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Abstract—In this paper we introduce an algorithm for 3D
motion estimation in point clouds that is based on Chasles’
kinematic theorem. The proposed algorithm estimates 3D motion
parameters directly from the data by exploiting the geometry
of rigid transformation using an evidence gathering technique
in a Hough-voting-like approach. The algorithm provides an
alternative to the feature description and matching pipelines
commonly used by numerous 3D object recognition and regis-
tration algorithms, as it does not involve keypoint detection and
feature descriptor computation and matching. To the best of our
knowledge, this is the first research to use kinematics theorems
in an evidence gathering framework for motion estimation and
surface matching without the use of any given correspondences.
Moreover, we propose a method for voting for 3D motion
parameters using a one-dimensional accumulator space, which
enables voting for motion parameters more efficiently than other
methods that use up to 7-dimensional accumulator spaces.

I. INTRODUCTION

The recent and considerable progress in 3D sensing tech-
nologies mandates the development of efficient algorithms
to process the sensed data. Many of these algorithms are
based on computing and matching of 3D feature descriptors in
order to estimate point correspondences between 3D datasets.
The dependency on 3D feature description and computation
can be a significant limitation to many 3D perception tasks;
the fact that there are a variety of criteria used to describe
3D features, such as surface normals and curvature, makes
feature-based approaches sensitive to noise and occlusion. In
many cases, such as smooth surfaces, computation of feature
descriptors can be non-informative. Moreover, the process
of computing and matching features requires more compu-
tational overhead than using points directly. On the other
hand, there has not been much focus on employing evidence
gathering frameworks to obtain solutions for 3D perception
problems. Evidence gathering approaches, which use data
directly, have proved to provide robust performance against
noise and occlusion. More importantly, such approaches do
not require initialisation or training, and avoid the need to
solve the correspondence problem.
Accurate motion parameter estimation is based on invariant
properties that can be inferred from the motion [1]. In this
paper we investigate the Chasles’ theorem [2] in the context
of computer vision and develop evidence gathering methods
employing rigid geometric constraints based on the analysis of
corresponding points between 3D point clouds. More specifi-
cally, we are interested in estimating the rigid transformation
between 3D datasets without the use of keypoint detection and

feature description and matching methods. We present a novel
approach that estimates 3D motion parameters directly from
the data by exploiting the geometry of rigid transformation
using an evidence gathering technique in a Hough-voting-
like approach. The developed algorithm is based on the
observation that:
There is one and only one invariant axis that synthesises the
rigid body transformation in 3D.
When the transformation is rotation only, this invariant axis
is the rotation axis; when the transformation includes rotation
and translation the invariant axis is the screw axis.
The algorithm tracks the motion between two frames (point
clouds) and estimates a number of candidates for the screw
axis using Chasles’ theorem, and implements a voting al-
gorithm to select the screw axis with the most likely pa-
rameters (3D position and orientation), then computes the
rotation angle and linear displacement along the screw axis
to estimate the full motion parameters. According to [3],
kinematics theorems such as Chasles’ theorem, have been
widely used in kinematics and mechanics to analyse the
nature and characteristics of rigid body motions. However,
the implications of this theory for computer vision have not
been properly considered.
It appears that this is the first research to use the kinematics
theorems in an evidence gathering framework for motion
estimation and surface matching without the use of any
given correspondences and also without employing feature
description and matching.
This paper is structured as follows: First we discuss related
work, in terms of motion estimation using geometrical analy-
sis, we also discuss methods that use a Hough voting scheme
to vote for motion parameters. Second, we give a detailed
overview of our algorithm with establishing the foundations
for understanding its methodology. Then we validate and
verify the theory and give experimental analysis. After that we
show experimental results on real data and finally we evaluate
the performance of the algorithm and conclude this paper.

