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Abstract—Traditional gaze tracking systems rely on explicit
infrared lights and high resolution cameras to achieve high
performance and robustness. These systems, however, require
complex setup and thus are restricted in lab research and hard
to apply in practice. In this paper, we propose to perform gaze
tracking with a consumer level depth sensor (Kinect). Leveraging
on Kinect’s capability to obtain 3D coordinates, we propose
an efficient model-based gaze tracking system. We first build
a unified 3D eye model to relate gaze directions and eye features
(pupil center, eyeball center, cornea center) through subject-
dependent eye parameters. A personal calibration framework
is further proposed to estimate the subject-dependent eye pa-
rameters. Finally we can perform real time gaze tracking given
the 3D coordinates of eye features from Kinect and the subject-
dependent eye parameters from personal calibration procedure.
Experimental results with 6 subjects prove the effectiveness of the
proposed 3D eye model and the personal calibration framework.
Furthermore, the gaze tracking system is able to work in real
time (20 fps) and with low resolution eye images.

I. INTRODUCTION

Gaze tracking is to predict where human looks in real time.
Eye gaze can reflect human attention or interest in the world.
Therefore gaze tracking/estimation techniques have been
widely studied and applied in various fields. In advertising
market, eye gaze can be utilized to study customer’s interest
so that more interesting advertisements can be developed. In
Human Computer Interaction filed, eye gaze can serve as a
replacement of traditional input like mouse and keyboard or
as additional input to better interact with the computer. In
game play field, more and more games start to integrate gaze
input from eye tracker to enhance the gaming experience [1].
Furthermore, eye tracking data can also help research and
analysis in marketing and understanding human’s cognitive
process [2], etc.

Gaze estimation/tracking has been studied for decades
and various methods have been proposed. These methods can
be divided into two main categories: model-based methods
and appearance-based methods. Model-based methods [3],
[4], [5], [6] rely on a geometric eye model representing the
structure and function of human vision system. By analyzing
human eye/head anatomy, key components in human vision
system (cornea, pupil, fovea, etc) can be abstracted to specific
features in the established eye model. Gaze estimation can be
considered as mimicking the human vision system through the
eye model to compute the exact gaze direction as human brain
does. Eye model can approximate the real eyeball structure

accurately, thus model-based methods are known for their
high accuracy. Furthermore, the eye model is a 3D model in
the camera coordinates system, thus model-based method can
allow free head movement during gaze tracking. Constructing
the 3D eye model requires the knowledge about relative
position for different components in human vision system.
These knowledge is typically abstracted to subject-dependent
eye parameters which can be estimated through a personal
calibration procedure. Differently, appearance-based methods
[7], [8] and [9] rely on the eye appearance. The underlying
assumption is that similar eye appearances correspond to
similar gaze positions. Therefore a mapping function between
eye appearances and gaze positions can be established. Gaze
estimation is then simplified to learn the mapping functions.
Unlike model-based method, appearance-based methods do
not require special illumination and any knowledge about
human vision systems. Besides, appearance-based methods
only require simple eye detection techniques while model-
based methods require accurate detection of eye features
(pupil, glints, etc). However, appearance-based method may
require large amount of data to learn the mapping function.
Another major difference is that model-based methods
consider the gaze estimation problem in 3D space while
the appearance-based methods only work in 2D space.
This makes the appearance-based methods sensitive to
head movement since different head poses can result in
same eye appearances. Therefore, compared to model-based
methods, appearance-based methods typically suffer from
head movement issues and the accuracy is rather low. We
suggest readers refer to [10] for more detailed discussion on
different eye tracking methods.

