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Abstract—Low-cost depth sensing devices, such as Microsoft
Kinect, can only produce noisy depth maps that are mis-aligned
with color images, and even contain many holes. Even though
the coupled high quality color images contain rich information
which can be exploited to enhance the depth maps, the re-
dundant color edges often introduce incorrect depth edges in
the result depth map, since color images contain more textures
than depth maps. To solve this problem, we propose a novel
approach which generates accurate color-consistent depth edges
by employing both color and depth images. First, Edges of raw
depth maps are extracted using image pyramid strategy. Then,
the redundant edges in color images are removed according
to the raw depth edges, and, accurate color-consistent depth
edges are generated by combining raw depth edges with current
color edges. Finally, constraints extracted from both raw depth
and color images and the generated depth edges are fused
in a MRF optimization framework to obtain the enhanced
depth map, which is accurately aligned with coupled color
image. As experimentally demonstrated, the proposed method
achieves outstanding performance when compared with previous
approaches.

I. INTRODUCTION

Depth sensors have been exploited popularly in many vision
and graphics applications, such as 3D reconstruction [1],
human-computer interaction [2] and so forth. Meanwhile, for
those applications which aim to achieve good visual effects, a
high-quality depth map which is consistent with corresponding
color image is especially needed, such as free-viewpoint video
rendering [3], augmented reality [4], etc, which makes dense
depth map recovery attracts more and more attentions.

Depth sensors, such as 3D time-of-flight (TOF) cameras
and Kinect, have been embraced as new technologies, for
they can provide high frame rate depth measurement, while
in low price. However, high quality depth maps can not be
produced by these existing popular low-cost depth sensors,
which greatly limits their applications. Depth maps obtained
by these devices are always noisy [5], and fluctuating edges
and holes near object boundaries always exist, besides, mis-
alignment between color edges and depth discontinuities can
be observed. Fig. 1 (a) and (b) show a image pair captured by
Kinect, from which, one can find that depth data captured by
Kinect suffers all the above mentioned problems.

Meanwhile, many applications, based on depth information,
require the input depth maps to be complete and precise.
Unfortunately, it is really difficult to obtain high quality
depth maps from low-quality depth inputs based on current
existing depth enhancement techniques [6] [7] [8]. In these
strategies, color information, as a quite effective information

(a) color image (b) raw depth map

(c) Wang (d) our method

Fig. 1. (a) shows the color image, (b) shows the raw depth image, (c) shows
the depth enhancement result obtained by Wang et al. [6], and (d) shows the
result obtained by our approach. Note that (b) (c) and (d) show the depth map
in color mode.

extracted from corresponding color images, is employed as
guidance to fill depth holes and enhance depth maps. However,
color image contains much more edge information than the
corresponding depth map, which means some color edges have
no correspondence with depth edges. As shown in the red
areas of Fig. 1 (a) and (b), the red areas of depth map should
contain only one edge while there are several color edges
in the corresponding color area. Therefore, definitely wrong
results are generated if color edge information is exploited as
guidance directly. As shown in Fig. 1 (c) (generated by Wang
et al. [6]). It is obviously to see that incorrect enhanced depth
map is produced.

In this paper, we propose a novel method for depth map
enhancement. Our method removes the mis-guidance caused
by color information via getting rid of the redundant color
edges in the process of generating accurate color-consistent
depth edges, and the main contributions include: 1) We
propose an effective approach which uses image pyramid
to extract smoothed and complete edges from noisy depth
maps with holes; 2) Using the smoothed depth edges and
the corresponding color images, tensor voting strategy is
employed to generate accurate color-consistent depth edges.
The accurate depth edge information, regarded as guidance,
plays key role in avoiding the influences of redundant color
edges; 3) An MRF optimization framework is proposed which
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Fig. 2. The work flow of our approach is shown in the figure. Smoothed depth
edge is calculated from original depth map firstly. Then, based on tensor voting
strategy, smoothed depth edge and color edge are combined to generate the
accurate depth edge. Finally, the accurate depth edges, depth data as well as
color data are fused in an MRF framework to generate the final well enhanced
depth map.

fuses the accurate depth edge information, color and depth data
to generate high-quality depth maps from noisy and roughly
aligned inputs.

