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Abstract—The problem of re-identify persons across single
disjoint camera-pairs has received great attention from the
community. Despite this, when the re-identification process has to
be carried out on a large camera network a different approach
has to be considered. In particular, existing approaches have
neglected the importance of the network topology (i.e., the
structure of the monitored environment) in such a process. To try
filling such a gap, we propose a Distributed and Unsupervised
Cost-Driven Person Re-Identification framework (DUPRe) which
introduces the following contributions: (i) a camera matching cost
to measure the re-identification performance between nodes of
the network; (ii) a derivation of the distance vector algorithm
which allows to learn the network topology hence to prioritize
and limit the cameras inquired for the re-identification. Results
on two benchmark datasets show that our solution brings to
significant network-wise re-identification improvements.

I. INTRODUCTION

In a wide area scene analysis set-up, different issues arise
and deny the deployment of camera networks that provide full
area coverage. To obtain information across the uncovered
areas, new inter-camera data association approaches which
allows long term target tracking are needed. When the target
is a person, the solution can be achieved by means of person
re-identification approaches [1].

The task of re-identify persons in a wide area camera
network presents different issues like illumination variations,
scale, viewpoint and pose changes. To address such challenges,
existing approaches have followed three main lines of research.

Discriminative signature based methods: Clothing
patches [2], dense region-based structures [3] and their
spatial relationships [4] were explored to extract different
color, texture and shape features. Recently, multiple frame
analysis techniques [5], [6], coupled dictionaries exploiting
labeled and unlabeled data [7] and sparse discriminative
classifiers ensuring that the best candidates are ranked at each
iteration [8] were proposed.

Feature transformation based methods: A first work in such
direction learned a brightness transfer function [9] to transform
features between camera dependent spaces. Later, the idea
that the feature transformation is not unique was investigated
in [10]. Poses and viewpoint changes were also exploited
in [11] to select the optimal classifier.

Metric learning based methods: Several methods were pro-
posed to learn a Mahalanobis metric [12] often relying on
equivalence constraints [13]. Metric ensembles [14], transfer
learning set ups [15] and re-ranking solutions [16] were also

investigated. Recently, works focused on local distance com-
parison problems [17], similarity metric learning and listwise
similarities [18].

Almost all such methods consider the problem of re-identify
a person between a single camera pair only. When used in a
large camera network they require the exchange of a huge
amount of data (person signatures) and may also lead to
many false matches. In addition, such works are neglecting
the information brought in by the network topology and the
environment structure which can be exploited to improve the
re-identification. In this direction, the paths of the people
inside the monitored area generate different correlation degrees
between camera pairs (e.g., cameras with similar vs different
views). We think that exploiting such correlation degrees for
person re-identification can increase the performance.

With respect to all existing methods, the closest ones to
our approach have been proposed in [19], [20], [21]. Though
sharing the network-wise re-identification idea, [19] differs
from our work since it assumes that network topology can
be learned using spatio-temporal constraints. In [20], the goal
is to provide a feature selection method that minimizes the
data needed to represent the appearance of objects. In [21],
authors aim to maintain re-identification consistency across
the network. Contrarily, our approach focuses on the selection
of the optimal subset of cameras to inquire.

Specifically, we propose a framework that exploits the
principles of the distance vector routing algorithm to perform
the re-identification in a distributed fashion. In particular, it
introduces: (i) a camera-pair matching cost as a measure of
the correlation degree; (ii) a derivation of the distance vector
routing algorithm that exploits the camera-pair matching cost
to learn the network topology in an unsupervised fashion.
These contributions allow us to prioritize and limit the cameras
inquired for person matching. In addition, the update rule
of the proposed distance vector routing algorithm leads to
network adaptation over time.

II. THE DUPRE FRAMEWORK

As shown in Fig.1, the DUPRe framework is organized in
two stages.

During the unsupervised learning phase, gallery signatures
form a given camera are computed. Such signatures are
matched with the gallery set of a second camera in the
network. The resulting dissimilarity scores are used to compute
the C2C matching cost that represents the correlation degree
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Fig. 1. Proposed DUPRe framework architecture. During the re-identification
process, cameras of the network are iteratively inquired in a priority fashion
by exploiting the camera-to-camera (C2C) cost which has been previously
obtained through the unsupervised learning phase. Cameras with the lowest
C2C cost are first inquired. If the returned match is no reliable (high
dissimilarity score), cameras with higher C2C costs are iteratively considered
until a maximum allowable matching cost have been reached.

between such a camera pair. The process is repeated for every
camera pair.

