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Abstract—This paper presents a fast deblurring algorithm to 

remove camera motion blur from a single photograph using 

built-in gyroscopes and strong edge prediction. An inaccurate 

blur kernel or point spread function (PSF) usually leads to an 

unsatisfying restored result. Hence, we propose a robust three-

phase method for accurate PSF estimation. In the first stage, we 

utilize the embedded gyroscopes to compute a coarse version of 

the PSF from the camera’s angular velocity during an exposure. 

In order to reduce the execution time of the later PSF 

modification, we introduce a patch selection procedure in the 

second stage to choose a suitable region from the blurry image 

based on the size of the coarse PSF estimated in stage one. The 

third phase aims to modify the coarse PSF to obtain an accurate 

one by predicting strong edges from an estimated latent image. In 

our experiments, we compare the restoration performance of 

several state-of-the-art approaches including ours and find that 

the proposed method outperforms others qualitatively as well as 

quantitatively. In addition, our method is also compared with the 

multi-scale approach without gyroscope data and shows shorter 

processing time and comparable deblurring quality. To the best 

of our knowledge, this is the first work that combines the sensor-

aided method with the image-based approach to estimate the blur 

kernel. 

Keywords—motion blur; deblurring; gyroscopes; strong edge 

prediction; point spread function (PSF) 

I.  INTRODUCTION  

A motion blur, caused by relative motion between the 
camera and the image scene during an exposure, is one of the 
most frequent problems in photography especially under a poor 
illumination condition. The goal of motion deblurring is just to 
restore the latent sharp image of the scene from the captured 
blurry image. Motion deblurring is recognized as a complex 
and challenging problem and has been hotly discussed for a 
long time in the computer vision and graphics community. 
Until recently, a lot of image restoration methods have been 
proposed and perform well in motion deblurring. 

Most existing motion deblurring algorithms assume that the 
image blur is spatially invariant. Under this assumption, a 

blurry image B  can be modeled as the convolution of a latent 
sharp image I  with a shift-invariant point spread function 
(PSF) or blur kernel K : 

B I K N   ,                             (1) 

where N  is the noise and   denotes the convolution operator. 

To reconstruct the latent sharp image, we first need accurate 
knowledge of the blur kernel. In recent years, a lot of effective 
approaches have been proposed for kernel estimation. In 
general, we can divide these methods into two main categories: 
sensor-aided methods and image-based approaches. 

Sensor-aided methods utilize the embedded inertial sensors 
to directly measure the camera motion for PSF estimation. 
Joshi et al. [1] used an inertial measurement unit to measure the 
camera’s angular velocity and acceleration and computed the 
blur kernel by reconstructing the camera’s motion path, which 
was followed by related research in [2-5]. These methods can 
easily handle large image blurs and run fast even on high-
resolution images. However, significant error, known as ’drift’ 
and noise, exists when tracking the camera motion using the 
inertial sensors, which finally results in inaccurate motion path 
and undesirable blur kernel. Beyond that, it is not an easy task 
to achieve accurate camera calibration and synchronization 
between the camera and gyroscope samples. 

Image-based methods estimate the blur kernel directly from 
the blurry image using a parametric model. Fergus et al. [6] 
utilized a variational Bayesian framework based on heavy-
tailed natural image prior to estimate the blur kernel. Shan et al. 
[7] also used a probabilistic model of both the blur kernel and 
latent sharp image. Joshi et al. [8] predicted sharp edges of a 
blurry image for PSF estimation and similar approaches are 
applied in [9-11]. Krishnan et al. [12] proposed to use the ratio 

of the 1L  norm to the 2L  norm on the high frequencies of an 

image as the regularization function for blind kernel estimation. 
Although these methods can provide satisfying restored results, 
they usually have long run times since a multi-scale scheme is 
usually used for kernel estimation. 

As described above, both the sensor-aided and image-based 
methods have their own limitations. However, little attention 
has been devoted to combine them. In this paper, we propose a 
robust and efficient method taking the advantages of above two 
methods to estimate the blur kernel. First, we use the embedded 
gyroscopes to measure the camera’s angular velocity during the 

*Jie Ma is the corresponding author. This work was supported in part by 
the Guangdong Innovative and Entrepreneurial Research Team Program under 

Grant 2014ZT05G304, Astronautical Supporting Technology Foundation of 
China CASC2014 and CALT2014, Innovation Research Fund of Huazhong 

University of Science and Technology. 

