classification score is the detected position of the
target.

III. SCALE AND ROTATION-BASED ADAPTIVE
COMPRESSIVE TRACKING

The common sampling method of compressive tracking is
presented in the following equations:

Ry ={v1p <l Bp — Re—1 [|< v2p} (5)
Rn = {H Rn - Rt—l H> ’Yn} (6)
Rg={|| Ra — Ri—1 ||< va} (7)

where I, R,, and R, represent the sets of positive samples,
negative samples, and detected samples, respectively. 1, y2p,
Yn, and 74 are thresholds for sample collection given based
on observations. R;_; is the target position of last frame, we
can see that all samples can be obtained based on it. The
collected samples have only slight changes related to locations;
the sample sizes are always identical. Therefore, compressive
tracking cannot track targets with scale or rotation changes.

In compressive target tracking, drift errors are usually occur-
ring in cases of intense movement, occlusion, or similarity in
color or silhouettes (i.e. appearance). In compressive tracking,
selecting the sample having the highest score as the target
location is improper sometimes, although the sample might be
more similar to the target than others, least resembling to the
shown background, the corresponding region of this sample
cannot reflect the exact location of the target.

Therefore, in this paper we propose a target localization
method based on averaging weighted multi-rectangles [23].
We compute the average of weights as the scores. We regard
the weighted average of the top N > 0 rectangular regions G;
as the candidate for the target location:

1 N
Gozﬁi;wi-ai ®)

where G, is the final target position, and G, is the location of
the i-th sample amongst all the selected samples; w; represents
the weight of the ¢-th sample. w; is defined as follows:

H(Vg,) TN
ey H(Ve,) <H(V
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where H(V') is the average score of the top N rectangular
regions, H (V¢,) represents the ith detected sample score.

Applying this method we are not only able to deal with a
range of target scale changes in target tracking, we are also
able to better exclude the interference by similar objects. We
show that this approach offers the possibility of improving the
accuracy of object tracking.

We also propose an adaptive compressive tracking algo-
rithm based on feature-point matching. The original algorithm
flowchart is shown in Fig. 1.

I Multi-scale . .
. T'aking the Y Feature reduction using
Frame t > = rectangle feature . L
detected samples A, compressive matrix
extraction
. v
Taking the Multi-scale s . . [
" . Feature reduction using Training update
Frame t-1 »  positive and rectangle feature . . .
. . compressive matrix classifier
negetive samples extraction i}

Locate the target

using the classifier

Fig. 1. Flowchart of our compressive tracking

Figure 1 is the flowchart for the initial phase of compressive
tracking. According to the position in frame ¢t — 1, we first
collect the positive and negative samples using Egs. (5) and
(6). Then we compute the multiscale rectangular features of
the collected samples and reduce the feature dimensions so as
to train the classifier. We take the detected samples and the
reduced feature vector for frame ¢ in the same way as for frame
t — 1. Finally, we get scores in frame ¢ by using the classifier
trained by frame ¢ — 1 to classify the detected samples. The
final location of the target is the weighted average of the top
N regions G; where the corresponding classification scores
are ranked.

Algorithm 1 Compute scale and rotation factor

Input: frame;,frame;_1, Recty, Rect;
Output: «, 0

1: function GETFACTOR( frame;, frame;_1, Recty, Recti_1)

2: ROI; + SetROI(framey, Recty),

3: ROI;_1 + SetROI(frame;_1, Rect;_1)
4: K P, < detect(ROI;)

5: KP,_q + detect(ROI;_q)

6: M « match(KP;, KP;_1)

7: num_point < estimate_num()

8: if num_point > T then

9: a < estimate_scale(My, M;_1)

10: 0 + estimate_rotation(My, My_1)
11: else

12: Return to detect the target

13: end if

14: end function

A. Scale-based Adaptive Target Tracking

We illustrates how to calculate the object scaling and
rotation factor in Algorithm 1. We first detect feature points

[24], [25] of the target position in frames ¢ and ¢ — 1, respec-
tively, and match those based on the Euclidean distance [26].
Finally we obtain the scaling factors based on the successfully
matched feature points in the considered adjacent frames.

At the same time, we use a trained threshold to ensure
a high tracking accuracy rate. If the number of successfully
matched points is bigger than the threshold, the tracking result
is positive, otherwise we need to relocate the object.

During the process, the feature points of the ROI region are
modeled as follows:

KP= {(pi7di)|0 <1< numpoint} (10)
where p; represents the point plane coordinate, d; is the
descriptor of the feature. Then Euclidean distance is used for
descriptors matching:

d(di, dj) = |di — dj]| (11)
The computation of a scaling factor is given by the follow-
ing equation:

. I Vo b1 12
,j — 1 — — —
ot et et

where dfﬂ. represents the Euclidean distance between pixels
p} and p} in frame t.

In the same way, df;l is the Euclidean distance between
pixels p{~' and p{~" in frame ¢ — 1. p~" is the matching
point to p} in frame ¢ — 1, so is p’ to pz-_l. We choose the
mean or the median of those «; ; values as the final scaling
factor a.

