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Abstract—3D models of outdoor environments have been used
for several applications such as a virtual earth system and a
vision-based vehicle safety system. 3D data for constructing such
3D models are often measured by an on-vehicle system equipped
with laser rangefinders, cameras, and GPS/IMU. However, 3D
data of moving objects on streets lead to inaccurate 3D models
when modeling outdoor environments. To solve this problem,
this paper proposes a moving object detection method for point
clouds by minimizing an energy function based on photometric
and depth consistencies assuming that input data consist of
synchronized point clouds, images, and camera poses from a
single sequence captured with a moving on-vehicle system.

I. INTRODUCTION

3D models of outdoor environments have been used for
several applications such as a virtual earth system [1] and
a vision-based vehicle safety system [2]. Such 3D models
are constructed by real-world measurement using an on-
vehicle system equipped with laser rangefinders, cameras, and
GPS/IMU [3]–[5]. Fig. 1 shows an example of an on-vehicle
system equipped with sensors.

One problem here is that moving objects in the measured
data lead to inaccurate 3D models and such 3D models
cause undesirable artifacts in virtual views generated using the
3D models. For example, if we produce virtual views using
view-dependent image-based rendering technique [6] from 3D
models including moving objects, implausible textures often
appear as shown in Fig. 2. To cope with this problem, a number
of methods that detect or remove moving object regions in the
data of outdoor environments have been proposed.

Kanatani et al. [7] detect 3D points on moving objects
using photometric consistency between pixels obtained by
projecting a 3D point onto omnidirectional images captured
from different viewpoints. Since this method uses only pho-
tometric consistency, this method cannot detect points on
moving objects whose luminance values are similar to those
on background static objects. In addition, the applicable range
is limited because the method is based on the assumption that
the moving object exists on a road. Yan et al. [8] detect and
remove moving objects from a single sequence data captured
with a moving on-vehicle system. They detect moving objects
by tracking sparse 3D points on the moving objects between
a reference frame and its next frame. Although the accuracy

Fig. 1. On-vehicle system. Fig. 2. Implausible image.

of the moving object detection largely depends on that of
object tracking, this method often fails in tracking moving
objects because tracking a sparse 3D point cloud captured
with a laser rangefinder while moving is quite challenging.
Huang et al. [9], Premebida et al. [10], and Spinello et al. [11]
detect moving objects based on machine learning. They first
detect moving objects from images and 3D point clouds, which
are measured with LIDAR, using supervised object detection
methods, and then integrate the detection results. Since these
methods can detect only specified moving objects such as
humans and vehicles, it is difficult to detect unknown moving
objects.

This paper proposes a novel moving object detection method
for 3D point clouds by minimizing an energy function based
on photometric and depth consistencies assuming that input
data consist of synchronized point clouds, images, and camera
poses measured with a moving on-vehicle system from a single
sequence. The proposed method can detect arbitrary moving
objects in unconstrained regions without tracking moving
objects.

II. MOVING OBJECT DETECTION FROM A POINT CLOUD

The proposed method detects 3D points on moving ob-
jects frame-by-frame using 3D point clouds, images, and
camera poses of multiple frames measured by a moving on-
vehicle system equipped with laser rangefinders, cameras,
and GPS/IMU. Here, a 3D point cloud, an image and a
camera pose are synchronously obtained in each frame. Since
the 3D point cloud is obtained by raster-scanning a target
environment in whole directions around the laser rangefinders,
the relationship among neighboring 3D points is known.
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In this study, assuming that luminance, position and shape
of static objects are fixed during a short time period, we
detect the 3D points on moving objects by minimizing an
energy function based on photometric and depth consistencies
between multiple frames using graph cuts [12]. In addition, to
improve the detection accuracy, we design a function that eval-
uates the likelihood of moving objects from the relationship
between manually labeled objects and their photometric and
depth consistencies in measured data, and use it for the energy
function. In the following sections, we describe the definition
of the energy function, photometric consistency, depth consis-
tency, and the function for evaluating the likelihood of moving
objects.