2016 23rd International Conference on Pattern Recognition (ICPR)
Cancún Center, Cancún, México, December 4-8, 2016

978-1-5090-4846-5/16/$31.00 ©2016 IEEE 728



exposure period and compute an initial PSF by reconstructing 
the camera’s motion path. Then, we select a suitable image 
patch from the blurry image for PSF modification. Last, we 
modify the initial PSF with the selected patch to obtain its 
accurate version based on strong edge prediction. The proposed 
algorithm is completely automatic, robust and fast, and can run 
on any photographic device with gyroscopes, e.g. smartphones, 
digital cameras. The main contributions of the proposed 
research are listed as follows: 

1) We integrate the sensor-aided method with the image-
based approach to obtain an accurate PSF within a short time. 
The proposed method can be applied to any photographic 
device with gyroscopes. 

2) We propose a novel adaptive patch selection method to 
choose a sub-region from the blurry image for PSF estimation 
taking consideration of the processing time. 

We applied the proposed method to real photos from a 
smartphone with gyroscopes and analyzed the restoration 
performance of several deblurring algorithms including ours. 
Experimental results demonstrated that our method performed 
better than other existing methods.  

 

Fig. 1. Proposed framework for motion debluring. (For visualization, the 

image in “Strong Edge Prediction” has been restored from the predicted 

gradient maps by Poisson reconstruction.) 

The remainder of this paper is organized as follows: 
Section 2 discusses the proposed algorithm. Section 3 shows 

the experimental results including the qualitative and 
quantitative comparison with the state-of-the-art deblurring 
methods. The multi-scale approach without gyroscope data is 
also examined. Section 4 presents the conclusion.  

II. ALGORITHM 

The proposed deblurring algorithm to remove camera 
motion blur is depicted in Fig. 1. First, A photograhic device 
with gyroscopes (e.g., a smartphone) is used to capture a blurry 
photo and the gyroscope data. Then, two main steps, including 
PSF estimation and image deconvolution, are taken to deblur 
the captured blurry photo. In the first step of PSF estimation, 
we introduce a three-phase method to estimate an accurate PSF, 
including (1) PSF initialization, (2) patch selection and (3) PSF 
modification. In the second step of image deconvolution, we 
use a simple but fast Wiener filter to recover the latent sharp 
image in consideration of the processing time. More details of 
the proposed algorithm will be discussed in this section. 

A. Three-Phase PSF Estimation 

Existing image-based PSF estimation methods usually 
perform well in image quality but badly in the execution time 
while the sensor-aided methods have short execution time but 
low accuracy. Taking the advantages of above two methods, 
we propose a three-phase method to estimate the blur kernel. In 
the first stage, we efficiently compute a coarse PSF by 
reconstructing the motion path using the gyroscope data. In the 
second stage, we select a sub-region from the blurry image to 
reduce the processing time of the later PSF modification. In the 
third stage, we modify the coarse PSF to obtain its accurate 
version using strong edge prediction. 

1) Phase One: PSF Initialization: In this paper, the 

camera motion is only modeled as a rotation. We ignore 

translations because camera motion blur primarily results from 

rotations. Moreover, we must integrate accelerometer data 

twice to obtain translations, during which process significant 

error usually occurs. Thus, we take no consideration of 

translations in our model. 

 

Fig. 2. Pinhole camera model. (A ray from the camera center O  to an 

object point Q  in the image scene will intersect the image plane at point q .) 

Our rotational camera model is based on the pinhole camera 

model, as shown in Fig. 2. If the camera shakes during the 

exposure peroid, the projection point q  in the image plane, 

corresponded with the object point Q  in the image scene, will 

move with the camera and generate the motion path. The blur 

kernel is only related to the relative poisition of the camera 

during an exposure. If the embedded gyroscope samples K  

different rotations in this period, K  different projection points 
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 , , 0,1,2,..., 1k k kq x y k K   will be computed as: 

    1
0 0, , ,1

T T

k k kx y CR C x y  .                (2) 

Here C  is the camera intrinsic matrix and kR  is the rotation 

matrix.     denotes a projection that transforms a point 

 , ,x y z  in the 3-D space to the corresponding point  ,x y   in 

the image plane: 

    , , ,
T T

x y z x z y z  .                          (3)  

For simplicity, we assume that the optical axis of the 
camera is aligned with the z  axis and the camera intrinsic 

matrix C  is only related to the focal length f  of the camera. 

