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Abstract—Underwater images suffer from severe percep-

tual/visual degradation, due to the dense and non-uniform

medium, causing scattering and attenuation of the propagated

light that is sensed. Typical restoration methods rely on the

popular Dark Channel Prior to estimate the light attenuation

factor, and subtract the back-scattered light influence to invert

the underwater imaging model. However, as a consequence of

using approximate and global estimates of the back-scattered

light, most existing single-image underwater descattering tech-

niques perform poorly when restoring non-uniformly illuminated

scenes. To mitigate this problem, we introduce a novel approach

that estimates the back-scattered light locally, based on the

observation of a neighborhood around the pixel of interest. To

circumvent issue related to selection of the neighborhood size,

we propose to fuse the images obtained over both small and

large neighborhoods, each capturing distinct features from the

input image. In addition, the Laplacian of the original image is

provided as a third input to the fusion process, to enhance texture

details in the reconstructed image. These three derived inputs

are seamlessly blended via a multi-scale fusion approach, using

saliency, contrast, and saturation metrics to weight each input.

We perform an extensive qualitative and quantitative evaluation

against several specialized techniques. In addition to its simplicity,

our method outperforms the previous art on extreme underwater

cases of artificial ambient illumination and high water turbidity.

I. INTRODUCTION

Underwater imaging is required in many applications [1]

such as control of underwater vehicles [2], marine biology

research [3], inspection of the underwater infrastructure [4]

and archeology [5]. However, as compared with computer

vision and image processing applications in the surface en-

vironment, image analysis underwater is a much more diffi-

cult problem, awing to the dense and strongly non-uniform

medium where light scatters, i.e. is forced to deviate from

its straight trajectory. The poor visual quality of underwater

images is mainly due to the attenuation and back-scattering

of illumination sources. Back-scattering refers to the diffuse

reflection of light, in the direction from which it emanated.

Early underwater imaging techniques employed specialized

hardware [6] and multiple images polarized over diverse an-

gles [7], resulting in either expensive or impractical acquisition

systems. Recently, inspired by outdoor dehazing [8], [9], [10],

[11], [12], [13], [14], several single-image based underwater

image enhancement solutions [15], [16], [17], [18], [19], [20]

have been introduced. Chiang and Chen [17] first segment the

foreground of the scene based on a depth estimate resulting

from the Dark Channel Prior (DCP) [9], [21], then perform

Input image Treibitz & Schechner [2009]

Our result

He et al. [2011]

Emberton et al. [2015]Ancuti et al. [2012]

Fig. 1. Underwater scene restoration. Special-purpose single-image dehazing
method of He et al. [21] and also specialized underwater dehazing methods of
Ancuti et al. [15] and Emberton et al. [20] are limited in their ability to recover
the visibility of challenging underwater scenes. While the polarization-based
technique (uses multiple images) of Treibitz and Schechner [7] is competitive,
our approach better restores both color and contrast (local and global) in the
underwater image.

color correction based on the amount of attenuation expected

for each light wavelength. Galdran et al. [19] introduce the

Red Channel to recover colors associated with short wave-

lengths in underwater. Ancuti et al. [15] derives two color

corrected inputs and merge them using a multi-scale fusion

technique [22]. While the technique proposed in this paper is

also based on a multi-scale fusion strategy, here, we derive

three distinct inputs that are robust in the presence of highly

non-uniform illumination of the scenes (see Fig. 1).

Despite these recent efforts, existing single-image underwa-

ter techniques exhibit significant limitations in the presence

of turbulent water and/or artificial ambient illumination (see

Fig. 1). This is mainly due to poor estimation of the back-

scattered light, which is generally assumed to be uniform over

the entire image. A unique global value of back-scattered light

is only valid in relatively simple underwater scenes having

nearly uniform illumination, as is encountered in most outdoor

hazy scenes.