II. RELATED WORK

Generally, the existing works focusing on enhancement
of low-quality depth maps are divided into two categories:
methods only depend on depth map and methods depend on
both depth map and corresponding color images.

For the methods only depend on depth maps as input,
high-quality depth maps are generated by fusing multiple
frames of raw depth maps. Schuon et al. [9] propose an
up-sampling algorithm,in which, several low-resolution noisy
depth maps are combined with similar viewpoints firstly. Then,
high-resolution depth map is generated by minimizing an
energy function that is suitable to the noise characteristics
of the sensor. Besides, Izadi et al. [1] and Newcombe et
al. [10] propose an approach to filter out the noises of depth
data through online reconstruction. Based on Simultaneous
Localization and Mapping (SLAM) strategy [11], the Kinect-
Fusion system is presented for real-time reconstruction of
complex indoor scenes, in which, 3D models of each scene
are represented with a volumetric, Truncated Signed Dis-
tance Function (TSDF) [12]. Meanwhile, raw depth maps are
employed to update the 3D models while scanning. TSDF
strategy plays key roles in smoothing noises of raw depth
data. However, those multi-frame strategies are not suitable
to dynamic scenes, since they generally assume that the scene
or its major part is static.

Other than the aforementioned strategies that exploit only
depth data as inputs, some methods use an additional high-
quality color image as guidance. Yang et al. [13] propose
a depth up-sampling approach which bases on joint bilateral
filter(JBF) [14]. A cost volume is built firstly, then, the JBF
strategy is applied to smooth the depth maps iteratively, finally,
high-resolution depth maps are generated after a few iterations.
Min et al. [15] propose a method named weighted mode
filtering (WMF) for depth video enhancement, in which, a
set of joint histograms are employed to perform filtering,
and temporal continuity among depth map sequence is also
considered. However, these methods suppose the input depth
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Fig. 3. Smoothed depth edge calculation based on image pyramid strategy.
Depth map with holes is filled firstly. For pixels with no depth values, assistant
information can be found in the smaller scale. Then, Canny algorithm is
used to generate the depth edge. Finally, depth edge information, as input,
is employed in Tensor Voting framework to produce the smooth depth edge
map.

maps to be complete, and they can not fill holes of raw depth
data. Diebel et al. [16] propose an MRF scheme for depth up-
sampling, which exploits the co-existence of range and color
discontinuities. Unfortunately, blurred results maybe generated
since they only consider the color similarity. Hence, Park et
al. [7] propose an strategy to overcome the disadvantage. A
smoothness term is introduced which relies on color similarity,
segmentation and edge saliency in the assistant high resolution
color image. Based on multiple constraints of the color image
and raw depth map, the approach may have the ability to
fill holes in the depth map, unfortunately, it need the color
image and the raw depth map to be well aligned, which
greatly restrict its use. To solve this, Wang et al. [6] propose
an novel approach, which fuses raw depth data with image
color, edges and smooth priors in a Markov random field
optimization framework to obtain high-quality depth maps.
However, since redundant color information often provides
wrong guidance, some definitely wrong results are gener-
ated, which heavily restrict the application of the approach.
In general, the aforementioned color-assisted approaches all
suffer the similar drawback of wrong guidance generated by
redundant color information.

Hence, we propose a novel approach to avoid the influences
of redundant color information. Fig. 2 illustrates the basic
procedures of our approach.

III. DEPTH EDGE EXTRACTION

Depth maps captured by low-cost depth devices are always
noisy and incomplete. Hence, complete depth edges can not be
extracted directly. Meanwhile, coupled color images contain
explicit and accurate edges, which can assist to generate
complete depth edges. However, some of the color edges
have no correspondence in depth maps, because color images
contain much more edge information than depth maps.

