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ABSTRACT

Very few research works have addressed the problem of

directly manipulating raw HDR vectors for general HDR

image processing. In this paper a framework is proposed

towards this aim and is based on a new representation of

HDR images in the form of an ordering of vectors and an

index image. This enables to formulate vector-preserving

image processing methods dedicated to HDR images. The

ordering relies on three steps: dictionary learning, manifold

learning, and out of sample extension. The performance of

the proposed approach is illustrated with innovative exam-

ples of HDR image filtering and enhancement.

I. INTRODUCTION

When a scene with high light contrast is captured by a

camera, either the dark or the bright areas will be saturated

in the output image. It is therefore difficult to simultaneously

get details in shadows and highlights. This is due to the

physical limitations on the maximal variations of luminosity

that a camera sensor can capture and above a given quantity

of incident photons, the sensor saturates. Since conventional

cameras cannot capture the full dynamic range of a real

world scene, defined as the range between the largest and the

smallest light intensities in the scene, high dynamic range

(HDR) imaging has been proposed to address this problem

[1].

The principle consists in mixing several LDR (Low Dy-

namic Range) images of the scene taken under different

exposure times with a conventional camera (see Figure

1). Today many camera devices have built in functionality

for acquiring HDR images. Therefore, high dynamic range

imaging has become more and more popular in recent years.

It attracts many professional and amateur photographers and

finds utility in many applications such as visual effects

production.

Unfortunately, an HDR image cannot be displayed directly

on conventional LDR display devices due to hardware limita-

tions similar to those of LDR cameras. Thus, many research

works have been conducted on how to compress an HDR

image into an LDR one that can be displayed on conventional

display devices. This problem is referred to as HDR tone

mapping and global or local operators have been proposed

[2], [3], [4], [5].

However the processing of HDR images does not reduce

only to tone mapping, and one could be interested in

Fig. 1. LDR images under different exposure times used to

construct a HDR image ( c©2016 Industrial Light & Magic).

processing raw HDR images (and not the tone-mapped LDR

ones) to filter, simplify, or enhance them. Most algorithms

(including tone-mapping) for HDR images operate on the

logarithm of HDR pixel luminance values rather than on the

original HDR pixel values. This is an easy way to adapt

classical LDR image processing algorithms to HDR images

and the logarithm domain is related to how the Human Visual

System is sensitive to light. Nevertheless, the manifold where

HDR pixel live is obviously much more nonlinear than a

simple projection onto a log-luminance curve. Therefore,

we propose another approach that consists in learning the

manifold of HDR image pixels to build a new HDR image

representation in the form of an index image associated with

an ordering of the HDR pixels’ vectors.

To perform this, we embark from our earlier works as

reported in [6] and apply a similar scheme to obtain an

ordering of HDR vectors. Then, we demonstrate how the

proposed ordering leads to a new representation of HDR

images and how it can be used to perform classical image

processing tasks such as filtering, simplification an enhance-

ment. We focus in this paper on discrete algebraic methods

(morphological methods and median processing) because

they cannot introduce new vectors in a processed image and

therefore they are not subject to the production of halos,

which is a common problem when processing HDR images.

The paper is organized as follows. In Section II we

introduce a learned ordering of the HDR vectors of an image.

In Section III we explain how a new representation can

be derived from this ordering and used for discrete vector-

preserving HDR image processing. Section IV presents how

tone-mapping can be performed with the proposed frame-
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work, and demonstrates its effectiveness with respect to the

state-of-the-art.

II. LEARNING AN ORDERING OF HDR VECTORS

II-A. Notations

We consider HDR images encoded with the Open EXR

standard that associates three 16-bits floating point values to

pixels, after merging several LDR images. An HDR image is

represented by the mapping f : Ω ⊂ Z
2 → T ⊂ R

3 where T
is a non-empty set of image multivariate HDR vectors (RGB

values of linear radiance). To each pixel pi ∈ Ω of an image

is associated a vector vi = f(pi). The set T = {v1, · · · , vm}
denotes all the HDR vectors associated to all pixels in the

image, i.e., the vectorization of the matrix F ∈ R
N1×N2 ,

with N1 ×N2 = m that represents an image f . We will use

the notation T [i] = vi to denote the i-th element of a set.