In this work, we focus on 3D model based gaze estimation
method. Traditional approaches rely on explicit infrared
illumination to produce glints on cornea surface. Glints
position can be utilized to estimate the 3D cornea/eyeball
center, which is essential to estimate gaze direction. Another
benefit of infrared illumination is the bright/dark pupil effect,
which make pupil detection much easier and more accurate.
However, the system setup is rather complex, and typically
multiple lights are required to enable enough operating
ranges. Therefore, we propose to build a real time eye gaze
tracking system with Microsoft Kinect. Notice Kinect also
use infrared illumination, but it is designed for estimating
depth information, not for gaze related applications. And
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a single Kinect sensor also enables portable gaze tracking.
With Kinect, we first construct a 3D eye model similar to
[5]. The gaze tracking system starts with estimating the head
rotation and translation given the color and depth frame from
Kinect. Eyeball center in camera coordinates system can
then be estimated given rotation and translation and other
subject-dependent parameters. The third step is to estimate
the pupil position in camera coordinates system. Finally gaze
direction can be computed given eyeball center, pupil center
and related eye parameters.

II. RELATED WORK

First of all, there are several commercially available remote
eye trackers for ordinary customers. For example, Tobii eyeX
[11], The Eye tribe [12], etc. Despite the good performance
and affordable prices, these eye trackers still lies heavily
on infrared lights, and are limited in indoor environments.
Though Kinect V1 still requires infrared lights to sensing
depth, our algorithm does not rely directly on infrared lights.
Actually, we can replace with the newly Kinect V2 sensor,
where a time of flight sensor is used to sensing depth.

Plenty of work has been proposed to remove explicit
usage of IR lights. The first category is methods with web
cameras only. Lu et al [7] proposed an appearance-based
gaze estimation method with adaptive linear regression.
The mapping functions can be accurately estimated via
sparsely collected training samples. The sparsity nature of
the proposed method enables much fewer training samples.
However, the head pose issue is not well solved. Sugano
et al [13] proposed to alleviate the head pose issue by
adding head pose information. Specifically, they build a
stereo vision system with multiple cameras. Then 3D facial
landmark positions can be recovered and utilized to define
head position. However, the proposed method requires
large amount of data to cover enough head pose spaces
and the system setup is rather complex. Hirotake [14]
proposed a head-eye model combined with eye appearance
to estimate the 3D gaze direction. Follow the idea similar
to structure from motion, they can estimate the face model
and head pose given a sequence of images. However, their
method is sensitive to head pose, and the accuracy is rather
low (6 degree) because of the ignorance of personal parameter.

The second category is appearance-based methods with
depth sensor. Among them, Funes Mora et al [15] proposed
a head pose invariant gaze estimation method with Kinect.
An appearance generative process is built to obtain head-pose
rectified eye images. Gaze can therefore be estimated with
the rectified eye appearance. Li et al [16] proposed a real
time gaze tracking system with a HD web camera and a
Kinect. Gaze motion is approximated by local pupil motion
and global face motion. However, such approximation is
not correct since real gaze motion is the coupling of pupil
motion and face motion. Therefore their system is limited in
subject’s head positions. Jafari et al [17] proposed to estimate

gaze with Kinect and a PTZ camera. They first estimate
the eye-gaze direction based on the relative displacement of
the iris in terms of reference point. The final gaze direction
is the correction of eye-gaze direction by considering the
head pose and orientation from Kinect. However, the relative
displacement cannot accurately model gaze directions and
thus the accuracy is rather low.

The third category is model-based methods with depth
sensor. Li et al [18] proposed a model-based gaze estimation
method with Kinect. The basic idea is to estimate gaze
related eye features (eyeball center, pupil center) and
estimate gaze given these eye features and subject-dependent
parameters. They proposed a personal-calibration procedure
which requires subjects to gaze at a 3D target instead of
pre-defined points on display surface. However, the proposed
calibration procedure only estimates the eyeball center in
head coordinates system and sets other subject-dependent
parameters to human average. Therefore the estimated
parameters may not apply to different subjects and results in
poor accuracy of the proposed gaze tracking system. Xiong
et al [19] proposed another model-based gaze estimation
method with Kinect. Head pose information is estimated
from facial landmark tracking results from Kinect, from
which eyeball center position can be recovered. Together
with pupil position and subject-dependent parameters, gaze
direction can be effectively computed. However, their 3D eye
model ignores cornea center and use eyeball center instead
to model the difference between optical and visual axis.
Such model is simple but may not give good gaze estimation
results. Sun et al [20] propose a similar model-based gaze
estimation method. Pupil and eyeball center position are
estimated from pupil detection algorithm and pose estimation
algorithm. Despite the high accuracy (<2 degree) achieved
by the system, they did not model the difference between
optical and visual axis properly. Therefore, the gaze tracking
system might not apply to subjects with large optical-visual
angle differences. In addition, they sacrifice the speed
(12 FPS of their system) to obtain high resolution color
images (1280 × 960), which make their approach limited in
applications with larger FPS. Besides, the proposed methods
are only evaluated at a distance of approximately 550mm,
the optical-visual angle difference might have a much larger
effect with larger operating distances.