To extract accurate and complete color-consistent depth
edges, we propose a novel approach which are divided into
two steps: first, complete depth edges are generated from raw
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Fig. 4. The flow chart of accurate color-consistent depth edge extraction. Note
that the smoothed depth edge which is obtained in.III-A and color image are
combined to obtain the improved color edge map. Then, discrete points-set
is generated based on the improved color edge map and smooth depth edge
map. Then Tensor Voting strategy is employed to generate the final depth
edge. To show the accuracy of our approach, the final accurate depth edge
(green points in the last image) overlapped with color image is also shown
here.

depth maps based on image pyramid strategy, which is not
affected by color textures, but may be inaccurate around depth
holes; second, 2D-ICP strategy is used to register the depth
edge map and color edge map, then tensor voting [17] [18] is
exploited to enhance the depth edge for better accuracy.

Tensor voting [17] [18] is a unified computational frame-
work which can extract structure information from sparse and
noisy data. Descriptions of the sparse and noisy data can
be generated from smoothness constraint in terms of sur-
faces, regions, curves, and labeled junctions. Tensor voting is
grounded on two elements: tensor calculus for representation,
and linear voting for communication [18]. Each input point
communicates its information as a tensor to its neighborhood
through a predefined tensor field, and casts a tensor vote to
produce the structure information of the sparse data.

A. Pyramid-based Depth Edge Extraction

To obtain complete edge information from depth maps,
image pyramid strategy is used here.

Define r = Sd/SD as the incomplete rate of a depth map,
where Sd means the number of pixels with no depth values
and SD means the number of pixels in each depth map. For
the pyramid of each depth map, denoted by np the number
of pyramid, and Dl the depth map, with l the levels in the
pyramid (1 ≤ l ≤ np). And D1 is the first level, which
represents the raw depth map, and Dnp means the last level
which represents the smallest depth map in pyramid. High
level depth map is obtained by down-sampling the adjacent
low level depth map, that is, Dl+1 = M(Dl), where M is the
down-sampled mapping function between two adjacent depth
maps. We use nearest neighbour to down-sample. Note that the
incomplete rate of each level in pyramid rl is declining as l is
increasing. Finally, in one level, which is set as np, rnp is 0,
which means all pixels in Dnp

have valid depth values. Hence,

we use the pixels in Dnp to fill the corresponding pixels with
no depth values in Dnp−1. Then, the rest depth maps are filled
in the same manner. Finally, pixels with no depth values in
D1 are filled.

After obtaining the filled depth map, Canny edge detector
is used to get the depth edge map. Then, tensor voting is
employed to smooth the depth edge. The process is shown in
Fig. 3. However, these edges still suffer from non-smoothness
and in-accurate problems, which need further refinement and
rectification.

B. Edge Refinement based on Color-guided Tensor Voting

The obtained smoothed and complete depth edge and color
edge extracted from the corresponding color image are com-
bined to generate the final depth edge, which is described as
following:

(1). Improved color edge generation: Though the smoothed
depth edges are not aligned with the color edges of the
corresponding color images, they can help to get rid of useless
color edges. The smoothed depth edge map is overlapped with
color edge map firstly, then, small windows (10 × 10, which
is set empirically) which are centered at the edge points of
the smooth depth edge map are exploited. Color edge points
that are in the areas of the small windows are combined to
generate the improved color edge map.

(2). Discrete depth edge points generation: The raw depth
map is not well aligned with the coupled color image, hence,
there is a transformation between smoothed depth edge points
and improved color edge points. Meanwhile, the transforma-
tion is very small, hence a local 2D-ICP algorithm [19] is
used to calculate the relative pose between the smoothed depth
edge points and the improved color edge points. And, current
smoothed depth edges can be re-projected to the position of
color edges based on the relative pose.

Then, a overlapped point-set Ωo is obtained by combin-
ing the overlapped edge points between re-projected depth
edge map and color edge map. Finally, discrete point-set
Ωpd

is obtained by extracting points from Ωo whose normal
vectors in re-projected depth edge map are consistent with
the normal vectors in improved color edge map. That is,
Ωpd

= {pd|d(DN(p), CN(p)) < t, p ∈ Ωo}, where pd means
the final discrete depth points, DN(p) and CN(p) denote
the normal vectors of a point in re-projected depth edge map
and improved color edge map respectively, d(DN(p), CN(p))
means the angular difference between two vectors, and t is a
threshold.