A. Definition of the energy function

The proposed method assigns moving or static label to each
3D point so as to minimize an energy function based on
the likelihood of moving objects and the relationship among
neighboring 3D points. Specifically, we define energy function
E with respect to label X for target frame as follows:

E(X) =
∑
v∈V

gv(Xv) + κ
∑

(u,v)∈A

hu,v(Xu, Xv), (1)

where gv is an data term that measures the likelihood of the
label Xv for a 3D point v, hu,v is an smoothness term between
labels of two neighboring 3D points u and v, V is a set of
measured 3D points in target frame, A is a set of pairs of
two neighboring points (u, v), and κ is a weight to control
the contribution of the second term versus the first term.

Data term gv is defined on the basis of the likelihood of
moving objects based on photometric consistency MP,v and
the likelihood of moving objects based on depth consistency
MD,v for 3D point v as follows:

gv(Xv) =

{
(1−MD,v) + α(1−MP,v) (Xv : moving)
MD,v + αMP,v (Xv : static),

(2)
where the range of MP,v and MD,v is the closed interval [0, 1]
and α is a weight to control the contribution of MP,v versus
MD,v. When the likelihood of moving objects is large, label
Xv tends to become moving so that gv gets small, and vice
versa. The likelihoods of moving objects MP,v and MD,v are
described in the following section.

Smoothness term hu,v is defined on the basis of the
difference between luminance values Inv and Inu (which are V
in HSV color space) and the difference between depth values
dnv and dnu at the projected positions of two neighboring 3D
points u and v on target frame n as follows:

hu,v(Xu, Xv) =

{
0 (Xv = Xu)

1
|dnu−dnv |+|Inu−Inv |+ε

(Xv 6= Xu),
(3)

where ε is a positive constant value to make the denominator
of the lower case in Eq. (3) non-zero. When different labels
are assigned to two neighboring points, hu,v gets small if the
differences of luminance values Inv and Inu and depth values
dnv and dnu are large. Therefore, different labels tend to be
allowed for the neighboring points in such a case.
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Fig. 3. Photometric consistency.
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Fig. 4. The case of occlusion.

B. Photometric consistency

As illustrated in Fig. 3, in the case of projecting 3D point v
on a moving object measured in target frame n onto images of
different frames, luminance values of the projected positions
often vary because different objects often exist on the projected
positions. Therefore, the proposed method projects 3D points
of target frame n onto images of multiple frames m (n−N ≤
m ≤ n+N ), and evaluates the likelihood of moving objects
on the basis of the differences of luminance values.

Specifically, we calculate the likelihood of moving objects
based on photometric consistency MP,v for 3D point v as
follows:

MP,v = FP

(
max
m

(Ierr(m, v))
)
, (4)

where Ierr(m, v) is defined using luminance values Inv and
Imv at the projected positions of 3D point v on target frame n
and another frame m, respectively, as follows:

Ierr(m, v) =

{
0 (dmv − dmv′ > T )
|Inv − Imv | (otherwise).

(5)

If 3D point v measured in target frame n is occluded in
different frame m, a different 3D point v′ is observed at the
projected position of 3D point v on frame m. This means that
the projected positions of v and v′ on frame m are the same.
In this case, point depth dmv at 3D point v on frame m is larger
than the observed depth dmv′ at the projected position of 3D
point v as illustrated in Fig. 4. Thus, we assume that a 3D point
v is occluded in frame m if dmv − dmv′ > T is satisfied, where
T (≥ 0) is a threshold, and we set luminance error Ierr(m, v)
as zero in this case. The function FP (·) (0 ≤ FP (·) ≤ 1) in
Eq. (4) evaluates the likelihood of moving objects on the basis
of the relationship between manually labeled objects and their
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Fig. 5. Depth consistency.

photometric consistencies in measured data. We describe the
details of function FP in Section II-D.

C. Depth consistency

As with the photometric consistency in the previous section,
in the case of projecting 3D point v on a moving object
measured in target frame n onto depth maps of a different
frame m, an observed depth dmv′ at the projected position of
3D point v on frame m differs from dmv because different
objects exist on the projected positions as illustrated in Fig. 5.
Accordingly, the proposed method projects 3D points in target
frame n onto depth maps of multiple frames m, and evaluates
the likelihood of moving objects on the basis of the difference
of depth values. It should be noted here that we generate a
dense depth map in each frame by linearly interpolating depth
values using connected neighboring 3D points on the depth
map as shown in Fig. 6 because depth maps generated from
sparse 3D points have missing values.