In this paper we introduce a novel approach based on

local estimation of the back-scattering influence. Following

the optical underwater model [23], we first compute the back-

scattered light by searching for the brightest location along

each image patch. By simply inverting the optical model using
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our local estimate of the back-scattered light, we are able to

obtain a good degree of visual restoration, even on in extreme

underwater scenes. Since the size of the patch should depend

on multiple parameters characterizing the captured underwater

scene (e.g. the dimensions and colors of objects in the scenes,

nature of the ambient light, non-uniform illumination) we use

a variety (only two in practice) of patch dimensions, each

size supporting the recovery of distinct and complementary

features of the scene. Specifically, a first image is derived

using a smaller patch to better restore the contrast, while a

second image is derived based on a large patch size, which

makes it possible to consistently recover regional color. To

highlight and enhance the fine details of the initial image,

we also compute its discrete Laplacian. These three images

derived from the original image, guided by several quality

measures, are seamlessly blended using a multi-scale fusion

approach [22].

We perform an extensive qualitative and quantitative eval-

uation against several existing specialized techniques. Despite

its simplicity, our method proves quite robust and produces

competitive results on highly opaque and non-uniformly illu-

minated underwater scenes.

II. UNDERWATER IMAGE FORMATION

Based on the well-known optical model of McGlamery [23],

in the underwater medium the total radiance of an image I
that reaches the observer is due to three additive components:

a direct component ED, a forward-scattering component EFS

and a back-scattering component EBS . These components

mainly result from the radiances of objects in the scene and

the ambient light.

The direct component ED represents the attenuated version

(with distance) of the reflected light, and is expressed at each

image coordinate x as:

ED(x) = J(x)e−ηd(x) = J(x)t(x) (1)

where J(x) is the radiance of the object, d(x) is the distance

between the observer and the object, and η is the attenuation

coefficient. The exponential term e−ηd(x) is also known as the

transmission t through the underwater medium.

Forward-scattering EFS , is the deflection of a portion of the

incident light. In general, it is associated with a small fraction

of the overall image degradation process.

Back-scattering, also known as the veiling light [24], is the

principal cause for the loss of contrast and the color shifting

of underwater images. For reasonable distances (between 3-10

m) this component may be expressed as [24]:

EBS(x) = B∞(1− e−ηd(x)) (2)

where B∞ is a scalar known as the back-scattered light or

the water background [25]. Assuming homogeneous lighting

along the line of sight, this component may be regarded as

originating from an equivalent sources at infinity [24].

Incorporating these additive components and ignoring the

forward scattering component, the simplified underwater op-

tical model employed in most existing descattering techniques,

becomes:

I(x) = J(x)e−ηd(x) +B∞(1− e−ηd(x))

= J(x)t(x) +B∞(1− t(x))
(3)

Since the underwater camera model (3) has a similar form

as the optical model of Koschmieder [26], used to characterize

the propagation of light in the atmosphere, many recent

approaches have proposed to restore underwater images based

on the extension of popular and effective outdoor dehazing

methods. For instance, Chiang and Chen [17] estimate the

rough depth of the underwater scene based on the Dark

Channel Prior (DCP) [21], then adjust the bluish tone based

on a wavelength compensation strategy. Similarly, Galdran et

al. [19] propose a variation of DCP, in which the so-called

Red Channel is used to recover colors associated with short

wavelengths underwater.

However, these outdoor dehazing-derived techniques appear

to be successful mostly on less challenging underwater scenes.

They generally assume shallow underwater scenes with rel-

atively transparent water and effective ambient illumination.

These cases, which are indeed similar to outdoor hazy scenes,

represent only a fraction of the underwater imaging problem.

At greater depths and under artificial illumination, the visibility

degradation is more critical and dehazing approaches suffer

from important limitations when restoring contrast and color

(see Fig. 1). We explain in the rest of the paper how (3) can

be inverted in the case of arbitrary underwater scenes.

III. ESTIMATION OF TRANSMISSION AND

BACK-SCATTERING

There are two unknowns in the image acquisition model

defined by equation (3): the transmission map t(x) and the

back-scattered light B∞.