II-B. Complete lattice

To process HDR images, we build a new HDR image

representation in the form of an index image associated

with an ordering of the HDR pixels’ vectors T of an

image. Ordering all the values of the set T can be done

with the use of an ordering relation within HDR vectors.

This amounts to dispose of a complete lattice (T ,≤), a

key item for the definition of mathematical morphology

operators [7]. Unfortunately there is no universal method

for ordering vectorial data [8]. Many works have proposed

specific orderings for color vectors, mainly with the use of

lexicographic orderings [9], [10], but they cannot be used

directly for HDR vectors since they use specific assumptions

on the ordering of channels. Other recent works consider

space-filling curves in the image domain for image denoising

using patches [11], [12], but they are not suited for HDR

images. Our proposal is to build on the ideas we presented

in [6].

Indeed, the framework of h-orderings [13] can be used to

define an ordering relation between HDR vectors of a set T .

The latter corresponds to constructing a surjective mapping

h from T to L where L is a complete lattice equipped with

the conditional total ordering [13]. We refer to ≤h as the

h-ordering given by:

h : T → L and v → h(v), ∀(vi, vj) ∈ T × T

vi ≤h vj ⇔ h(vi) ≤ h(vj) . (1)

Then, by means of h [14], the ordering of T can be induced

upon L and T is no longer required to be a complete lattice.

When h is bijective, this corresponds to defining a space

filling curve [15] or equivalently a rank transform [16].

It is obvious that the projection h cannot be linear [17]

since a distortion of the space topology is inevitable. As

a consequence, we choose to focus our developments on

learning the HDR manifold to construct h and deduce the

complete lattice (T ,≤h).

II-C. Manifold-based ordering

Our approach consists in learning the manifold of HDR

vectors from an image with a nonlinear mapping and to

define the ordering from this projection. To learn the man-

ifold, we use Laplacian EigenMaps (LE), a technique for

non-linear dimensionality reduction [18]. Computationally,

performing LE on the whole space of HDR vectors is not

tractable in reasonable time (especially for large images).

So, an efficient strategy is needed to construct a h-ordering.

We summarize its principle in the sequel.

Given a HDR image that provides a set T of m vectors

in R
3, a dictionary D = {x′1, · · · , x

′
p} of p ≪ m vectors is

build by Vector Quantization [19].

Manifold learning by Laplacian EigenMaps is performed

on this dictionary. One starts by computing a similarity

matrix KD that contains the pairwise similarities

KD(i, j) = exp

(

−
‖x′i − x′j‖

2
2

σ2

)

(2)

between all the dictionary vectors x′i. To have a parameter-

free algorithm, we consider σ = max
(x′

i
,x′

j
)∈D

‖x′i − x′j‖
2
2. The

normalized Laplacian matrix L = I − D
− 1

2

D
KDD

− 1

2

D
is then

computed with DD the degree diagonal matrix of KD.

Then, Laplacian Eigenmaps Manifold Learning consists in

searching for a new representation Φ obtained by minimizing

1

2

∑

ij

∥

∥Φ(x′i)−Φ(x′j)
∥

∥

2
KD(i, j) = Tr(ΦT

LΦ) (3)

under the constraint ΦT
DDΦ = I. This cost function encour-

ages close input vectors to be mapped to close output vectors.