During the re-identification phase, a probe camera computes
the person signature. Then, the distance vector routing algo-
rithm exploits the C2C cost to select the cameras that have
higher probability to return a correct match, i.e., cameras that
have a C2C cost with the probe camera within a predefined
value. Such cameras receive the probe signature and compute
the dissimilarities with their gallery sets. The resulting dissim-
ilarity scores are returned to the probe cameras. This applies
a network-consensus scheme to identify the correct match.
Correct matches are then considered to update the C2C costs
which are finally propagated to other cameras by exploiting
the distance vector algorithm.

A. Preliminaries
Camera Network: N = {n1, n2, · · · , nm} is the set of m
cameras in the network.
Camera Pairs: Given a probe camera ni, the set of camera
pairs is Ni = {(ni, nj)|nj ∈ N}, where |Ni| = m.
Gallery Set: Gi denotes the gallery set of persons that have
been acquired by the camera ni.
Person Signature: Let Ipi be an image of person p acquired in
camera ni, then fpi = [xp1,x

p
2, · · · ,xps ]T is the corresponding

signature obtained by concatenating s different features (e.g.
color histogram, texture features, etc.). If a sequence of images
is available, we assume that each xpj is the accumulation of
the j-th feature over the N frames.
Signature Matching: d

(
fpi , f

g
j

)
∈ [0, 1] is the dissimilarity

between signatures fpi and fgj .
Camera Pair Dependent Threshold: δni,nj

is a threshold
used to decide whether two signatures are from a same person.
C2C Cost: ΩΩΩ ∈ Zm×m denotes the matching cost matrix.
Each entry ΩΩΩni,nj

∈ Z is the C2C cost between ni and nj .

B. Unsupervised Camera-to-Camera Cost Learning
To learn the C2C matching cost for each camera pair

(ni, nj), the dissimilarity matrix ∆∆∆ni,nj is computed as

∆ni,nj
(p, g) = d

(
fpi , f

g
j

)
(1)

where p = 1, . . . , |Gi| and g = 1, . . . , |Gj |.
Then, we exploit the distribution of the values within the

dissimilarity matrix to learn δni,nj
. The idea is that such a

distribution should present two modes associated with the
dissimilarities computed between correct and false matches,
respectively. The desired threshold δni,nj

is the one that
optimally separates such two modes. This is computed using
the histogram entropy-based method in [22].

Armed with the camera pair threshold, we first compute

∆̃ni,nj
(p, g) =

{
0, if ∆ni,nj

(p, g)) > δni,nj

1, else
(2)

then, by summing the number of matches for each person p
acquired by ni we obtain the C2C cost as

ΩΩΩni,nj
=

|Gi|∑
p=1

{
−1, if max(∆̃ni,nj

(p, :)) > 0

+1, else
(3)

where the ∆̃ci,cj (p, :) denotes the p-th row of matrix ∆̃∆∆ci,cj .
To conclude, it is important to emphasize that, since the

approach is unsupervised, wrong matches might also be con-
sidered to reduce in the C2C cost. Despite this may limit
the performance of our approach, it does not require an a-
priori manual labeling of a set of persons identities. Since we
consider large camera network set-ups, such a feature is very
relevant.

C. Distributed Re-Identification via Network-Wise Consensus

To achieve distributed network-wise re-identification we
introduce a variation of the distance vector routing algorithm.
Provided that each node of the network can transmit data only
via its directly connected neighbors, for every of them, the
standard distance vector routing algorithm constructs a routing
table specifying the cost to reach every destination. It also
stores a next-hop entry indicating the shorter outgoing line to
reach a specific destination.

Each node knows the cost required to reach a neighbor.
When a node has to transmit data, it sends to the next-hop
node a packet containing the data itself and its personal routing
table. The node receiving such packet updates its own routing
table by fusing its current information with the routing table of
the sender. After few updates, each node is able to determine
the lowest-cost route to every destination.

We propose to exploit the distance vector routing algorithm
to update the C2C cost. Specifically, we substitute the routing
table of each camera ni with the C2C cost table having entries
given by (nj ,ΩΩΩni,nj

) pairs. Once a match is completed, the
C2C cost table is fused with the C2C table received by the
inquiring camera.