The image blur is assumed to be spatially invariant. Then we 
get the simplification of (2): 

     0 0, , ,
TT T y x

k k kkx y x y f     ,                 (4) 

where x
k  and y

k  represent the k th camera orientation around 

x  and y  axis, which can be obtained by integrating gyroscope 

data only once. To improve the kernel’s accuracy, we can 
interpolate the camera orientation from known samples.  

2) Phase Two: Patch Selection: The coarse PSF estimated 

in phase one is usually inaccurate due to its involvements of 

many challenges in accurate motion measurement, camera 

calibration and synchronization between the camera and 

gyroscope data. Therefore, we propose a PSF modification 

procedure to correct the coarse PSF to obtain its version using 

an image-based method. It takes a long time to process the 

entire image for the kernel modification. Yang et al. [13] 

proposed to use the Harris corner detector to choose a small 

patch from the blurry image to estimate the blur kernel. But 

corners are not always beneficial for kernel estimation. In this 

section, we propose a novel adaptive patch selection method by 

measuring the usefulness of image edges in motion deblurring. 
In [10], Xu et al. found that not all strong edges are useful 

for PSF estimation. Only the large-scale object that’s wider 
than the kernel can yield stable kernel estimation. They 
proposed a new metric to measure the usefulness of image 
edges in motion deblurring, which was define as 

 
( )

( )

( )

( ) 0.5

h

h

y N x

y N x

B y
r x

B y








 




,                   (5) 

where  hN x  is a h h  window centered at pixel x , and the 

constant 0.5  is to prevent producing a larger r  in flat regions.  

A small r  implies either a flat region or small-scale 
object, which is exactly not suitable for kernel estimation. To 
measure the fitness of a region being the patch, we introduce a 
fitness function defined as 

   
1

p
p

x W
f p r x

Z 
  ,                           (6) 

where pW  is a w w  window centered at pixel p , pZ  is a 

normalization term. A higher fitness value at pixel p  means 

that the region around p  contains more large-scale objects 

profiting the kernel estimation. 

In order to filter out smaller-scale objects in the input blurry 

image, the size of the window  hN x  is set to the coarse PSF 

estimated in phase one. The size of the window pW  is set to the 

patch size, which is also related to the blur kernel. Considering 
both the processing time and stability of kernel estimation, we 
set the edge length of the patch to 20  of the coarse PSF. 

As shown in Fig. 3, we compare the deblurring results of 
five different patch selection approaches, including (1) our 
method, (2) Yang’s method [13], (3) the region with maximum 
gradient magnitude, (4) the central region and (5) the whole 
image. As shown in Fig. 3(b), using our method finds the patch 
with many large-scale objects and produces a satisfying 
deblurring result. Using (2) and (3) usually finds the similar 
region containing many spikes or narrow objects and yields 
unstable kernel estimation, as shown in Fig. 3(c)-(d). Using the 
central region usually finds the most salient part of an image 
and needs no additional computation. However, sometimes the 
central region may be flat or contain many narrow objects and 
makes the kernel estimation ambiguous. Using the whole 
image usually produces the best restored result but has a long 
execution time, as shown in Fig. 3(f). With the proposed 
method, we can find a suitable region containing as many 
large-scale objects as possible to profit the kernel estimation.  

 

Fig. 3. Different patch selection methods and the corresponding deblurring 

result. ((a) the blurry image and its local window. (b)-(f) the selected patches 

of different methods and deblurring results of the local window.)  

3) Phase Three: PSF Modification using Strong Edge 

Prediction: In this section, we introduce a method to modify 

the coarse PSF to obtain an accurate one with the patch pB  

selected in phase two. What’s different from existing image-

based method is that we need neither define the initial kernel 
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size or use a multi-scale scheme since the initial PSF has been 

estimated in the first stage. The proposed PSF modification 

method directly corrects the coarse blur kernel with an iterative 

process on the selected patch. Each iteration can be divided 

into three main steps – that is, coarse image deconvolution, 

strong edge prediction and PSF estimation. 