In summary, existing model-based gaze estimation methods
make additional assumptions on the eye model to simplify the
computation and reduce the number of personal parameters.
However, we propose to mimic the human vision system as
much as possible by using a complex eye model with more
personal parameters. Despite the complexity of the eye model,
the calibration process and the gaze estimation process remain
simple and intuitive. Besides, we also build the gaze tracking
system with low resolution images 640 × 480 compared to
1280 × 960 in [20] to enable real-time gaze tracking (20
FPS).
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Fig. 1. 3D eye model.

III. 3D EYE MODEL

Model-based gaze estimation methods first construct a 3D
eye model to mimic human vision system and how eye gaze
is generated. From eyeball anatomy, we can construct the
eye model as illustrated in Figure 1. Eyeball system can be
approximated as two spheres intersecting with each other:
the eyeball sphere and the cornea sphere. Two spheres can
rotate around the eyeball center together to look at different
directions. Optical axis No is defined as the line connecting
eyeball center e, cornea center c and pupil center p. However,
the real gaze direction is determined by the line connecting
fovea and cornea center c, since fovea is a small depression in
the retina of the eye where visual acuity is highest. Visual axis
Nv is therefore defined to model the real gaze direction. Since
eyeball and cornea rotate around eyeball center together as
shown in Figure 2 , the angle between optical and visual axis
is a fixed angle called kappa. Kappa is typically represented
as a two dimensional vector [α, β]. Eyeball radius re and
the distance between cornea center and eyeball center rce are
also assumed to be fixed for the same subject. Offset vector
Vhe represents the eyeball center position in head coordinates
system. Since human head is a rigid object and eyeball is
rigidly attached within head, thus Vhe is also a fixed vector for
the same subject. In summary, we use θ = [α, β, re, rce,Vhe]
to represent all the subject-dependent eye parameters. These
parameters can be effectively estimated from the proposed
personal-calibration framework.

IV. GAZE ESTIMATION WITH 3D EYE MODEL

In this work, we plan to use the depth sensor (Kinect) to
perform gaze estimation. Depth information from depth sensor
is used in two folds:

• Obtain the 3D coordinates of pupil center p in camera
coordinates system.

Screen

e

c1

p1

fovea1

Vg1(PoR1)

c2p2 fovea2Vg2(PoR2)

kappa

Fig. 2. Eyeball rotation and gaze direction.

• Perform head pose estimation to obtain the rotation R and
translation T of the head relative to camera coordinates
system.

Given the information {p,R,T} from depth sensor and the
subject-dependent parameters θ from personal-calibration, we
can perform gaze estimation with the proposed 3D eye model.

From Figure. 1, the same point in camera coordinates
system zc and head coordinates system zh are related by the
rotation R and translation T:

zc = Rzh +T (1)

Therefore eyeball center in camera coordinates system can be
computed as:

e = RVhe +T (2)

Given eyeball center e and pupil center p, optical axis No can
be computed as:

No = (p− e)/||p− e|| (3)

Cornea center c can then be computed as:

c = e+ rceNo (4)

The unit length vector No is typically expressed as two angles
φ and γ:

No =

 cos(φ) sin(γ)
sin(φ)

− cos(φ) cos(γ)

 (5)

By adding α and β to optical axis, we can obtain the visual
axis Nv:

Nv =

 cos(φ+ α) sin(γ + β)
sin(φ+ α)

− cos(φ+ α) cos(γ + β)

 (6)

Gaze direction is then computed as:

Gaze direction = c+ λNv (7)

Point of Regard can be computed by intersecting the gaze
direction with the display surface. The display surface equation
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can be obtained by a one-time display camera calibration. For
the purpose of simplicity, we denote PoR estimation as:

PoR = f(p,R,T; θ) (8)

Overall, to perform gaze estimation, we first need robustly
detected eye/head features p, R and T from Kinect frame
by frame. Given these detected features, a one-time personal
calibration is performed to estimate the subject-dependent eye
parameters. Finally, we can perform real time gaze tracking.