In the re-identification phase, the C2C cost table of a given
camera ni is used to prioritize and limit the number of the
inquired cameras. Priority is given by the increasing C2C cost.
The number of queries is limited by the camera-dependent
threshold ε̂i over the C2C costs, e.g. nj is queried if and only
if ΩΩΩni,nj

< ε̂i. The set of all the inquired cameras is denoted as
N ∗i . The matching process is completed when, after C2C table
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Fig. 2. Camera network C2C cost example for the DANA36 dataset. In (a) the camera network C2C cost ΩΩΩ is shown. In the color coded plot, yellow values
mean high cost, while blue values mean low cost. In (b) and (c) the distributions of the C2C costs of cameras c3 and c23 are shown together with the
computed C2C thresholds ε̂3 and ε̂23, respectively.
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Fig. 3. Consequences of the C2C update. Let consider the C2C cost of camera n3. Let also assume that due to image noise, misdetections, and false matches,
camera n5, that has a similar view to camera n3, hence should well match it, is associated with a high ΩΩΩn3,n5 . The camera-dependent threshold ε̂3 excludes
camera n5 from the set N ∗

3 of the inquired cameras. Camera n1 is in such a set and it has a low ΩΩΩn1,n5 . After few re-identification iterations, camera n1

returns many correct matches. As a result of the proposed update rule, camera n5 correctly moves within the set of inquired cameras N ∗
3 .

update, there is no already inquired camera in the network
satisfying the above condition.

To learn ε̂i, we follow a similar scheme to the one used
to obtain δni,nj . Let consider Fig. 2 showing the C2C costs
(i.e., ΩΩΩ) and the corresponding distribution computed for the
DANA36 dataset. Results show the presence of two distinct
modes. We exploit such modes and identify ε̂i by means of
the entropy-based thresholding method [22].

The dissimilarities between a probe p and any gallery g,
belonging to an inquired camera nj , are computed as d(fpi , f

g
j ).

Such dissimilarities are then filtered to obtain the set of
matching persons G∗j = {g|d(fpi , f

g
j ) < δni,nj}.

When the matching process is completed, re-identification
consensus is obtained as follows. Let Ĝ =

⋃
j G∗j be the set of

unique person identities that matched probe p. Then, for each
g ∈ Ĝ, the consensus dissimilarity is computed as

D(p, g) =
∏

nj∈N∗
i

{
d(fpi , f

g
j ), if g ∈ G∗j

1, else
. (4)

The person g having the lowest dissimilarity score D(p, g)
represents the re-identified person.

Once the person has been re-identified via consensus, the
C2C cost of the probe camera is updated. Then, as a router
learns the costs from its neighbors, the current probe camera
ni learns from a matching camera nj . In particular, the C2C
cost between the probe and each inquired camera cj ∈ C∗i is

updated as

ΩΩΩ∗ci,cj = ΩΩΩci,cj

{
−1 if g ∈ G∗j
+1, else

. (5)

Then, each of the remaining cl ∈ {C \ C∗i } entries of the C2C
cost table ΩΩΩci is updated as

ΩΩΩ∗ci,cl = min

(
ΩΩΩci,cl , min

cj∈C∗i

(
ΩΩΩ∗ci,cj + ΩΩΩcj ,cl

))
. (6)

D. Discussion

By exploiting the C2C cost as well as the proposed variation
of the distance vector routing algorithm, the DUPRe frame-
work introduces the following features.
• The C2C cost, i.e. the camera pair correlation degree, pro-

vide information regarding the structure of the monitored
environment. This is considered to inquire cameras of the
network in a lower costs-higher priority fashion.

• Unsupervised identification of the C2C costs threshold
allow to dynamically limit the number of inquired cameras
for the network-wise re-identification. This results in a
limited network bandwidth usage.

• Fusing dissimilarities via network consensus provides a
more robust re-identification.

• Exploiting the updating rule derived from the proposed
distance vector routing algorithm variation yields to net-
work adaptation over time. Cameras that return a correct
match lower the C2C costs, while non-matching cameras
increase it.
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Fig. 4. 10 persons samples from the (a) WARD, and (b) DANA36 datasets.
Each row shows the same person acquired by a different camera.

• As shown in Fig. 3, C2C costs adaptation propagates
through the network via camera neighbors. As a result,
a definition of a more performing set of inquired cameras
is obtained and updated over time.