a) Coarse Image Deconvolution: Given a blur kernel K , 

we solve for a coarse version of the latent image patch pI  

from the selected blurry image patch pB  by minimizing the 

energy function： 

 
2 2

p p p pE I I K B I     .                (7) 

A conjugate gradient (CG) method can be taken to solve the 
problem. The closed-form solution exists and is given as 

   

            
1

+

p

p

x x y y

F K F B
I F

F K F K F F F F



 
 
 

     
 

, 

(8) 

where  F   and  1F    denote the FFT and inverse FFT 

respectively.  F   is the complex conjugate operator .   is the 

regularization weight controlling the smoothness of pI . 

b) Strong Edge Prediction: In the prediction step, we 

estimate the strong edges s
pI  of the latent image patch pI . 

First we perform bilateral filtering [14] to the current latent 

image patch pI  to suppress the noise. Then A shock filter [15] 

is used to reconstruct the strong edges of pI . The shock 

filtered image contains not only sharp edges but also enhanced 

noise. So a threshold filter is performed to suppress the 

enhanced noise, whose evolution equation is formulated as 

  s
p p p pI I H I M I       ,                 (9) 

where  H   and  M   denote the Heaviside step function and 

the maximum function respectively.   is a threshold. 

c) PSF Estimation: To estimate the blur kernel K  using 

the predicted strong edges s
pI , we minimize the energy 

function： 

 
2 2s

p pE K I K B K     ,               (10) 

where   is the adjustable weight to control the sparseness of 

the blur kernel. The close-form solution for K  is given by 

       

       
1

s s
x p x p y p y p

s s s s
x p x p y p y p

F I F B F I F B
K F

F I F I F I F I 



     
 
       

.    (11) 

At the end of each of each iteration, we set elements with 

values smaller than 1 50  of the biggest one to zeros and 

preserve the maximum component for kernel denoising. Then, 
we normalize K  to make the sum of the blur kernel to be one. 

It’s important that iterative PSF modification converges in a 
limited number of iterations. Fig. 4 shows the convergence 
speed of the iterative process. The graph shows that the change 
rate of PSF drastically decreases to near zero only in a few 
iterations, where the change rate of PSF is measured by the 
sum of pixel-wised squared differences between the estimated 
kernels of two adjacent iterations. It means that the estimated 
kernel has little change after several iterations and the iterative 
PSF modification converges fast. The visualized kernels also 
show that the estimated kernel has no significant change after a 
few iterations are performed. 

 

Fig. 4. Convergence speed of iterative PSF modification. ((a) blurry image. 

(b) the change rate of PSF (vertical) vs. number of iterations in PSF 
modification. (c) estimated kernels after different numbers of iterations.)  

B. Final Image Deconvolution 

We can recover the latent sharp image from the blurry input 
image with the accurate estimated PSF. Most state-of-the-art 
non-blind deconvolution algorithms require computationally 
expensive iterative optimization. To remove the camera motion 
blur in a short time, we use a simple Wiener filter in the form 

 

 

 
 

2

1

2

1ˆ
F K

I F F B
F K F K 



 
 
  

,                  (12) 

where Î  is the estimated latent image and   is an estimation 

of the signal-to-noise ratio. 

III. EXPERIMENTAL RESULT  

In our experiments, we first use a smartphone with Android 
OS to capture various kinds of real photos. Then we utilize a 
personal computer with MATLAB R2016a to estimate the blur 
kernel and reconstruct the latent sharp image. The experimental 
computer is equipped with 3.30GHz CPU and 8GB RAM. Fig. 
5 shows our main experimental workflow. In PSF modification 
step, the parameter   in (7) is set to 0.01,   in (9) is set to 

0.2  and   in (10) is set to 80 . In final image deconvolution 

step, the parameter   in (12) is set to 0.01 . Considering the 

execution time and the accuracy of PSF, we perform seven 
iterations when modifying the coarse PSF. 
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Fig. 5. Basic experimental workflow 

Our method is compared with two types of state-of-the-art 
methods including sensor-aided method [3] and image-based 
approaches [7,9,12] , qualitatively as well as quantitatively. Fig. 
6 shows the restoration results of different image deblurring 
methods. Fig. 6(b) contains serious ringing artifacts when only 
gyroscope data is used. Fig. 6(c) and (e) contain large artifacts 
too. Although Fig. 6(d) removes more motion blur, it has 
unnatural discontinuities and intensity saturation. The result 
with our method outperforms others. 