The solution is obtained [20] by finding the eigenvectors ΦD

of L. Therefore, the decomposition L = ΦDΠDΦ
T
D is com-

puted with corresponding eigenvectors ΦD = [Φ1
D, · · · ,Φ

p
D
]

and eigenvalues ΠD = diag[λ1, · · · , λp].
Then, a new representation hD(x

′
i) is obtained for each

element x′i of the dictionary D:

hD : x′i → (φ1
D(x

′
i), · · · , φ

p
D
(x′i))

T ∈ R
p . (4)

where φk
D(x

′
i) denotes the i-th coordinate of the k-th eigen-

vector. Such a strategy of modeling the manifold from a

patch dictionary was also explored in [17]. The projection

operator hD corresponds to constructing a hD-ordering from

the sole data of the dictionary D. This correspond to the

construction of the complete lattice (D,≤hD
) with a hD-

ordering, and this ordering is only valid for the set of

vectors of the dictionary. Since we need the complete lattice

(T ,≤h), the reduced dictionary lattice is extended to all the

vectors of the initial lattice T by Nyström extrapolation [21]

of hD on T . To do so, we compute the similarity matrix KDT

between sets D and T and the associated degree diagonal

matrix DDT . The extrapolated eigenvectors are then obtained

by

Φ̃ = D
− 1

2

DT
K

T
DT D

− 1

2

D
ΦD(diag[1]−ΠD)

−1 . (5)
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Finally, the projection operator h : T ⊂ R
3 → L ⊂ R

p

on the manifold is defined as h(x) = (φ̃
1
(x), · · · , φ̃

p
(x))T ,

and the complete lattice (T ,≤h) is obtained by using the

conditional ordering on this new representation.

III. HDR IMAGE REPRESENTATION AND

DERIVED PROCESSING

III-A. HDR Image Representation

Once the complete lattice (T ,≤h) is available, a new

HDR image representation can be defined. Let P be a sorted

permutation of the elements of T according to the manifold-

based ordering ≤h, one has:

P = {v′1, · · · , v
′
m} with v′i ≤h v′i+1, ∀i ∈ [1, (m− 1)]. (6)

This can also be written as P = PT with P a permutation

matrix of size m×m. From this ordered set of HDR vectors,

an index image can be defined. Let I : Ω ⊂ Z
2 → [1,m]

denote this index image. Its elements are defined as:

I(pi) = {k | v′k = f(pi) = vi} . (7)

Therefore at each pixel pi of the index image I , one obtains

the rank of the original HDR vector f(pi) in P , the set

of sorted HDR vectors. Given (I,P), a new representation

of the original HDR image f is obtained. When an HDR

image is encoded in this way, HDR information is not

directly carried by the image pixel data I , but is stored

in a separate piece of data called a palette: the set P of

sorted HDR vectors. The pixels of I do not contain the full

specification of its color, but only its index in the palette.

The image I is a grayscale image with m different integer

levels that shows the high range of possible values. The

original image f can be directly recovered since one has

f(pi) = P[I(pi)] = T [i] = vi. Figure 2 illustrates this

(a) (b) (c) (d)

Fig. 2. From left to right : the learned manifold (shown on

the three first eigenvectors) on HDR image obtained from

LDR images of Figure 1, the deduced ordering of HDR

vectors (converted in colors for visualization, line by line

from top-left to bottom right), the resulting index image I ,

and the usual log image of the luminance of HDR pixels.

new representation on the HDR image obtained from LDR

images of Figure 2. The learned manifold is shown in Figure

2(a) with the obtained new coordinates h(vi) of each HDR

vector vi. It can be easily seen that this manifold is far from

the ideal log-luminance curve, assessing the benefit of our

approach. Figures 2(b)-(c) show the new representation in

the form of P , the ordering of the HDR vectors, and I the

index image. This last image has to be compared with the

classical log-luminance image of the HDR image (Figure

2(d)). Indeed, the new representation we propose enables to

dispose of a grayscale image that is much more constructed

and enables to better delineate the level lines in the HDR

image, which is not the case of the log-luminance image.

III-B. HDR Image Processing

Now that a new representation has been proposed to

represent HDR images, we present how image processing

tasks can be performed with the latter. The index image I

is a grayscale image of m levels that can be directly used

for any image processing. However, we have to be able

to reconstruct a processed HDR image from a processed

index image, and this necessitates that each value of the

processed index image corresponds to one vector of the

manifold-based ordering P . This means that a processed

index image must have its values that are kept within the

integer range [1,m]. In other words, this means that we can

only consider vector-preserving image processing methods.