Specifically, we calculate the likelihood of moving objects
based on depth consistency MD,v as follows:

MD,v = FD

(
max
m

(derr(m, v))
)
, (6)

where derr(m, v) is defined using depth dmv and observed
depth dmv′ at the projected position of 3D point v onto frame
m as follows:

derr(m, v) =

{
0 (dmv − dmv′ > T )
|dmv′ − dmv | (otherwise).

(7)

As with the photometric consistency, if |dmv − dmv′ | > T is
satisfied, i.e., a occlusion occurs, we set depth error derr(m, v)
as zero. The function FD(·) (0 ≤ FD(·) ≤ 1) in Eq. (6)
evaluates the likelihood of moving objects on the basis of
relationship between manually labeled objects and their depth
consistencies in measured data. We describe the details of
function FD in the next section.

D. Definition of function for evaluating the likelihood of
moving objects

In order to improve the detection accuracy, we design FP

and FD that evaluate the likelihood of moving objects from
the relationship between manually labeled objects and their
photometric and depth errors, which are calculated by Eq. (5)
and Eq. (7), respectively.

(a) Projected 3D point cloud

(b) Dense depth map

Fig. 6. Interpolation of depth map.

Fig. 7. Manually labeled moving objects.

Specifically, we first manually assign moving or static label
to measured 3D points in order to make the ground truth
as shown in Fig. 7. Next, we compute histograms of the
luminance and depth error for moving and static labels, re-
spectively. Finally, we calculate ratios of the number of moving
labels to the entire number for each bin in the histograms, and
store the ratios into lookup tables that are used as the functions
of the likelihood of moving objects FP and FD.

III. EXPERIMENTS

To verify the effectiveness of the proposed method, we
detected 3D points on moving objects using a single sequence
of 3D point clouds, images, and camera poses that are syn-
chronously acquired with a moving on-vehicle system, and
performed quantitative evaluations.

A. Experimental conditions

We applied the proposed method to the public data sets
from KITTI [13], which are captured by a moving on-vehicle
system. These data sets consist of synchronized point clouds
measured by an omnidirectional laser rangefinder (Velodyne
HDL-64E), images captured by a camera (Point Grey Flea 2
(FL2-14S3C-C)), and camera poses measured by a GPS/IMU
(OXTS RT 3003). The specifications of the sensors are shown
in Table I. First, we gave the ground truth to 10 frames in
data set A shown in Fig. 8 to calculate the function for eval-
uating the likelihood of moving objects. Then, we applied the
proposed method with the calculated function to respective 20
frames in data sets B, C, and D (shown in Figs.9 - 11) to detect
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TABLE I
SPECIFICATIONS OF SENSORS.

Velodyne HDL-64E
Data acquisition 10Hz
Acquisition points About 130,000 points
Angular resolution 0.09◦

Range of the declination angle 0◦-26.8◦

Measurement error of the distance ±20mm
Range of the measurement ≤ 120m

Point Grey Flea 2
Data acquisition 10Hz
Resolution(pixel) 1242× 375

OXTS RT 3003
Data acquisition 10Hz
Resolution of GPS·IMU 0.02m / 0.1◦

Fig. 8. Example image in data set A.

Fig. 9. Example image in data set B.

Fig. 10. Example image in data set C.

Fig. 11. Example image in data set D.

points on the moving objects. In addition, this experiment used
11 frames (N = 5) for calculating photometric and depth
consistencies and used κ = 12 in Eq. (1) and α = 2.5 in
Eq. (2). In the following sections, we explain the calculation
of the function for evaluating the likelihood of moving objects,
the detection results and quantitative evaluation.

B. Calculation of the function for evaluating the likelihood of
moving objects

Figs. 12 and 13 show the histograms of the luminance
and depth error and the likelihood of moving objects based

Fig. 12. Histogram of the luminance error and the likelihood of moving
objects based on photometric consistency.