 

Fig. 6. Qualitative comparison of different image deblurring methods. ((a) 

blurry image. (b)-(e) deblurring results of [3],[7],[9] and [12]. (f) deblurring 

result of our method.) 

For quantitative comparison, we utilize the non-reference 
quality assessment method proposed in [16] to evaluate the 
quality of motion deblurring. A higher assessment score value 
implies higher deblurring quality. As shown in Fig. 7, we 
restore four 1280 720  real photos using different methods 

and compare the assessment scores. The graph shows that our 
method gets comparable or higher scores and performs the best.  

Table I compares the processing times using five different 
deblurring methods for the deblurring examples in Fig. 7. Our 
method runs faster than others except Šindelář’s method [3], in 
which only gyroscope data is used. For accuracy consideration, 
our method performs an additional iterative process to correct 
the coarse kernel. 

Our method is also compared with the approach without 
gyroscope data. When using no gyroscope data, we utilize a 

multi-scale scheme to estimate the blur kernel in a coarse-to-
fine process. At each scale, we perform the same iterative 
process with the proposed method to update the blur kernel and 
latent sharp image. For efficiency comparison, we use the 
whole image to estimate the blur kernel without patch selection 
procedure and apply the Wiener filter to recover the latent 
sharp image for both methods. A limitation of multi-scale 
method is that we must define the initial kernel size while our 
method can estimate the coarse kernel using gyroscope data. 
Here, we set the initial kernel size to the coarse kernel. The 
difference of above two methods is that our method corrects 
the coarse kernel on original blurry image while the multi-scale 
approach updates the blur kernel on created image pyramid.  

Table II compares the assessment scores and processing 
times of our method and the multi-scale approach without 
gyroscope data for the deblurring examples in Fig. 7. Our 
method shows comparable deblurring quality and shorter 
processing time. It’s demonstrated that the gyroscope data is 
useful for estimating the coarse kernel and improving the 
computational efficiency. 

 

Fig. 7. Quantitative comparison of different image deblurring methods. (Left: 

assessment scores of motion deblurring. Right: four real photos.)  

TABLE I.  COMPARESION OF PROCESSING TIMES OF FIVE DIFFERENT 

METHODS (SEC.) 

Real 
Photo 

Method 

[3] [7] [9] [12] Ours 

#1 0.91 180.00 9.73 105.18 2.25 

#2 0.81 182.00 9.79 104.26 1.72 

#3 0.91 180.00 9.72 120.45 2.58 

#4 0.94 181.00 9.84 93.95 3.21 

TABLE II.  COMPARESION OF RESTORATION PERFORMANCE OF TWO 

DIFFERENT METHODS 

Real 
Photo 

Kernel 
Size 

Score Processing Time (Sec.) 

Multi-scale Ours Multi-scale Ours 

#1 2525 -8.53 -8.49 9.00 5.25 

#2 2121 -8.16 -8.04 10.40 4.91 

#3 2929 -8.80 -8.51 11.35 5.26 

#4 3333 -8.69 -8.73 10.01 5.33 
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IV. CONCLUSION 

In this paper, we have proposed a novel motion deblurring 
method to remove camera motion blur from a single blurry 
image. It’s completely automatic, robust and fast, and can be 
applied to any photographic device with gyroscopes. This is the 
first work that attempts to integrate the sensor-aided method 
with the image-based approach to estimate the blur kernel. The 
combination of the two methods has several advantages 
compared with either of them, which are listed as follows: 

1) It successfully combines the computational efficiency of 

the sensor-aided method with the accuracy of the image-based 

approach. 

2) It overcomes several problems of the sensor-aided 

method, such as inaccurate camera calibration, difficult 

synchronization between camera and gyroscope data and 

significant measurement error. 

3) It breaks through several limitations of the image-based 

method, such as additional user parameter and the multi-scale 

scheme. 
In order to further reduce the execution time, we propose a 

novel adaptive patch selection method to choose a sub-region 
from the blurry image for the kernel modification. The 
experimental results demonstrate that our method performs 
better than the state-of-the-art image deblurring methods 
qualitatively as well as quantitatively. In addition, the 
gyroscope data profits coarse kernel estimation and 
computational efficiency. In the future work, we would like to 
take the camera translation into consideration for further 
improving the accuracy of the coarse kernel. 
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