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Abstract — A new algorithm is introduced to compute the 

curve skeleton of 3D objects by using the notion of local convexity. 

The centers of maximal balls detected on the distance transform of 

the object are filtered to select as anchor points only those located 

on sharp local convexities of the object’s boundary. Then, the 

skeleton is obtained by means of topology preserving removal 

operations. Pruning is finally accomplished to remove from the 

skeleton scarcely significant peripheral branches.  
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I.  INTRODUCTION 

The curve skeleton of a 3D object is a homotopic subset of 
the object consisting of curves placed along the main symmetry 
axes of the object. Skeletonization is based on the notion of 
symmetry point and on the growth process that were introduced 
by Blum, initially for 2D objects and successively for objects in 
higher dimensions, to define the Medial Axis Transform, MAT 
[1]. A symmetry point p is an object’s point at the same distance 
r from at least two distinct sections of the boundary of the object. 
The growth process associates to p all object’s points having a 
distance from p smaller than or equal to r. In this way, a maximal 
ball centered on p and with radius r is built. The ball touches the 
boundary in at least two distinct parts and is entirely contained 
in the object. The MAT is the locus of the symmetry points, and 
the envelope of all the maximal balls coincides in shape and size 
with the object.  

Papers dealing with continuous and discrete approaches to 
the computation of the 3D curve skeleton as well as with the use 
of the skeleton for applications can be found in the literature [2-
15]. In this paper, we follow the discrete approach and deal with 
the computation of the curve skeleton in voxel images. In 
particular, we suggest a method that is a mixture of 
skeletonization based on iterated voxel removal and 
skeletonization based on the use of the distance transform of the 
object.  

Each iteration of skeletonization by means of iterated 
topology preserving voxel removal consists of two sub-
iterations: during the first sub-iteration, border voxels are 
identified; during the second sub-iteration, the found border 
voxels are sequentially checked and are removed provided that 
they are not necessary for topology preservation or to account 
for relevant object’s shape information. Skeletonization 
terminates when all object voxels are border voxels and they all 
result un-removable. An evident drawback of this 
skeletonization approach is its high computational cost when 

applied to rather thick objects. In fact, in this case a large number 
of iterations are necessary to obtain the skeleton. Another 
drawback is that finding a reliable criterion to preserve from 
removal the object’s points accounting for shape information is 
not an easy task. A generally followed solution to this problem 
is to prevent from removal the so called end points, by setting a 
threshold on the maximum number of object’s neighbors of the 
border voxels that should be preserved from removal. However, 
such a criterion does not guarantee an isotropic behavior of 
skeletonization. In fact, local configurations of border voxels 
with the same structure but with different orientation, may or 
may not be mapped into end points depending on the order in 
which voxels are visited.  

To solve the above drawbacks, we resort to the use of the 
Distance Transform, DT, and to the selection of the Centers of 
Maximal Balls, CMB, in the DT. In fact, the DT is a multi-
valued replica of the object, where each voxel is assigned the 
value of its distance from the complement of the object. Each 
object voxel in the DT can be interpreted as the center of a ball 
with radius equal to the distance value of the voxel itself and 
touching the object boundary. Clearly, a CMB is a symmetry 
point. Thus, a discrete approximation of the MAT is possible by 
selecting the CMB in the DT.  

We use the DT to identify as anchor points a suitable set of 
CMB, so as to guarantee that the most relevant information on 
object’s shape be reflected by the skeleton. Moreover, we exploit 
the DT to avoid repeated inspections of the image by directly 
accessing in increasing distance value order the voxels that 
undergo removal, so as to significantly reduce the computational 
cost of iterated thinning.  