A. Detect Eye/Head Features and Estimate Head Pose

Kinect provides us with synchronized color stream and
depth stream. Besides, Kinect SDK is able to perform facial
landmark tracking, from which we can obtain the rough
regions of left and right eyes. We treat pupil center as a special
facial landmark, and propose to detect the 2D pupil center
on the rough eye regions with supervised descent method as
described in [21]. The corresponding depth value of the pupil
is extracted from the depth frame, from which we can compute
the 3D pupil center p. Kinect SDK also provides us with
estimated head pose R and T. Note that T represents the head
position in camera coordinates system, and R is computed
based on a built-in defined head coordinates system from
Kinect. Finally, observation pair {p,R,T} can be retrieved
efficiently frame by frame.

B. Personal Calibration

During personal calibration procedure, subject is required to
look at K pre-defined points gi, i = 1, ...,K. The correspond-
ing eye/head features {pi,Ri,Ti}, i = 1, ...,K are collected,
from which we can compute the PoR using Eqn. 8:

PoRi = f(pi,Ri,Ti; θ) (9)

The subject-dependent eye parameters θ can be estimated by
minimizing the gaze prediction error:

θ∗ = argmin
θ

K∑
i=1

||PoRi − gi||2

= argmin
θ

K∑
i=1

||f(pi,Ri,Ti; θ)− gi||2 (10)

subject to θl < θ < θh

Eye parameters θ represent the physical structure of human
eye/head, therefore their values are limited in a reasonable
range (θl, θh). The optimization problem in Eqn. 10 can be
solved iteratively using interior-point algorithm. [α, β, re, rce]
can be initialized to human average values. Vhe can be
initialized given T and initial estimation of eyeball center e.

V. EXPERIMENTAL RESULTS

A. Implementation Details

1) System Setup: A computer with Inter Core i7-4770 3.4
GHz CPU and 16.0 GB memory is used in the experiments.
The monitor is 20.5 inch and the resolution is set to 1920 ×

TABLE I
SUBJECT-DEPENDENT PERSONAL PARAMETERS.

Subjects θ = [α, β, re, rce,Vhe]
1 4.8 1.2 16.6 5.1 [−34.6 41.6 45.0]
2 −4.8 3.3 15.5 5.1 [−30.3 40.3 58.6]
3 −3.7 4.7 17.3 7.6 [−32.3 48.6 43.2]
4 4.2 −3.5 16.8 5.4 [−29.4 44.7 59.3]
5 4.9 2.1 16.3 6.3 [−29.5 49.8 57.5]
6 −3.2 −4.9 15.9 5.2 [−30.6 47.9 47.1]

1080. Kinect is placed under the monitor. The resolution of
color and depth stream are both set to 640 × 480. Display-
camera calibration is achieved with the method proposed in
[22], where only a thread is utilized to estimate the four screen
corners’ coordinates in camera coordinates system.

2) Camera and Stereo Calibration of Kinect: In order
to decrease Kinect’s build-in error, we perform camera cal-
ibration on both the color and depth cameras to estimate
their intrinsic parameters. Furthermore, a stereo calibration
procedure is performed on color and depth cameras to better
align color stream and depth stream. Stereo calibration is
essential since the physical distance between color and depth
cameras causes the mis-alignment between synchronized color
and depth streams.