B. Rotation-based Adaptive Target Tracking
The angle of rotation is computed as follows:

0 = atan2(yf7j,:c§,j) — atanZ(yfgl,xEl) (13)
where yfj and yf;l represent the distance between pixel ¢
and pixel j in y-direction in frame ¢ and ¢ — 1, respectively.
xf ; and xf;l are the distances between pixels ¢ and j in z-
direction in frames ¢ and ¢ — 1, respectively. Again we choose
either the median or the mean of the 0; ; values as the final
scale factor 6.

We obtain the 2-dimensional rotation matrix for angle 6:

(14)

sinf  cos6

_ [ cosf) —sinf }

Therefore, the final target position is expressed as follows:
th:Oé'R'Gt (15)

where G,y is the final object position; G, represents the
position prior to scaling and rotation.
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(b) STC

(d) Our Algorithm

Fig. 2. dog results

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this paper, we choose seven video sequences and four
target tracking algorithms to verify the validity of the proposed
algorithm. The video sequences are dog [6], juice [6], David
[10], bike [10], dollar [10], toy [6], and mountain-bike
[6]. The tracking algorithms are compressive tracking (CT),
spatio-temporal context tracking (STC), tracking learning de-
tection (TLD), and our tracking algorithm. The tracking results
are shown from Fig. 2 to Fig. 8.

For the experiment with object dog, these four tracking
algorithms all track the target successfully, but only the
proposed algorithm correctly reflects rotations of the target,
as shown in Fig. 2(d). CT did not provide any indication of
target scale and rotation, and STC and TLD were able to track
the changes with respect to target scale, but not with respect to
target rotation. STC depends on the context of objects severely,
tracking errors happen at the edge of the object. For example,
we can find tracking drifts in frame 239 in Fig. 2(b).

For juice, the STC algorithm is the best both in tracking
accuracy and for scaling. It has tracking errors due to the
interference of similarity in TLD. Compared with original
compressive tracking, our algorithm can track size changes,
but there is some slight tracking drift.

Scaling changes for David are not significant, so all the
methods can track the position of the target. Although there
exists a drift in both CT and our method, but the drift is greatly
reduced in our algorithm. This indicates that compressive

(d) Our Algorithm

Fig. 3. juice results

(d) Our Algorithm

Fig. 4. David results

tracking is dependent on the choice of the initial position.
The TLD tracking method, combined with target detection
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(d) Our Algorithm

Fig. 5. bike results

(d) Our Algorithm

Fig. 6. dollar results

and model learning, has a reduced dependency on the initial
position, and STC is much more stable and accurate in tracking
compared to TLD.

For bike, compared with CT, our algorithm is much more
robust. TLD and STC also process scaling changes, but it can
be seen from frames 37 and 65 that the results of scale-based

(d) Our Algorithm

Fig. 7. toy results

(d) Our Algorithm

Fig. 8. mountain-bike results

adaptive tracking are not ideal, so these two algorithms still
have room to be improved.

The four algorithms track the object dollar accurately.
But, according to our observations, compressive tracking can-
not locate the target correctly when the given initial position
varies. This indicates that the initial target position plays a
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pivotal role in compressive tracking. In our algorithm, the
initial target position is given by a number of feature points,
which greatly reduces the dependency on the initial position
and increases the tracking success rate tremendously.

Figures 7 (toy) and 8 (mountain-bike) illustrate again
rotation-adaptive test results for these two videos. The first
column shows initial object positions. The other two columns
show tracking results. It can be seen that our algorithm can
deal with object rotation changes well for these two videos,
in difference to the other three algorithms.

Tracking success rates of the compared four methods, for
all the used video test data, are summarised in Table I.

TABLE I

COMPARISON OF TRACKING SUCCESS RATES
Video CT STC TLD Ours
dog 93% 94% 96% 98%
juice 84% 91% 95% 88%
David 90% 93% 92% 93%
bike 73% 75% 85% 90%
dollar 69% 93% 90% 93%
toy 92% 94% 95% 96%
mountain-bike 86% 92% 96% 93%

The algorithm evaluation criteria is defined as:

VE = (16)

if VE < vw? + h2, it means tracking success. p; is the plane
coordinate of the rectangular’s vertex, p, indicates the ground
truth of target position.

V. CONCLUSIONS

The originally proposed compressive tracking algorithms
have not the ability to track objects when changing scales
or rotating. In order to overcome these drawbacks, we pro-
posed adaptive compressive tracking based on feature point
matching. We calculate the changes of scale and rotation
by computing ratios and angles of matching feature points
between subsequent frames. At the same time, we decide
whether the number of successfully matching points satisfy
the given thresholds or not, so as to relocate the target. Our
experimental results show that the algorithm, proposed in this
paper, effectively improves compressive target tracking, and
also tracks targets showing changes with respect to scaling or
rotation with improved accuracy.
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