A. Transmission Estimation

Following recent techniques, we approximate the trans-

mission t(x) based on the Dark Channel Prior (DCP) of

He et al. [21]. This prior assumes that natural objects have

a weak reflectance in one of the color channels. In other

words, the direct radiance is small, or dark, in at least one

of the R,G,B color channels. Given this assumption, the

transmission map, t(x), can be estimated from the weakest

color over a neighborhood of x. Formally, the DCP asserts

that miny∈Ω(x) (minc∈r,g,b J
c/B∞

c) = 0. Hence, the optical

model (3) yields:

t(x) = 1− min
y∈Ω(x)

(

min
c∈r,g,b

Ic(x)/B∞
c

)

(4)

where Ω(x) represents a local patch centered at x.

In practice, t(x) is reasonably well approximated by re-

placing the back-scatteredlight B∞ with the maximal color

intensity vector [1, 1, 1], so that:

t(x) ≈ 1− min
y∈Ω(x)

(

min
c∈r,g,b

Ic(x)

)

(5)
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In the literature [21], the term miny∈Ω(x) (minc∈r,g,b I
c(x))

is referred to as the dark channel image, and is denoted

IDC(x).

B. Global Back-scattering Estimation

The other unknown that is required to invert the optical

underwater acquisition model is the back-scattered light B∞,

which represents the light that is scattered back by floating

particles. This is the main cause of contrast and color degra-

dation in underwater images.

Most existing underwater descattering strategies compute a

global value of the back-scattered light over the entire image.

Similar to what is done in outdoor dehazing [8], [27], [21], this

value is usually determined in the brightest region of the dark

channel image [18], [19]. This is because, when IDC(x) → 1,

equation (5) implies that t(x) → 0, and the optical model then

states that I(x) → B∞.

Formally, following He et al. [21], the back-scattered light

can be estimated as:

B∞ = I(y∗), with

y∗ = arg max
y|IDC(y)>IDC

99.9

(

Ir(y) + Ig(y) + Ib(y)
)

(6)

In this equation, y∗ denotes the location of the brightest pixel

among those pixels whose dark channel value lies above the

99.9th percentile IDC
99.9, while r, g, b refer to the red, green

and blue color components, respectively. The above equation

can be written on a color component basis, as:

Bc
∞ ≃ max

y|IDC(y)>IDC
99.9

Ic(y), (7)

where c corresponds to each one of the color channels (c =
[r, g, b]) and IDC

99.9 denotes the 99.9th percentile of the dark

channel over the entire image.

To achieve robustness to specular reflections and glowing

effects that tend to mislead the color estimator defined by (6)

and (7) in underwater mediums [28], we introduce an alterna-

tive definition of the global back-scattered light estimator that

finds and uses the minimum of Ic over a small neighborhood

around y. Formally, we define:

Bc
G∞

= max
y∈MI

DC

(

min
z∈Ω(y)

Ic(z)

)

(8)

where Ω(y) is a neighborhood around y, and M I
DC is the set

of locations in the image support I where the dark channel

reaches its global maximum value IDC
max, i.e. M I

DC =
{y|IDC(y) = Imax

DC }. Hence, instead of keeping an arbitrary

99.9th percentile, we retain the entire set of coordinates where

IDC is maximum. Since the dark channel IDC(x) is defined

based on minimization over a patch, M I
DC always include

multiple locations. Our validations reveal that using M I
DC

(instead of the 99.9th percentile), does not negatively impact

the global estimation. Moreover, it makes the expression easier

to generalize to a local estimator, as explained in the next

sub-section. Before moving to our proposed local estimator,

we first point out the equivalence and the limitations of the

two global estimators defined by (6) and (8). As shown in

Input image

Descattering using (eq.6)

Dark channel

Descattering using (eq.8) Local descattering using (eq.9)

Our final result

Fig. 2. Global vs. Local descattering in uniform underwater medium.

Compared with global estimates of the back-scattering, the strategy based
on our patch-based estimation of back-scattering allows for better restoration
of visibility, even in a uniform underwater medium.