Actually, not all the CMB should be taken as anchor points 
for 3D curve skeletonization for at least two reasons: 1) unless 
we consider exclusively objects composed by snake-shaped 
parts, the CMB concentrate along symmetry planes and 
symmetry axes. Thus, CMB filtering is necessary at least as 
concerns the CMB placed along symmetry planes; 2) some 
CMB are due only to the discrete nature of the digital space and 
do not carry shape information. For example, sections of a 
cylinder in the continuous space are circles and only the centers 
of these circles are CMB, but sections of a cylinder in the digital 
space are polygons and, besides the centers of these polygons, 
also some spurious CMB are detected due to the weak 
convexities at the vertices of the polygons. Thus, also some 
convexity based filtering of the CMB is necessary. 
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Our 3D curve skeletonization method is accomplished in 
three phases respectively dealing with 1) computation of a 
subset of the object consisting of surfaces and curves, SURF, 2) 
computation of a subset of SURF consisting exclusively of 
curves, CURV, and 3) pruning scarcely significant peripheral 
branches of CURV to originate the curve skeleton, SKEL. 

To obtain SURF, the following processes are accomplished. 
The DT is computed and a convexity based filtering of the CMB 
is used to select the anchor points. Topology preserving 
removal operations based on the notion of simple point are 
applied to the voxels that are not anchor points. Final thinning 
is applied to the obtained nearly thin set to gain unit thickness. 

To compute CURV, the border voxels delimiting SURF are 
iteratively identified. Border voxels that are not placed along 
curves or on sharp convexities are possibly removed by means 
of topology preserving removal operations. Final thinning is 
then accomplished to gain unit thickness.  

Finally, pruning based on the evaluation of the number of 
unit wide slices of the object that would not be recovered from 
the pruned skeleton is accomplished to originate SKEL. 

The algorithm in this paper follows a similar strategy as the 
algorithm in [10], but the specific criteria are different. In 
particular, for the computation of SURF the notion of local 

convexity is extended from the 333 to the 555 
neighborhood; the computation of CURV is accomplished by 
resorting to iterated border voxel removal; the pruning criteria 
is completely new. 

II. BASICS NOTIONS AND DEFINITIONS 

We refer to binary voxel images in cubic grid, where the 
object consists of voxels with value 1 and the background 
consists of voxels with value 0.  

The 333 neighborhood N26(p) of a voxel p includes the six 
face- the twelve edge- and the eight vertex-neighbors of p. The 
set N18(p) includes only the six face- and the twelve edge-
neighbors of p. The set N124(p) includes all voxels except p in 

the 555 block centered on p. 

The <3,4,5>-path-based-distance between two voxels p and 
q, is the length of a minimal 26-connected path from p to q, 
where the unit moves from p towards face-, edge- and vertex-
neighbors along the path are weighted 3, 4 and 5, respectively. 
As it has been shown in [16,17], the small maximal error of this 
discrete path-based distance justifies its use in place of the 
Euclidean distance and provides the advantages offered by the 
simplicity of path-based distances.  

The distance transform DT is obtained by assigning to each 
voxel of the object its <3,4,5>-path-based-distance from the 
background.  

The ball of radius r centered on a voxel p with distance value 
d(p)=r in the DT, is built by applying to p the reverse distance 
transformation [18].  

A voxel p in the DT is center of a maximal ball, CMB, if for 
each of its neighbors q it results: d(q) - d(p) < w, where w is 3, 
4, or 5 depending on whether q is a face-, an edge-, or a vertex-
neighbor of p [19].  

The layers of the DT are subsets of the DT including voxels 
with any of the three possible values between two successive 
multiples of the smallest weight w=3. The k-th layer is the set 

of voxels q such that (k-1)3<d(q)k3 [19]. 

Voxels in the k-th layer of the DT can be interpreted as 
belonging to the border that would characterize the object at the 
k-th iteration of skeletonization accomplished by iterated voxel 
removal; voxels belonging to any successive layer h, h>k, can 
be interpreted as belonging to the inside at the k-th iteration. 