III. EXPERIMENTS

A. Person Signature

To compute the person signature, we followed a com-
mon approach and divided each given image into 6 equally
sized horizontal stripes. Color, shape and texture features are
extracted from each of such stripes, then concatenated to
obtain f . If more images of a single person were available, the
features of the same type were averaged over all the frames.
Color: To obtain illumination invariant properties, we have
projected each stripe to the RGB, HSV, CIELab and normRGB
color spaces. Then, three 1D histograms have been extracted
from each color space. Histograms extracted from the HSV
and RGB color spaces have been quantized using 8 bins
per channel, while histograms extracted from the normRGB
and CIELab color spaces have been computed considering
32 bins per channel. All such histograms have been finally
concatenated in a 1440-D vector.
Shape: PHOG [23] features have been separately computed for
the hue, saturation and value components of each stripe. We
have considered 9 orientation bins to compute the single HoG
feature vector for each of the 4 pyramid levels. The resulting
PHOG vector has 74982 elements.
Texture: Haralick [24] features have been extracted from
grayscale stripes. To achieve invariance to rotation we have
computed the gray level co-occurrence matrices using the same
symmetric offsets as in [24]. The resulting Haralick feature
vector lies in a 312-D space.

B. Dissimilarity Computation

We have considered different approaches to compute the
dissimilarities between image pairs, i.e., d (·, ·). We have
conducted the experiments using the standard `2, χ2 and
cosine distances as well as metric learning approaches. Specif-
ically, we have considered the KISSME [25], LADF [17] and
LFDA [26] metric learning approaches.

C. Datasets

Two public benchmark datasets have been considered to
evaluate the performance of the proposed approach.
WARD: The Wide Area Re-identification Dataset1

(WARD) [27] is of particular interest because it has a
huge illumination variation apart from resolution and pose
changes (see Fig. 4(a) for a few samples). We have conducted
the experiments for all the three cameras denote here as
camera 1, 2, and 3. As performed by existing methods [10],
[21], we have computed the results by considering 35 persons
both for the train and for the re-identification phases.
DANA36: The DANA36 dataset consists of 23,641 images,
representing 15 persons and 9 vehicles acquired by 36 cam-
eras. 27 outdoor cameras observed the persons and vehicles,
while the remaining 9 observed the same persons indoors (see
Fig. 4(b) for few sample images).

While such a dataset cannot be considered as fully repre-
sentative of a real scenario, it has images coming from 36
cameras. Hence, we have considered it to show that, using
the proposed framework, we can improve the re-identification
performance by inquiring a limited number of cameras in a
large network. To highlight these advantages, we have split the
dataset as follows: images of 7 out of 15 persons have been
taken from camera 1 to camera 18, images for the remaining 8
persons have been taken from each of the remaining cameras.
A maximum of 15 randomly selected images per person has
been taken. No persons have been acquired by camera 35,
thus the resulting dataset contains 3,372 images of 15 person
acquired by 35 cameras. Since a training phase is required to
learn the C2C cost matrix, we have split the dataset as follows:
4 out of 7 and 4 out of 8 persons have been considered in the
training phase; the remaining 3+4 ones have been used in the
re-identification phase.

D. Evaluation Protocol

To show the benefits of our framework, we have considered
two scenarios. In the former case (@DUPRe), given a camera
in which a probe person is viewed, its signature is matched
with each gallery set of the inquired cameras. In the latter
our distribute framework is not considered and the signature
is matched with the gallery set of each camera in the net-
work. Notice that, the considered metrics, i.e., KISSME [25],
LADF [17] and LFDA [26], are re-identification methods,
hence the following performance analysis should be consid-
ered as a comparison with existing works too.

All the results are given using both the single-shot and
the multiple-shots strategies [1] where N images have been
used to compute the signatures. To fairly evaluate our method
against state-of-the-art approaches, we have run the experi-
ments using 10 randomly selected training/test set splits. We
report on the averaged results over such 10 trials.