Fig. 2, expressions (6) and (8) yield comparable results when

inverting the optical model (3), and provide satisfying approx-

imations in an underwater medium with relatively uniform

illumination. However, as illustrated in Fig. 3, both global

estimators fail in the presence of non-uniform illumination.

C. Local Back-scattering Estimation

The problem of non-uniform back-scattering becomes es-

pecially challenging at greater depths, where artificial illu-

mination is required. Local estimation of the back-scattered

light has been recently considered for underwater dehazing

by Emberton et al. [20]. They designed a hierarchical rank-

based method, using a set of features to find those image

regions which are the most haze-opaque. Here, we introduce

an alternative approach to be able to adapt locally to the

back-scattered light. Our proposal achieves visually improved

descattering, as attested by the results presented in Fig. 5 and

Fig. 6. Starting from equation (8), we propose to compute the

back-scattered light at location x as:

Bc
L∞

(x) = max
y∈M

Ψ(x)
DC

(

min
z∈Ω(y)

Ic(z)

)

(9)

where Ψ(x) is a square patch centered at x. As for the

global estimator, M
Ψ(x)
DC denotes the set of positions in Ψ(x)

where the dark channel is maximum, i.e. reaches the value

of its local maximum over Ψ(x). In practice, the patch Ψ is

typically larger than Ω. We use a default value of 2 for the

ratio between the sizes of the Ψ and Ω patches. A higher

ratio is recommended for processing underwater scenes with

relatively uniform illumination and less turbidity. As shown

in Figs. 2 and 3, the contrast and color are better recovered

when inverting the underwater acquisition model based on

our proposed local back-scattering estimator as compared to

inverting based on the global method.

IV. DESCATTERING BY MULTI-SCALE FUSION

A critical issue related to equation (9) lies in the selection

of the patch size Ω. Using a large patch tends to reduce the
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Input image Global descattering using (eq.6) Global descattering using (eq.8) Local descattering using (eq.9) Our final result

Fig. 3. Global vs. Local descattering in non-uniform underwater medium. While global estimation of the back-scattering performs poorly in such challenging
underwater scenes, the same restoration strategy yields consistent improvement by using our local estimation of back-scattering.

impact of specular reflections and glowing effects in under-

water mediums, but also tends to preserve the undesirable

hazy appearance with reduced improvement of the contrast

as compared to using a smaller patch (see Fig. 4).

Inspired by our previous approach [15], of keeping the best

from among small and large patches, we propose a multi-

scale fusion approach to blend the images obtained with

both a large and a small patch size. Image fusion is a well-

known process that aims to optimize the appearance of a

reconstructed scene by effectively blending the information

of multiple inputs. Multi-scale fusion based on the Laplacian

pyramid [22] has been shown to be effective for various

computational imaging applications such as extended depth-of-

field [29], image editing [30], image compositing [31], HDR

imaging [32], image decolorization [33], [34] and single image

dehazing [35], [11]. The fusion process is typically guided

by several spatial weight maps that capture, the contribution

of each input image to the final output. These weight maps

typically assess contrast, saturation and saliency.

A. Inputs

Our fusion technique is a single image-based approach that

derives several inputs from an original underwater input. First,

we derive inputs based on our patch-based estimation of the

back-scattering influence, as discussed in the previous section.

We observed that choosing different patch sizes yields good

recovery either of contrast (small patch) or color (large patch).

Since we cannot simultaneously obtain good restoration of

both of these important factors using a single patch size, we

derive two inputs generated using two different patch sizes.

Using a large patch size better restores color while choosing

a small patch size is more effective in restoration of the

visibility (global contrast).

As a result, to remove most of the hazy appearance of the

underwater images we derive a first input based on our local

back-scattering estimation (9) computed using a small patch

size (e.g. 20× 20 for an image of size 800× 600). Moreover,

to better restore color we derive, using the same approach, a

second input using a larger patch size (e.g. 60 × 60 for an

image of size 800× 600). Our experiments have revealed that

considering additional patch sizes does not deliver any added

value to the reconstruction.

However, as can be seen in Fig. 4, those two inputs fail

to capture the finest detail. To also transfer this important

information to the final result we derive a third input which

is the discrete Laplacian of the original image.