II. RELATED WORK

A. Motion Estimation By Geometrical Analysis
A number of researchers have presented geometric con-

straint frameworks based on invariant properties of 3D rigid
transformations to analyse transformation parameters. A key
element of the geometric analysis is formulating algebraic
constraints between a rotated and translated model and the
observed features [4]. The constraints are aimed to define or
refine the set of allowable positions for the object, consistent
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with the observed features. In [5], the authors presented a
method for kinematic registration that is based on specifica-
tions of line features. In this method, kinematic registration
involves computation of the screw parameters of a motion
from specified positions of geometric features of the moving
body. The problem is formulated using a special complex of
lines associated with kinematics namely the bisecting linear
line complex. The methods presented in [6], [1], [3] are the
first approaches to extend Chasles’ screw motion concept
to the estimation of motion parameters in computer vision.
The authors formalise the relevant geometric properties of
corresponding vectors by providing methods to construct the
rotation point or axis and estimate a number of solutions
for the point or axis. These methods analyse the geometric
properties of vectors connecting corresponding feature points
and their angular information, synthesised into a single coor-
dinate frame, and define relevant constraints from the point
of view of geometric invariants. These methods are superior
to methods based on perspective and epipolar geometries
because they are based on explicit expressions of distance
between feature points and angle measurements rendering
them appropriate to calibrate transformation parameters in
vision applications.
Several geometric constraints have been identified [4] for
estimating surface positions, given information about the
shapes of planar surface patches and the relationships be-
tween the model and data patches. These constraints include
position constraints, defined by algebraic relationships be-
tween vectors and data-to-model patch constraints which are
based on aligning normals and on proximity and distance
between points on the surface.
A method was introduced by [7] for motion estimation based
on the analysis of rigid motion equations as expressed in
geometric algebra framework. This method finds the corre-
spondences of two 3D points sets by finding a certain 3D
plane in a different space that satisfies certain geometric
constraints using tensor voting. This method estimates the
rigid transformation by producing a set of putative correspon-
dences and uses them to populate joint spaces. If any rigid
transformation exists in the set of correspondences, then four
planes must appear in these spaces.

B. 3D Motion Estimation by Hough Voting
There has been a number of 3D motion estimation methods

for 3D object recognition and registration that are based on
voting schemes. More specifically, these methods employ
a voting process to obtain an accurate transformation hy-
pothesis from the matched features. According to [8], these
methods estimate the 6 DoF pose between 3D data sets by
first generating an empirical distribution of pose through the
collation of a set of possible poses, or votes, which are often
computed by matching local features, from a test object to
those in a library with known pose. And then finding one or
more best poses in the distribution which is the maximum
(or peak) in a parameter space (also called Hough space).
To summarise, Hough transform based methods for object
recognition largely follow the same pipeline: features are
detected and descriptors for the features are computed. The
votes are then computed by matching features in the test data

Method Parameters Hough Space Feature
Tsui & Chan [14] R, t 2 × 3D Line segments

Hu [15] t 3D Edges
Khoshelham [13] R, t, s 7D Surface normals
Ashbrook et al.[9] R, t 2 × 3D PGH
Knopp et al.[12] R, s 4D 3D SURF
Wang et al.[16] t 4D HOG

Tombari & Stefano [11] t 3D SHOT
Our Method R, t 1D -

TABLE I: Comparison of Hough-based pose estimation methods. Second
column shows pose parameters each method votes for (R: rotation, t: 3D
position, s: scale), third column shows the dimensionality of the voting
(Hough) space and fourth column shows the feature used for matching.
(PHG ≡ Pairwise geometric histograms.)

with features from training data with ground truth scale and
pose. These methods mainly differ in the type of features
they employ, and also the metrics used to match the features.
For example [9] use Bhattacharyya metric [10] to find the
similarity between pairwise geometric histograms, while [11]
use the SHOT features with Euclidean Distance metric. In the
next step, pose hypotheses are generated from each matched
feature pair, and votes are accumulated in a high dimensional
Hough space. The dimensionality of the Hough space depends
on the parameters being voted for; for example [12], votes
for the 3D position parameters and scale; hence a 4D Hough
space, while [13] votes for position, rotation and scale and
hence a 7D Hough space. Finally a search for the highest
votes (peaks) is implemented, and the peak parameters are
considered to be the transformation hypothesis. Table I shows
details of Hough based methods.
The algorithm presented in this paper has the advantage of
having a one-dimensional space. This significantly reduces
the complexity of allocating and searching the accumulator
spaces.. This is achieved by representing the transformation as
one axis and then voting for similarity between axes in terms
of position and direction. and searching the high dimensional
accumulator spaces that other methods suffer

III. MOTION ESTIMATION BY EVIDENCE GATHERING

In this section we inroduce an algorithm which employs
Chasles’ theorem [2] to estimate the screw axis describing
the rigid motion. The algorithm is divided into two stages,
the evidence gathering algorithm and the voting algorithm.
In the evidence gathering algorithm, Chasles’s theorem is
applied iteratively on two 3D point clouds, taking three
correspondences at each iteration, and the estimated screw
parameters are stored along with their three corresponding
point pairs. The voting algorithm is applied on the stored axes
to find the best estimation of the true screw axis representing
the 3D motion.