(3). Accurate depth edge generation: The final accurate
depth edges are obtained by Ωpd

and smoothed depth edge
using tensor voting strategy. In tensor voting strategy, Ωpd

provides accurate discrete points which is consistent with color
image, and the smoothed depth edge, though un-smoothness
and in-accurate, is employed to simulate the direction of
accurate depth edges. Based on the direction, discrete edge
points are connected to generate the final accurate depth edge
map.

Fig. 4 shows the work flow of depth edge extraction.
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Fig. 5. Row A to C show three different scenes captured by Kinect, (a) shows the color images, (b) shows the corresponding depth maps which are shown
in color mode, (c) and (d) show the calculated depth edges and final optimized depth maps, respectively. Note that the point cloud of red areas labeled in
row A is shown in figure. 6. Figure best viewed magnified in the electronic version.

(a) MFMM (b) Park

(c) Wang (d) our method

Fig. 6. The figure shows the point cloud results of several methods.
(a)(b)(c)(d) show the point clouds results obtained by MFMM [20], Park et
al. [7], Wang et al. [6] and our approach, respectively.

IV. MRF GLOBAL OPTIMIZATION

After generating accurate depth edge that is consistent with
color image, Markov Random Field (MRF) is employed to
obtain the final enhanced depth maps. Four-neighbour MRF is

used to enhance the depth map. Let D the original depth map,
and D′ the enhanced depth map. The MRF energy function is
defined as follows:

E(D′, D) = Ed(D′, D) + αEs(D
′) (1)

where Ed(D′, D) is the data term to guarantee that the recov-
ered depth map is consistent with the observation, and Es(D

′)
is the smoothness term. In our experiment, the weighting
parameter α is 0.1 which is set empirically.

The data term is expressed as:

Ed(D′, D) =
∑
i

w(i)||D′(i)−D(i)||2 (2)

where w(i) is the weighting term which means the confidence
of the pixel i in original depth data. Note that pixels in depth
holes are not considered in our approach, which means that if
D(i) = 0, then w(i) = 0, otherwise, w(i) = 1.

The smoothness term plays a very important role in our
MRF optimization. The final enhanced depth maps should be
consistent with the corresponding color images, meanwhile,
the influences of redundant color information need to be
eliminated. Therefore, the smoothness term is expressed as:

Es(D
′) =

∑
i

∑
j∈Ψ(i)

τ(i, j)(D′(i)−D′(j))2 (3)

where Ψ(i) is the first order neighbourhood of pixel i, τ(i, j)
is a weighting function related to the features extracted from
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Fig. 7. (a) shows the damaged depth maps, (b) shows the ground truth, (c) shows the results obtained by MFMM [20], (d) shows the results obtained by
Park et al. [7], (e) shows the results obtained by Wang et al. [6], and (f) shows the results obtained by our approach. Figure best viewed magnified in the
electronic version.

the color image and depth map, which is defined as the product
of color similarity weight τc(i, j), depth edge penalty weight
τd(i, j) and segmentation penalty weight τs(i, j). Note that
τd(i, j) is obtained by the accurate depth edge calculated in III.
Here τ(i, j) is expressed as:

τ(i, j) = τc(i, j)τd(i, j)τs(i, j) (4)

τc(i, j) is defined as:

τc(i, j) = Gc(‖Ci − Cj‖22) (5)

where Gc is a Gaussian function which is defined in color
space, and Ci and Cj are the color values of pixels i and j.
When Ci and Cj have similar color values, τc(i, j) will be
large, which means i and j have large correlation and vice
verse. Note that the sigma is set as 20 empirically.

Then, τd(i, j) is defined as:

τd = 1−Md(j) (6)

where Md means the accurate depth edge, which can be
calculated based on. III. We set Md(j) to 1 if j is on a depth
edge, otherwise set it to 0. It is obvious to find that τd(i, j) not
only eliminates the influences of redundant color information,
but also provides accurate cues to optimize depth maps to
obtain better result.