Second input (large patch)First input (small patch)

Third input (Laplacian) Our fused result

Fig. 4. Derived Inputs. Our single image-based fusion algorithm considers
three derived inputs. The first one estimates back-scattering on a small
patch and removes most of the hazy appearance, the second estimates back-
scattering on a large patch and primarily restores the color, and the third
computes the Laplacian of the original to preserve fine details.

B. Weight Maps

Inspired by our previous fusion underwater approach [15],

we derive three weight maps. This ensures that locations of

high contrast or high saliency will receive greater emphasis in

the fusion process.

Local contrast weight detects the degree of local variation

of each derived input. Estimated similarly as in [32], [11]

it assigns high values to edges and texture variations, by

computing the L1 norm of Laplacian filter applied to the

luminance channels of each input .

Saturation weight map is motivated by the fact that humans

generally prefer images containing a high level of color

saturation. This measure is computed as the standard deviation

across color channels at each pixel coordinate.

Saliency weight map advantages the most conspicuous

regions of an image. This weight is computed using the

saliency technique of Achanta et al. [36].

Each of those weight maps is scaled so that its range

lies between 0 and 1. A pixelwise product of those three

normalized maps is then used to derive a single map.
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Input images Our resultsTreibitz & Schechner [2009] Emberton et al. [2015]

Fig. 5. Comparative results on underwater scenes with non-uniform lightning.

C. Multi-scale Fusion

Since naive fusion implementation (directly blending the

inputs and weight maps) causes unpleasing halo artifacts [15],

we instead employ the multi-scale Laplacian decomposi-

tion [22]. Using the same number of levels, the Gaussian and

Laplacian pyramids are independently fused at each level:

Rl(x) =
∑

k

Gl

{

W̄k(x)
}

Ll {Ik(x)} (10)

where l is the level of the pyramid, k is the input index,

L {I} denotes the Laplacian of the input I, and G
{

W̄
}

is

the Gaussian-smoothed normalized weight map W̄ . Here, the

normalization ensures that the sum of weights over the three

inputs is equal to unity at each pixel. The final fused result

R is processed by summing the contributions from all the

computed levels of the pyramid.

V. RESULTS AND DISCUSSION

Our approach has been extensively tested on a large number

of underwater images captured in various environments. We

compared our results with those produced by recent special-

purpose underwater enhancment methods [16], [18], [19], [20]

and also with the seminal dehazing techniques of He et al. [21].

Fig. 5 presents several images taken from the work of Tali

and Schechner [7]. These images are artificially illuminated

and, due to multiple scattering process [7], the light is non-

uniformly spread over the entire scene. Even if Emberton

et al. [20] estimates back-scattering influence locally, it fails

to restore both the contrast and the color of the scene. As

shown also in Fig. 1, outdoor dehazing techniques [21] exhibit

similar limitations. On the other hand, our approach performs

considerably better than the polarization approach of Treibitz

and Schechner [7] that employs two images (taken with

different states of the light-source polarizer).

Fig. 6 completes the comparative analysis by presenting

the results obtained when restoring underwater scenes with

relatively uniform illumination. In this particular case, existing

underwater approaches [16], [18], [19], [20] generally lead to

satisfying results. For this less challenging case, we performed

a quantitative evaluation. We considered the same set of 10

underwater images used by Emberton et al. [20] to assess the

various underwater techniques [19], [15], [17], [18].

As quantitative assessment metrics, we employed two

contrast-based measurements: the hazy visibility metric

(VM) [37] also used in [20], and the recent patch-based

contrast quality index (PCQI) of Wang et al. [38]. Table I

shows that our approach generally achieves the best results

based on the VM and PCQI indexes. This conclusion is

confirmed by careful inspection of the images presented in

Fig. 6.

In summary, while existing underwater approaches are

generally competitive on underwater scenes with reasonable

and uniform illumination, our fusion technique demonstrates

significant improvements when restoring visibility on more

challenging artificially illuminated underwater scenes.
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