Fig. 13. Histogram of the depth error and the likelihood of moving objects
based on depth consistency.

on photometric and depth consistencies for the data set A,
respectively. In the histograms of the luminance error and
depth error, we divide the ranges of luminance error (0 - 255)
and depth error by the intervals of 1 and 0.1 m, respectively.
The functions FP and FD for evaluating the likelihood of
moving objects based on photometric and depth consistency
were determined by smoothing the likelihood along the error-
axis using a Gaussian filter. In addition, in the functions, we
set the likelihood of moving objects as 0.9 when the luminance
error is over 80, and we set the likelihood of moving objects
as 0.9 when the depth error is over 8.0 m.

C. Detection results and quantitative evaluation

This section compares the results of moving object detection
by the proposed method with those by the method using only
photometric information for energy function E (referred to as
photometric method) and the method using only depth infor-
mation for energy function E (referred to as depth method) for
data sets B, C and D to verify the effectiveness of the proposed
method. Here, we quantitatively evaluate the results using two
benchmarks TPR (True Positive Rate) and ACC (Accuracy).
Specifically, given TP (True Positive) that is the number of
points that exist on the moving object and are judged as points
on moving objects correctly and FN (False Negative) that is the
number of points that exist on moving objects but are judged
as points on static objects incorrectly, TPR (which also means
the detection rate of moving objects) is defined as follow:

TPR =
TP

TP + FN
. (8)

In addition, given TN (True Negative) that is the number of
points that exist on static objects and are judged as points
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Fig. 14. Detection results for data set B, C, and D using the proposed method, photometric method, and depth method.

on static objects correctly and FP (False Positive) that is the
number of points that exist on moving objects but are judged
as points on static objects incorrectly, the accuracy (ACC) is
defined as follow:

ACC =
TP+ TN

TP+ TN+ FP + FN
. (9)

Fig. 14 shows ground truths, which given by manually
assigning moving or static label to measured 3D points, and
the detection results for data sets B, C and D obtained by the
proposed, photometric and depth methods. Fig. 15 shows the
quantitative evaluations for these three methods. Symbol “*”
in Fig. 15 means that a significant difference was recognized
using the t-test with a 5% significant level. In the experiment
for data set B, as shown in Fig. 15(a), TPR of the proposed
method is better than that of photometric method, and TPR
and ACC of the proposed method are better than those of
depth method. We also show the comparison of the results
for the vehicle which moves slowly in the depth direction in
data set B in Fig. 16. While it was difficult for the methods
using only photometric consistency or depth consistency to
detect the slowly moving objects in the depth direction because
the luminance and depth error may be small, the proposed
method could obtain better results by considering both the
photometric and depth consistencies. In the experiment for
data set C, as shown in Fig. 15(b), TPR and ACC of the
proposed method are better than those of other methods. This
is because FN of the proposed method is less than those of

other methods and it is difficult for other methods to correctly
divide the region around a boundary of the moving object in
which the difference of luminance values or depth values is
small. However, we confirmed false detections of the points
on the ground near the camera in the result by the proposed
method as shown at the 5th row and 3rd column in Fig. 14.
We consider that this is because of the automatic exposure
adjustment function of the camera in the sunny condition. In
the experiment for data set D, as shown in Fig. 15(c), while
TPR of the proposed method is better than those of other
methods, TPRs of all the methods are low. This is because
the camera and moving objects moves slowly as shown at the
7th-9th row and 1st column in Fig. 14. We confirmed that it
is difficult to detect points on the objects that move slowly
when the camera also moves slowly because the background
of the moving objects is continuously occluded by the moving
objects and the background is seldom observed.

IV. CONCLUSION

In this paper, we have proposed a moving object detection
method for point clouds by minimizing an energy function
based on photometric and depth consistencies assuming that
input data consist of synchronized point clouds, images, and
camera poses from a single sequence captured with a moving
on-vehicle system. In experiments, we confirmed that the
proposed method could obtain significantly better evaluation
results than baseline methods considering only photometric
or depth consistency for various scenes. However, we also
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Fig. 15. Comparison of the results.

confirmed that it is difficult for the proposed method to detect
moving objects in such scenes as those that include luminance
changes due to automatic brightness adjustment of cameras. In
future work, we will compensate for changes in the brightness
by the automatic brightness adjustment of cameras to improve
moving object detection.
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