To guarantee sharp depth discontinuities on object bound-
aries, segmentation penalty weight is also employed here:

τs(i, j) =

{
Ps, ifS(i) 6= S(j)

1, otherwise
(7)

where Ps is segmentation penalty factor between 0 and 1 (set
to 0.2 empirically). S(i) is the block label generated by mean
shift segmentation [21].

V. EXPERIMENT

To show the effectiveness of our approach, several experi-
ments have been done on Kinect data and Middlebury Stereo
datasets [22]. Note that, for Kinect data, the color images and
depth maps are captured by Kinect XBOX 360 with 640 ×
480 resolution. Viewpoint of the depth camera is aligned with
color camera by the built-in tools in official Kinect driver.

A. Evaluation on Kinect data

We test our method with data captured in different scenes
using Kinect XBOX 360. Fig. 5 shows several results (Row
A to C) obtained by our approach. (a) to (d) show the
color images, the raw depth maps, the depth edges and the
final optimized depth maps, respectively. Note that depth
maps are illustrated in color mode, where red to blue means
0 to infinite. It is apparent to find that our approach can
successfully fill missing pixels in the raw depth maps, as well
as eliminate the influences of redundant color information.

To further evaluate our approach, results obtained by Park
et al. [7], MFMM [20] as well as Wang et al. [6] are compared
here. Park et al. [7] and Wang et al. [6] exploit MRF strategy
for depth up-sampling and depth map enhancement, which
enable them to recover unmeasured depth values in depth
map. Figure 6 shows the point clouds results obtained by our
approach and other methods. Note that to show the results
clearly, the point clouds are magnified and the original area
is labeled red in row A of Fig. 6. It is easy to find that
our approach obtains better results on depth data captured
by Kinect. Based on figure.6, we can see that, MFMM [20],
Park et al. [7] and Wang et al. [6] are so easy to be affected
by redundant color information that generate definite wrong
results. On the contrary, our approach can not only restores
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TABLE I
AVERAGE ERROR RATE WITH DIFFERENT TEST DATA GENERATED FROM

MIDDLEBURY STEREO DATASET.

Scene MFMM [20] (%) Park [7] (%) Wang [6](%) our(%)
cones 3.19 3.08 2.49 1.16
art 3.59 4.22 3.46 1.05

teddy 2.86 2.51 1.73 0.72
venus 1.89 1.3 0.95 0.23

the missing regions in the raw depth map, but also eliminates
the interference of useless color edge information effectively.

B. Evaluation on Middlebury dataset

We also test our approach on Middlebury dataset [22].
The Middlebury stereo datasets provide a set of color images
coupled with their ground truth depth maps. We produce the
test depth map by cutting out pixels near depth discontinuities.
Fig. 7 shows the comparison results between our approach
and other methods (Art and cones from Middlebury stereo
datasets). To further show the details of the results, the white
areas which are labeled in Fig. 7 (a) are magnified. We can see
clearly that our approach works better than the other methods.

Quantitative results are shown in Table.I. Note that results
based on cones, art, teddy and venus are shown here. Table.I
shows the average error rates of different methods, the average
error rate is defined as R = Cw/Ca, where Cw means the
number of pixels that is recovered incorrectly, and Ca means
the number of pixels that need to be recovered. we can find
that our method achieves much higher precision than other
three methods.

VI. CONCLUSION

In this paper, we propose a novel approach for depth map
enhancement, which can avoid the influences of redundant
color edge information. Smoothed depth edges are generated
from raw depth maps using image pyramid firstly. Then,
accurate color-consistent depth edges are produced by comb-
ing both color edge information and smoothed depth edge
information. The accurate depth edge information is employed
as guidance to avoid the influences of redundant color edges.
Finally MRF-based optimization is exploited to produce the
enhanced depth map. Experiments have proven that the ex-
tracted depth edges can successfully eliminate the redundant
color texture information. Comparisons on all testing examples
show that our method can outperform previous methods.
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