A. Chasles’ Theorem

Chasles’ theorem states:
Any rigid body displacement in 3D can be produced by a
rotation around a line followed by a translation along that
line.
In other words, any motion in 3D can be represented by a
rotation around a single axis and a translation parallel to that
axis, this axis is referred to as the screw axis and as this
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motion is reminiscent of the displacement of a screw, it is
called a screw motion.

To define a screw 3D transformation between two frames,
the screw axis hc, the rotation angle θ and the pitch η must
be specified. The pitch is the ratio of the linear displacement
to the rotation. For a pure translational motion, the screw axis
is not unique; since the rotation is zero, the screw axis will
have infinite pitch.

According to [1], given three 3D correspondences
(pi, p

′
i), {i = 1, 2, 3}, their correspondences vectors di (Equa-

tion 2) can be evaluated. If the difference of correspondence
vectors are not parallel, then the screw axis directional vector
h = [hx, hy, hz]

>can be uniquely determined as:

h =
(d2 − d1)× (d3 − d1)

‖(d2 − d1)× (d3 − d1)‖
(1)

This equation holds for all true correspondences, i.e. all
vectors resulting from the cross product of vector difference
between all true correspondences coincident at the same axis,
which is the screw axis.

di = pi − p′i = [xi, yi, zi]
> − [x′i, y

′
i, z
′
i]
> (2)

Note that Equation 1 describes only the direction of the screw
axis, and hence a point on the axis is required to complete
its definition. Once h is computed, any correspondences
(pi, p

′
i) are projected on a plane perpendicular to h, using

the equation:

p = (I − hh>)p , p′ = (I − hh>)p′ (3)

where I is the identity matrix. Given two non-parallel pro-
jected correspondence vectors (d1,d2) evaluated from two
projected correspondences (d1 = p1 − p′1, d2 = p2 − p′2),
the critical point c in 3D can be uniquely estimated by:

c =
p2
>p2 − p′2

>
p′2

2(d2)>H(d1)
H(d1) +

p1
>p1 − p′1

>
p′1

2(d1)>H(d2)
H(d2) (4)

Where the matrix H is given by:

H =

 0 −hz hy
hz 0 −hx
−hy hx 0

 (5)

Together the direction of the screw axis h and the critical
point c define the screw axis hc in 3D space, the screw axis
can be written as:

hc = c+ uh (6)

The screw access hc has interesting geometric properties;
according to [6], hc is equidistant to any 3D correspondences
(pi, p

′
i) and the including angle between the lines passing

through (pi, p
′
i), perpendicular to and intersecting hc is equal

to the rotation angle θ of the transformation, Figure 1.
Moreover, the critical point c also has interesting geometric
properties which are summarised by the following property:
There is one and only one invariant point c in 3D which
is equidistant to the projected correspondences (p, p′) on the
plane perpendicular to the screw axis h = (hx, hy, hz)

T and
the including angle between vectors (p − c) and (p′ − c) is
equal to the rotation angle θ around the screw axis. Moreover,

Fig. 1: The relationships among correspondence (p, p′), critical point c,
critical (screw) axis hc, and translation vector t in 3D. Left, given a
transformation (R, t) the rotation axis (screw axis direction) h and rotation
angle θ are determined. Right, corresponding pairs (p, p′) and the translation
vector t are projected on a plane perpendicular to h. The critical point c is
determined at the intersection of the bisector lines (p, p′) and t. The critical
point determines the position of the critical axis hc where the vectors cp
and cp′ are of equal length with the including angle equal to the rotation
angle θ of the transformation. Source [6].

the vertical bisector of the projected translation vector t on
this plane also intercepts at the same point, Figure 1. This
property can be formalised by the following equations:∥∥p− c

∥∥∥∥p′ − c
∥∥ = 1 (7)

cos(θ) =
(p− c)>(p′ − c)∥∥p− c

∥∥∥∥p′ − c
∥∥ (8)

Given a homogeneous transformation matrix (T = [R|t]), a
conversation to screw axis representation (hc = c+ uh) can
be achieved by the following equations:

h =
l

2θ sin θ
, c =

(I −R)t
2(1− cos θ)

(9)

Where I is the identity 3 × 3 matrix, and l, θ are given by
the following equations:

l = [ (R32 −R23) (R13 −R31) (R21 −R12) ] (10)

θ = sign(l× t)

∣∣∣∣cos−1(R11 +R22 +R33 − 1

2

)∣∣∣∣ (11)

Proofs of the above equations can be found in [17].