3) Noise Reduction and Outlier Removal: The detected
observation pair {p,R,T} are usually contaminated by noise
and outliers. R and T are provided by Kinect, thus a simple
smoothing operation is implemented. Incorrect p may result
from poor 2D pupil detection results or missing depth values.
We implement the method proposed in [23] to fill the missing
values. Due to low resolution color image, 2D pupil detection
is a challenge, we expect more advanced techniques developed
to improve the 2D feature detection accuracy. Besides these
global operation to reduce noise and remove outliers, we also
implement the RANSAC method during calibration. Since we
know groundtruth gaze points during calibration, RANSAC
enables us to remove outliers and find inliers to better estimate
subject-dependent eye parameters.

4) Fusion Results from Left and Right Eyes: Contrary to
most IR lights based gaze tracking system, where camera is
focused on human eyes to improve feature detections. Web
camera and Kinect based gaze tracking system can capture
the upper body of subjects. Therefore Kinect based system is
more likely to capture image of two eyes than IR lights based
system. In the experiments, we perform the same personal
calibration and gaze estimation procedure for left and right
eyes, the final PoR is the average of the PoR from left and
right eyes. However, if the PoR from one of the eye falls out
of the display region, we consider this as outliers and simply
use the PoR from another eye. This also applies to the case
where results from two eyes are both outliers.

B. Experiments with Real Subjects

We test the proposed gaze tracking system with Kinect for
6 subjects. None of the subjects wear glasses since glasses
block eyes and cause the depth estimation error of pupil.
Each subject is firstly asked to perform a 5-points personal
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Fig. 3. Comparison of Different Operating Regions. The line segment on the
bar represents the standard deviation.

calibration. Then they are asked to look at 15 random points,
which is used for evaluation. Each point is displayed for
approximately 4 seconds where 80 frames of data can be
collected. We use the PoR prediction error to evaluate the
performance of the gaze tracking system.

1) Personal Calibration Evaluation: For each subject, we
solve the optimization problem in Eqn. 10 to estimate the
subject-dependent parameters. Table I shows the estimated
eye parameters for the 6 subjects. The first two numbers are
the kappa angles α and β in degree. Then third and fourth
number are eyeball radius and the distance between eyeball
and cornea center. The final parameter is the offset between
head and eyeball center Vhe. We can see the kappa angles and
other parameters are different from each other, which illustrate
the importance of personal calibration. This difference also
causes poor performance of methods ignoring these personal
parameters. Moreover, personal calibration not only estimates
the subject-dependent parameters, but also compensate the
built-in consistent error of the gaze tracking system. For
example, the incorrect camera calibration, display-camera
calibration results or the facial landmark detection bias can
be compensated through the personal calibration procedure.
Besides, as for efficiency, the 5-points calibration procedure
takes averagely 20 seconds to collect the calibration data
and 1 second to solve the subject-dependent parameters. This
means after approximately 21 seconds of personal calibration
procedure, subjects are able to perform free gaze tracking with
the proposed Kinect based gaze tracking system.

2) Gaze Estimation Evaluation with Different Operating
Regions: To better evaluate the proposed gaze estimation
method with Kinect, we test the estimated eye parameters
on different operating regions. In particular, we consider 5
rough regions (Center, Front, Back, Left and Right). Within
each region, subjects are allowed to move or rotate their
head freely as long as head positions still belong to the
specific region. During the experiments, subjects perform
one-time personal calibration in the ”Center” region, then
they are asked to perform the testing tasks 5 times in the 5
different regions. Figure 3 shows the gaze estimation error
for 6 subjects in the 5 regions. To better understand the rough
positions of the 5 regions, we visualize the 3D coordinates of
one rigid facial landmark (nose tip) from Subject 1 as shown
in Figure 4. The rigid facial landmark can represent the head
translations (T). Note that the rest 5 subjects operates at
similar regions like subject 1.
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Fig. 4. Visualization of Different Regions in Camera Coordinates System.
Kinect lies approximately at [200, -100, 0] mm, and the optical axis is along
positive z direction.