E. Performance Measures

Performances are provided in terms of recognition rate by
the Cumulative Matching Characteristic (CMC) curve and

1Available at http://users.dimi.uniud.it/∼niki.martinel/code.php
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Fig. 5. Single shot performance on the WARD dataset. The two figures
show the CMC performance for probe camera 1. The inside picture show
the performance on a reduced rank range. The nAUC values for each CMC
are given within brackets. In (a), CMC performances have been computed
using standard dissimilarity measures. In (b) CMC performances have been
computed using metric learning algorithms.

the normalized Area Under Curve (nAUC). The CMC curve
depicts the recognition performance as a function of the rank
score and represents the expectation of finding the correct
match in the top-k ones. The nAUC value shows how well
a method performs regardless of the dataset size.

F. Re-Identification Performance Analysis
For the following datasets single-shot results are shown for

a single probe camera. The performances for the remaining
ones are given in the supplementary.
WARD: CMC and nAUC performances achieved using the
proposed framework on the WARD dataset are shown in Fig. 5
(single-shot) and Table I (multiple-shots).

In Fig. 5(a) performances obtained by considering standard
metrics within the DUPRe framework are shown for probe
camera 1. The depicted results show that the CMC as well as
the nAUC performance improve when the DUPRe framework
is applied. In particular, the rank 1 correct recognition rate
achieved by using the χ2 distance within the DUPRe frame-
work (about 68%) improves the baseline by more than 10%.
Notice that, when the Euclidean distance is considered, the
performance decreases.

In Fig. 5(b) the depicted performances, obtained for the
same probe camera, have been computed using the three
considered baseline metric learning methods. The obtained
results reflect those achieved by considering the standard
metrics. The initial performance are always improved when
the learned metrics are exploited by the DUPRe framework.
Among all the considered metric learning algorithms, LFDA
is the best performing one. It achieves the higher rank 1
correct recognition rate as well as the best overall (nAUC)
performances. KISSME is the worst performing one. More
interestingly, it performs worse than standard metrics. This is
due to the fact that the amount of data provided by the WARD
dataset (single shot) is not sufficient to reliably compute the
covariance matrices exploited to learn such a metric.

Despite this, as shown in Table I, when multiple images
are considered (N > 1), the KISSME algorithm yields to
the best overall performances. In particular, considering probe
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Fig. 6. Single shot performance on the DANA dataset. Results are shown for
probe cameras (a) 1 (outdoor) and (b) 23 (indoor).

camera 1, when N = 25 it achieves the best performance
possible by recognizing each person at rank 1. A similar result,
for probe camera 2, is obtained by LFDA@DUPRe when
N = 5. Notice that, for the same probe cameras, performances
of LFDA@DUPRe degrade when N > 5. A more detailed
analysis of such result, showed that this behavior is due to the
variability of the intra-camera person appearance.
DANA36: Results obtained considering the DANA36 dataset
are shown in Fig. 6 (single-shot) and Table II (multiple-shots).
Since there are only 8 persons in the training phase, we have
not considered metric learning approaches.

Fig. 6 shows the performance of standard metrics and com-
pare those to the ones obtained by considering such methods in
the DUPRe framework. Results are depicted for probe cameras
1 (outdoor), Fig. 6(a), and 23 (indoor), Fig. 6(b).

The C2C threshold ε̂1 forces the probe camera 1 to match
the probe person with the 3 signatures acquired by inquired
cameras 1 to 18. Similarly, signatures from probe camera
23 are matched with the 4 signatures acquired by inquired
cameras 19 to 35. In both the cases the true match is included
in the 3 and 4 gallery persons. This is the reason why, the
baseline methods, considered within the proposed framework,
are able to obtain a 100% correct recognition rate at rank 3
and 4, respectively. When such baselines are not exploited
by DUPRe, each probe signature is matched with all the 35
cameras, hence with the 7 gallery persons. In such a case, the
performance degrades and the 100% correct recognition rate
is achieved at rank 7 in all the cases.

When multiple-shots are considered (see Table II), the
initial nAUC performance of baseline methods are signifi-
cantly improved for both the probe cameras. In particular,
the best overall performances are achieved by `2@DUPRe
(0.9000) and χ2@DUPRe (0.9187) for probe camera 1 and
23, respectively. Notice that in both cases the best results are
achieved when N = 5 is considered. The degradation of the
results when N = 15 is due to the variability of the intra-
camera person appearance. This drawback could be overcome
by a better feature pooling strategy.