Inspired by previous work on concavity filling [20], in [10] 
we gave the following definition: a border voxel p is placed on 
a locally planar surface if N26(p) includes nine background 
neighbors, eight border neighbors and nine inside neighbors. 
Thus, as soon as the number of inside neighbors is less than 
nine, the border voxel p is on a local convexity of N26(p). The 
smaller is the number of inside neighbors, the sharper is the 

convexity. Accordingly, a threshold  can be fixed on the 
maximum number of inside voxels that a border voxel p can 
have to be considered as placed on a sharp convexity in N26(p). 
In this work, we extend the notion of local convexity in N124(p) 
and say that a border voxel p is on a locally planar surface if 
N124(p) includes 50 background neighbors, 24 border neighbors 
and 50 inside neighbors. In turn, a border voxel p is on a local 
convexity to N124(p) as soon as the number of inside neighbors 
is less than 50. Obviously, the smaller is the number of inside 
neighbors in N124(p), the sharper is the local convexity where p 
is located.  

The number of 26-connected components of object voxels 
in N26(p), and the number of 6-connected components of 
background voxels having p as face-neighbor and computed in 
N18(p) are respectively denoted by cc26(p) and by cc18(p). 

An object voxel p is a simple point if the topology of the 
object does not change if p is removed. From an operative point 
of view, p is simple if cc26(p)=1 and cc18(p)=1, [21,22]. 

The voxels of the curve skeleton are called end points, 
normal points and branch points, depending on whether they 
have one, two or more than two neighbors in the skeleton. 

III. PHASE 1: COMPUTATION OF SURF 

The following processes are accomplished to compute 
SURF: DT computation, CMB extraction, CMB filtering via 
local convexity, topology preserving voxel removal, final 
thinning.  

The first task, computation of the distance transform DT, is 
accomplished by using the standard 2-raster-scan algorithm 
[16]. Once the DT is available, CMB detection is performed by 
taking into account the distance values of each voxel and of its 
neighbors in N26(p).  

Among the CMB, we select as anchor points those placed 
on sharp local convexities in N124(p), i.e., only the CMB for 
which the number of inside neighbors in N124(p) is at most equal 

to an a priori fixed threshold 1. In this paper we regard a local 
convexity of N124(p) as sharp if the dihedral angle is at most 90 
degrees. Since for a 90 degree dihedral angle the number of 

inside voxels in N124(p), is eight, we set 1=8 and consider p as 
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placed on a sharp convexity of N124(p) only if the number n of 
inside neighbors of p is such that n≤8. 

Actually, besides any CMB p placed on a sharp local 
convexity, we select as anchor point also any neighbor of p in 
N26(p) that is a CMB and has the same distance value as p. This 
additional selection of anchor points is done to obtain a skeleton 
with a more perceptually satisfactory structure. 

In Fig. 1, a 3D object used as running example and the 
selected anchor points are shown. 

   

Fig. 1. A 3D object, left, and the selected anchor points, right. 

To obtain SURF, we remove from the object in increasing 
distance value order all simple voxels that are not anchor points. 
Actually, to obtain a skeleton where components of CMB 
grouped into superficial structures are connected to each other 
without altering this structure, we proceed as follows. Let r be 
the currently examined distance value and suppose that all 
removable voxels with distance value r have been removed. 
Before checking for removal voxels with distance value r+1, any 
voxel with distance value r, already accepted as skeletal voxel, 
marks as skeletal voxels its neighbors in N26(p) that are the most 
suitable for linking it to the inside. These neighbors are detected 
as those maximizing the directional derivative of the skeletal 
voxel with distance value r with respect to each of its neighbors 
with distance value larger than r. The directional derivative from 
p to a neighbor q is computed as (d(q)-d(p))/w, where w is 3, 4, 
or 5 depending on whether q is a face-, an edge- or a vertex-
neighbor of p. 

Once all distance values have been processed, a nearly thin 
set is obtained, where thickening may occur in face- or edge-
direction. See Fig. 2 left. 

   
Fig. 2. The nearly thin set, left, and the unit wide set SURF consisting of 

surfaces and curves, right. 

To identify thickening in face- or in edge-direction, we use 
directional templates, each consisting of four voxels aligned 
along one of the six face-directions or along one of the twelve 
edge-directions. The two voxels in the middle of the template 
are object voxels, while the remaining two voxels are 
background voxels. See Fig. 3. Final thinning is done, as in [10], 

by resorting to six (twelve) directional removal processes that 
act on thickening in face-direction (edge-direction). The 
resulting set SURF is shown in Fig. 2 right. 