B. Algorithm for 3D Motion Estimation
The algorithm is divided into two stages, the evidence

gathering algorithm and the voting algorithm. In the evidence
gathering algorithm, Chasles’ theorem, summarised in Equa-
tion 6, is applied iteratively on the two point clouds, and the
estimated parameters of the screw axis are stored along with
their three corresponding point pairs. The voting algorithm
is applied on the stored axes to find the best estimation of
the true screw axis. The three displacements must be non-
parallel (d1 6‖ d2 6‖ d3), and the absolute difference of
distances between points on the same cloud should be below
a certain threshold α. Since three points on each cloud are
taken at each iteration, we set this difference to be between
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for (i = 0; i < M − 1; i++) do
for (k = i+ 1; k < M − 1; k++) do

for (o = k + 1; o < M − 1; o++) do
for (j = 0; j < M ′ − 1; j++) do

for (l = 0; l < M ′ − 1; l++) do
for (w = 0; w < M ′ − 1; w++) do

if ( j 6= l and l 6= w and j 6= w)
then

if ( (d1 6‖ d2 6‖ d3) and
( |dmin1 − dmin2| < α)) then

Compute hc

Save h, c in L
Save (i, j) , (k, l), (o, w)

end
end

end
end

end
end

end
end

Algorithm 1: Evidence gathering for 3D motion.

the smallest distances between the three pairs on each cloud
(dmin1, dmin2).

Due to a potentially large number of invalid correspon-
dences, even with imposing geometrical constraints, it is nec-
essary to use a voting algorithm to obtain accurate estimates
for the rotation axis. The algorithm identifies the largest
cluster of similar axes. Axes estimated from erroneous cor-
respondences will be randomly distributed in space, whereas
correct correspondences will be closely aligned. To calculate
the clusters efficiently, a pair of thresholds are used.

The first threshold (tdir), is the minimum value that the
dot product between the two axes can take. Axes that are
in approximately the same direction will have a dot product
close to 1. As the axes become more divergent the dot
product value will approach -1, this is usually referred to
as cosine similarity. The axes might have similar orientations
but opposite directions, hence the absolute value is taken. The
second threshold (tpos) is the maximum Euclidean distance
between the axes. The optimal threshold values for the voting
algorithm can be identified by calculating the most generous
pair of thresholds that correctly identify the true axis in a
training data set. Once Algorithm 2 is implemented, and
the screw axis with the most consensus ḣc is determined,
the rotation matrix R and the 3D trasnslation vector t are
computed by the following equations:

R = I −H sin θ + (1− cos θ)H2 (12)

t = (I −R>)c+ hh>ḋ (13)

where I is the identity 3× 3 matrix, θ is defined in Equation
8, and ḋ is the linear displacement (ṗ − ṗ′) computed from
any pair of the three pairs of point correspondences indexed
with ḣc. The derivation of equations 13 and 12 can be found
in [6].

for (i = 0; i < L; i++) do
for (j = i+ 1; j < L; j++) do

if (|hi · hj | > tdir) then
if (‖ci − cj‖ < tpos) then

Accumulator[i]++
Accumulator[j]++

end
end

end
end
Search Accumulator for peak.

Algorithm 2: Voting for invariant axis.

Fig. 2: 2.5D point cloud rotated and translated in 3D, ground truth screw
axis representing motion in green.

Fig. 3: Estimated screw axis with its associated three pairs of correspon-
dences. The estimated axis (purple) perfectly coincides with ground truth
screw axis (green).