Therefore, given a specific processing g, the corresponding

reconstructed processed HDR image is obtained by

g(f(pi)) = P[g(I(pi))] . (8)

Typical vector preserving methods are morphological and

median-based ones, we consider these ones in this paper.

We will mainly focus on algebraic (and vector-preserving)

morphological methods, so we define the two main oper-

ations, erosion and dilation of an HDR image f at pixel

pi ∈ Ω by a structuring element B ⊂ Ω as:

ǫB(f)(pi) = {P[∧I(pj)],pj ∈ B(pi)} (9)

δB(f)(pi) = {P[∨I(pj)],pj ∈ B(pi)} (10)

One sees that these morphological operators do work on

the index image I , and the processed HDR image is re-

constructed through the sorted vectors P that represent

the learned complete lattice. Given their formulation, the

proposed operators do inherit the standard algebraic prop-

erties of morphological operators [22]. From these basic

operators, we can obtain all standard morphological filters

for HDR images such a as openings γB and closings φB .

Figure 3 illustrates the benefits of the proposed approach

on two HDR images with three different morphological

processings: erosion, dilation and opening γB . Since HDR

images cannot be directly shown, the result is presented

after tone-mapping using the reference method of [3]. As

illustrated, with the proposed representation, we recover the

classical aspects of morphological operators: erosion extends

structures close to first vector of the ordering. Dilation

provides the dual effect and extends structures close to last
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vector of the ordering. With the opening, details smaller

than the structuring element, and close to the first vector

of the ordering, are removed. Here a very large structuring

element has been chosen to better illustrate the effects of

the processing. To the best of our knowledge, this the first

time that such processing is presented for HDR images. As

O
ri

g
in

al
im

ag
e
f

ǫ B
δ B

γ
B

Fig. 3. HDR Morphological Processing (B is a square of

side 9 pixels), see text for details.

this was illustrated with the opening result, by using our

proposed vector-processing HDR image processing, one can

manipulate the details of a raw HDR image before tone-

mapping. This can be very interesting to manipulate HDR

images for the production of visual effects. Figure 4 presents

such results for simplification and detail manipulation. Again

it is important to note that the processing is performed on

raw HDR vectors and tone-mapping is performed thereafter.

For simplification (first line of Figure 4), we consider a 5×5
median filter and a morphological leveling obtained with

as marker the result of an alternate sequential filter with a

square of side 9 pixels. We recover the attended behavior of

these simplification filters: the median smoothes and keeps

sharp but deformed edges, the leveling creates flat areas

by suppressing zones smaller than B and preserves sharp

edges. In this last case this provides a good abstraction of

the original image [23]. Second line of Figure 4 presents

detail manipulation. A morphological contrast mapping is

iteratively applied ten times with a square of side 5 pixels.

This enhances the local contrast of f by sharpening its edges

with the following transformation, similarly to a shock filter:

κh,B(f)(pi) =

{

δB(f)(pi) if ∆1
B(f)(pi) ≤ ∆2

B(f)(pi)

ǫB(f)(pi) if ∆1
B(f)(pi) > ∆2

B(f)(pi)
(11)

with

∆1
B(f)(pi) = ‖f(pi)− δB(f)(pi)‖2

∆2
B(f)(pi) = ‖f(pi)− ǫB(f)(pi)‖2

(12)

Usually, for detail manipulation, edge-aware transforms

are considered [24]. We adopt the strategy of [23] that

consists in decomposing an image into a base layer and

a detail layer. We apply only one level of decomposition

and replace their decomposition filter by a morphological

Open Close Close Open (OCCO) filter defined as pixelwise

average of open-close and close-open [9]:

OCCOB(f) =
γB(φB(f)) + φB(γB(f))

2
(13)

The structuring element is a square of side 5 pixels. The

detail layer is boosted with a factor 1.5 and the image

is recomposed without the presence of halos since the

decomposition is a vector-preserving one. This shows that

our framework can also be advantageously used for such

edge-aware image detail manipulation, and this has never

been explored before with raw HDR images.