IV. CONCLUSIONS

In this work we have introduced a C2C cost to measure the
re-identification performance between pairs of cameras. Using
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TABLE I
MULTIPLE-SHOT PERFORMANCE ON THE WARD DATASET. NAUC PERFORMANCES FOR EACH OF THE THREE PROBE CAMERAS ARE SHOWN AS A

FUNCTION OF THE NUMBER OF IMAGES PER PERSON (N ). FIRST THREE ROWS SHOW THE RESULTS OBTAINED USING STANDARD METRICS. LAST THREE
ROWS SHOW THE RESULTS ACHIEVED USING METRIC LEARNING ALGORITHMS. BEST PERFORMANCES FOR EACH (PROBE CAMERA, NUMBER OF IMAGES

PER PERSON) ARE SHOWN IN BOLDFACE FONT. THE BEST OVERALL RESULT FOR EACH PROBE CAMERA IS UNDERLINED.

Probe Camera 1 2 3
N → 1 5 10 25 1 5 10 25 1 5 10 25

χ2 0.9145 0.9303 0.9318 0.9317 0.9293 0.9390 0.9400 0.9411 0.9166 0.9383 0.9396 0.9409
χ2@DUPRe 0.9570 0.9907 0.9885 0.9903 0.9414 0.9909 0.9900 0.9883 0.9305 0.9701 0.9856 0.9822
cos 0.8431 0.8667 0.8679 0.8695 0.8799 0.8942 0.8952 0.8970 0.8836 0.9178 0.9231 0.9240
cos@DUPRe 0.8837 0.9379 0.9324 0.9264 0.9412 0.9565 0.9585 0.94468 0.9065 0.9203 0.9152 0.9142
`2 0.9213 0.9577 0.9578 0.9578 0.9434 0.9578 0.9578 0.9578 0.8997 0.9569 0.9578 0.9578
`2@DUPRe 0.9030 0.9529 0.9650 0.9713 0.9708 0.9683 0.9915 0.9842 0.9367 0.9798 0.9901 0.9882

KISSME 0.7481 0.9548 0.9557 0.9562 0.6683 0.9553 0.9558 0.9560 0.6000 0.9494 0.9496 0.9511
KISSME@DUPRe 0.7874 0.9996 0.9967 1.0000 0.7020 0.9992 0.9993 0.9994 0.6301 0.9971 0.9965 0.9951
LADF 0.8350 0.8861 0.8902 0.8840 0.8627 0.9070 0.9120 0.9222 0.8216 0.8988 0.8911 0.8880
LADF@DUPRe 0.8669 0.9247 0.9091 0.9213 0.8886 0.9315 0.9435 0.9438 0.8509 0.9031 0.9035 0.9144
LFDA 0.8788 0.8874 0.8976 0.9114 0.9308 0.9411 0.9478 0.9501 0.8491 0.9440 0.9554 0.9578
LFDA@DUPRe 0.9334 0.9443 0.9578 0.9631 0.9752 1.0000 0.9674 0.9557 0.9058 0.9863 0.9806 0.9673

TABLE II
MULTIPLE-SHOT PERFORMANCE ON THE DANA36 DATASET. NAUC

PERFORMANCES FOR THE TWO SELECTED PROBE CAMERAS (I.E., 1 AND
23) ARE SHOWN AS A FUNCTION OF THE NUMBER OF IMAGES PER PERSON
(N ). THE THREE ROWS SHOW THE RESULTS OBTAINED USING STANDARD
METRICS. BEST PERFORMANCE FOR EACH CAMERA/NUMBER OF IMAGES

PER PERSON ARE SHOWN IN BOLDFACE FONT. THE BEST OVERALL
RESULT FOR EACH PROBE CAMERA IS ALSO UNDERLINED.

Camera 1 23
N → 1 5 15 1 5 15

χ2 0.681 0.772 0.776 0.762 0.787 0.787
χ2@DUPRe 0.750 0.777 0.750 0.887 0.918 0.906
cos 0.686 0.745 0.731 0.676 0.694 0.716
cos@DUPRe 0.850 0.811 0.811 0.718 0.712 0.725
`2 0.743 0.867 0.855 0.759 0.766 0.798
`2@DUPRe 0.877 0.900 0.900 0.875 0.887 0.906

the C2C costs as distances between nodes in the distance vec-
tor algorithm allows to prioritize and limit the set of inquired
cameras. Comparisons with different baseline methods and
state-of-the-art approaches show that the proposed approach
improves the original solutions. Such promising performances
have been achieved through unsupervised consensus.
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