IV. ANALYSIS

The algorithm is verified by implementing it on two 2.5D
point clouds of the same object rotated and translated in
3D, note that the two point clouds have partial overlap. The
corresponding ground truth screw axis hg, shown in 2, of this
transformation is computed using Equation 9 is equal to:

hg =

 175

0

−25

+ u

 0

1

0

 (14)

The ground truth screw axis has a rotation angle θ of 90◦
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Fig. 4: Histogram of votes for axes generated by Algorithm 2.

and a pitch η = 3.197. Algorithm 2 is implemented to find the
screw axis ḣc best describing the 3D transformation. Figure
3 shows ḣc and the three pairs of estimated corresponding
points ((ṗ1, ṗ1′), (ṗ2, ṗ2′), (ṗ3, ṗ3′)), it is clear in the figure
that the estimated screw axis ḣc perfectly coincides with the
ground truth screw axis. From ḣc and any of the associated
three point pairs, the motion parameters are computed using
equations 12 and 13.
Figure 4 shows the histogram of axes in terms of number
of votes, note that the number of axes having the maximum
number of votes is equal to the maximum number of votes,
which confirms the methodology of the voting algorithm.
In the presented algorithm, the voting is not for the actual
motion parameters, it is actually for the axis representing
the motion. Hence its accumulator space is one-dimensional
(counter), defined only by the number of points of the object;
as opposed to other methods, such as those in Table I, which
their accumulator spaces are defined by the resolution (bin
size) and ranges of motion and rotation parameters, in addition
to the number of points. Moreover, the application of the
axes similarity thresholds (tdir, tpos) discards a large number
of axes from the voting process; only axes passing the two
thresholds cast votes in the 1D space. However, other methods
will vote for motion parameters generated from all points
(or features) in a high dimensional space. So not only the
accumulator space dimensionality of the presented algorithm
is smaller, but also the size of the accumulator itself, i.e.
number of votes, is smaller. In other words, using axes to
vote for motion parameters makes the accumulator array
“dynamic” rather than a “large” predefined high-dimensional
array. Hence the presented algorithm will have improved
memory requirements.

V. RESULTS

Figure 5 shows the result of implementing the proposed
algorithm on point clouds rotated and translated in 3D space.
The performance of the algorithm can be be seen from the
figure as the screw axis is estimated with minimal errors. Once
the screw axis, the rotation angle and the linear displacement
are estimated, Equations 12 and 13 are applied to obtain
the homogeneous transformation parameters. Details of the
implementation are in Table II. Note that the point clouds are
subsampled by applying a voxel grid and approximating the
points withen each voxel to one point.

Fig. 5: Results of implementing general motion estimation algorithm on
different point clouds. Ground truth screw axis in green, estimated in purple.

Fig. 6: Registration result using motion estimated by proposed algorithm.

VI. EVALUATION

Figures 7 to 9 show the positional, directional and angle
offsets between the ground screw axis and the estimated
screw axis at increasing voxel size (subsampling step). The
performance of the algorithm degrades as the larger the voxel
size used in subsampling, the larger the volume that will
contain surface points that will be approximated to one point.
As more points are approximated to one point, less points are
included in the evidence gathering process. Also, the larger
the voxel size is, the larger the Euclidean distance between
the subsampled point and the original surface points. Hence
the axis estimation becomes less accurate.

PC dms (mm3) epos edir eθ(
◦) D Time(s)

Fruits 175× 64× 217 0.01 0.0 0.65 0.1 34.56
Teddy 47× 22× 28 0.04 0.0 0.01 5.3 14.87
Disc 231× 29× 197 2.68 0.03 2.53 1.9 57.76

TABLE II: Performance of motion estimation algorithm. Columns: point
cloud name, dimensions, positional offset (mm), directional offset, angle
offset, difference between the ground truth linear displacement along the
screw axes and the measured displacement along estimated axis (mm) and
processing time.
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Fig. 7: Positional offset against increasing voxel size.
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Fig. 8: Directional offset against increasing voxel size.
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Fig. 9: Angle offset against increasing voxel size.

VII. CONCLUSION

In this paper, we presented a novel algorithm for 3D motion
estimation in point clouds that is based on Chasles’ kinematic
theorem. The algorithm estimates 3D motion parameters di-
rectly from the data by exploiting the geometry of rigid trans-
formation using an evidence gathering technique in a Hough-
voting-like approach. It does not involve keypoint detection
and feature descriptor computation and matching, and hence
it can be used as an alternative to the feature description and
matching pipelines commonly used by numerous 3D object
recognition and registration algorithms. To the best of our
knowledge, this is the first research to use the kinematics
theorems in an evidence gathering framework for motion
estimation and surface matching without the use of any given
correspondences. We discussed similar related work, in terms
of motion estimation using geometrical analysis and Hough
voting, and showed that how voting for motion parameters can

be achieved in only one-dimensional space instead of a multi-
dimensional one. Experimental analysis and evaluation have
been provided, and results of implementing the algorithm on
real point clouds have been shown and analysed.
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