Fig. 4. HDR image simplification and detail manipula-

tion with Median filtering, Leveling, Contrast Mapping and

IOCCO detail manipulation.

IV. TONE MAPPING

We have seen in the previous section that with the new

HDR image representation we proposed, it is now possible

to apply morphological filters for e.g., obtaining a coarse

version of raw HDR images. This was considered for detail
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manipulation. However, image decomposition into both base

and detail layers is at the core of state-of-the-art tone-

mapping algorithms. So far, we have presented the final

processed HDR images with the tone-mapping approach of

Durand and Dorsey [3], but we can make the most of our

proposal to dispose of a new morphological tone-mapping

operator. First we recall the principle of the approach pre-

sented in [3].

This method computes the log-luminance Ll = log(L(f))
from and HDR image f with

L(f) =
20fR + 40fG + fB

61
(14)

where f∗ denotes a given channel (subscript ∗) of the HDR

image. The log-luminance Ll is then separated it into a base

layer Bl, obtained by blurring the image, and a detail layer

Dl = Ll − Bl which is the difference between the log-

luminance and the base layer. The base layer, assumed to

contain most of the high contrast that needs to be reduced, is

then compressed using gamma correction and finally added

to the unmodified detail layer. This is expressed by:

f ′
∗ =

(

f∗

L(f)
exp (τBl + (Ll −Bl))

)
1

γ

(15)

with f ′ the RGB tone mapped image, τ a contrast parameter

and γ a gamma correction parameter (fixed to 50 and 2.2 as

recommended in [3]).

Using a simple low-pass filter (such as Gaussian filtering)

for the layer separation would cause haloing effects: some

high-contrast edges appear both into the base and the detail

layer. To avoid this problem, the tone mapping operator

of [3] uses Bilateral Filtering instead Bl = BF(Ll), that

smoothes only regions with similar brightness while pre-

serving edges.

In our case we can modify this tone-mapping method by

replacing the bilateral filter with a morphological filter. Since

our framework operates directly on the raw HDR image and

not on the log-luminance, the image is filtered first and then

its log-luminance is computed. Our proposed base layer is

therefore Bl = log(L(MF(f))) where MF(f) expresses a

morphological filtering of the HDR image f . The rest of the

tone-mapping algorithm of [3] is kept the same. Figure 5

presents tone-mapping results on the HDR image of Figure

1. The morphological filter we have considered for base layer

computation is a morphological Open Close Close Open

MF (f) = OCCOB(f) with B a square of side 5 pixels.

Figure 5 presents a comparison between the state-of-the-art

approach of [3] and ours. As it can be seen, some details

are still present in the base layer with the bilateral filter

(in the stained glass) and the edges are not always sharp

(book and deck). This is not the case with our base layer

decomposition which is much more piecewise constant. This

results in a more contrasted and sharper tone-mapped image.

This is assessed by the values of the log-PSNR values (a

quality metric for HDR images [25]1).

154.12dB 157.61dB

Fig. 5. Base and detail layers obtained with [3] (first line)

and our approach (second line). Last line shows the tone-

mapped image with [3] (left) and our approach (right).

V. CONCLUSION

This paper has detailed an approach for the processing

of raw HDR images. To address this, a new HDR image

representation has been proposed in the form of an ordering

of vectors and an index image. The ordering of vectors is

1Available online at http://driiqm.mpi-inf.mpg.de
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interpreted as the construction of a complete lattice and a

manifold-based approach is proposed towards this. To be

efficient, a strategy based on dictionary learning, manifold

learning and out of sample extension has been devised. From

this new representation, vector-preserving image processing

have been proposed. Morphological methods have then been

studied in this paper for HDR image simplification, detail

enhancement but also tone-mapping, and they are a compet-

itive alternative to the actual state-of-the-art methods. Future

works will consider non vector-preserving algorithms with

the proposed representation.
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