From Eqn. 8, we can see that the gaze estimation error
comes from two factors. One is the incorrect features
{p,R,T} resulted from poor feature detections. Another
is the incorrect eye parameters θ. In Figure 3, the best
result comes from ”Center” (3.2 degree) region. This is
because the personal calibration is performed in the same
region and the estimated eye parameters can match perfectly
to the testing data. The worst results come from ”Front”
(4.3 degree) and ”Back” (4.6 degree) regions. In these two
regions, the operating distance differs a lot compared to
”Center” region, results in the size change of face and eye
in image coordinates. Therefore both feature detection and
the mis-matched eye parameters contribute to the increased
gaze estimation error. The results from ”Left” (3.8 degree)
and ”Right” regions (3.9 degree) are worse than the ”Center”
results but better than ”Front” and ”Back” results. Since the
operating distance of ”Left” and ”Right” regions are similar
to ”Center” regions, thus the eye parameters estimated in
”Center” region are able to adapt to data from these two
regions. Despite the increased gaze estimation error in regions
outside the calibration region, we can see the overall gaze
estimation error can still achieve 4.0 degree, which is suitable
for may applications.

3) Gaze Estimation Evaluation with Manually Labeled
Pupil Positions: The novelty of this paper mainly lies in the
new gaze estimation framework with Kinect. However, the
accuracy of the system relies on accurate feature detections
like the pupil detections. We have evaluated the pupil detection
algorithm on the popular BioID dataset, the percentage for
0.05 normalized error (approximately within pupil region) is
89.2. This explains why we can get good gaze estimation
accuracy. But in order to better evaluate the proposed gaze
estimation framework, we also manually label the 2D pupil
positions on color image to remove the effect of poor pupil
detections. Figure 5 shows the gaze estimation error using
manually labeled pupil and automatically detected pupil for
the 6 subjects in ”Left” region. With manually labeled pupil
positions, gaze estimation error reduces significantly from 3.9
degree to 3.0 degree. The reduced variance also proves the
improved robustness with manually labeled pupil positions.
We believe the performance of the proposed gaze tracking
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system will further increase with better feature detection
techniques.
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Fig. 5. Comparison of Manual Labeled and Automatically Detected Pupil
Positions.

4) Comparison with State-of-the-Art Kinect-based gaze es-
timation methods: Generally speaking, gaze estimation meth-
ods under infrared lights can achieve relative good gaze
estimation accuracy (<2 degree), since pupil positions can be
accurately detected in infrared spectrum. However, methods
with infrared lights suffer from complex system setup and
limited working environments. Therefore we mainly focus on
comparing methods using Kinect. Table II shows the compar-
ison results. We can find the proposed method outperforms
methods proposed from [19], [18] and [15]. The method
proposed by Sun et al [20] achieves the best accuracy among
methods using Kinect. However, their method suffers from
several limitations. First of all, they set the resolution of color
stream to be 1280 × 960, which benefits the pupil detection
procedure and results in better gaze estimation accuracy.
However, the good accuracy is at the cost of sacrificing speed
(12 fps) compared to 30 fps with resolution 640×480. Besides,
the operating distance is relatively short (550 mm) compared
to 800 mm (Figure 4) in our case. Overall, the proposed
methods achieve comparable gaze estimation accuracy with
low resolution images and higher speed (20 fps).

TABLE II
COMPARISON WITH STATE-OF-THE-ART KINECT-BASED METHODS

Method Error /degree
proposed 4.0
[19] 4.4
[18] <10
[15] 5
[20] <2

VI. CONCLUSION

In this paper, we propose a simple low-cost gaze tracking
system with Kinect. We adapt the 3D eye model in IR-based
approaches into this work to model the human vision system
as accurate as possible. With the 3D eye model, we propose a
personal calibration framework to estimate the 7-dimensional
personal parameters, which can be used to estimate gaze
directions or PoRs on the screen. Experimental results with
6 subjects under different head poses prove the effectiveness
of the proposed method. Besides, by using manually labeled
pupil positions, we can obtain a lower bound of the gaze
estimation error. We can only expect the improvement of gaze
estimation accuracy with new eye feature detection techniques.

Furthermore, benefited from using low resolution color stream
(640 × 480, 30 fps) instead of high resolution color stream
(1280 × 960, 12 fps), we are able to achieve real time gaze
tracking with 20 fps.
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