 

Fig. 3. Templates to detect thickening in face- and edge-direction. 

IV. PHASE 2: COMPUTATION OF CURV 

The following processes are accomplished to compute 
CURV: iterated detection of the anchor points, topology 
preserving voxel removal, and final thinning.   

The set SURF, originated by the first phase of 
skeletonization, is a set consisting of surfaces and curves in the 
3D space. Voxels already belonging to curves in SURF should 
definitely be kept in CURV. Hence, they should be taken as 
anchor points. Voxels belonging to the surfaces of SURF 
should undergo the iterated removal process so as to obtain the 
one-dimensional set CURV. Of course, removal should regard 
at each iteration only voxels delimiting the current surfaces, 
provided that these voxels are not necessary to account for 
object’s shape. Thus, voxels placed on sharp convexities should 
be taken as anchor points. 

To identify all the anchor points at the current iteration, we 
use the notion of simple point. A voxel p is not simple if 
cc26(p)≠1 or cc18(p)≠1. The former case certainly occurs if p is 
on a curve of SURF; the only exception for curve voxels is 
when p is on the tip of a curve, where it is cc26(p)=1. Thus, 
voxels for which it is cc26(p)≠1 or the number of object 
neighbors is equal to one are identified as belonging to curves 
and are taken as anchor points. In turn, p may be not simple if 
cc18(p)≠1. This is certainly the case if p is a voxel that is internal 
in a surface and, as such, it should not be removed to avoid the 
creation of a spurious tunnel. To avoid its removal, we can 
consider as anchor point at the current iteration also any internal 
voxel. As for the remaining voxels that are all simple voxels, 
we select as anchor point any voxel p placed in a sharp 

convexity in the 555 neighborhood N124(p). As already done 
when working on the boundary of the 3D object, we regard a 
convexity on the border of a surface as sharp in N124(p) when 
the angle is at most 90 degree. When this is the case, four voxels 
of N124(p) are internal in the surface. Thus, we set to 4 the value 

of the threshold 2 used to identify border voxels on sharp 
convexities. This corresponds to take p as anchor point if the 
number n of internal  neighbors in N124(p) is such that n≤4.  

Once all the anchor points at the current iteration have been 
identified, the voxels that are not anchor points are sequentially 
inspected and are removed if they are simple. The iterated 
process of anchor point detection and voxel removal terminates 
when all voxels are anchor points. The resulting nearly thin set 
is shown in Fig. 4 left. 

Final thinning is then accomplished by means of directional 
processes able to reduce the nearly thin set to the desired unit 
wide set CURV. The same templates used during final thinning 
in the first phase of skeletonization are employed to identify 
parts characterized by 2-voxel thickness in face- and edge-
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direction. The resulting set CURV consisting exclusively of 
curves is shown in Fig.4 right. 

   
Fig. 4. The nearly thin set, left, and the unit wide set CURV consisting of 

curves, right. 

V. PHASE 3: COMPUTATION OF SKEL 

Peripheral curves should exist in CURV only in 
correspondence with object parts perceived as individually 
meaningful, e.g., limbs and relevant boundary convexities. 
However, notwithstanding the selection of anchor points placed 
on sharp local convexities, CURV may still include peripheral 
curves that do not correspond to perceptually significant object’s 
parts. Thus, the third phase of the skeletonization process is 
devoted to pruning with the aim of removing scarcely significant 
branches from the skeleton, based on a significance measure of 
skeleton branches. 

Most of the significance measures suggested in the literature 
have been proposed for pruning the skeleton of 2D objects. For 
the skeleton of 3D objects, a measure of significance involving 
the ratio between the number of centers of maximal balls along 
a skeleton branch and the total number of voxels in the branch 
has been suggested [10]; a noise pruning method is also 
available, [23], that first unglues skeleton branches at junctions 
and then retrieves the meaningful branches lost during ungluing 
using a connectivity analysis from seeds carrying significant 
shape information.  

In this paper we introduce a new pruning method based on 
the evaluation of the loss in object recovery caused by pruning. 
To avoid altering the topology, only peripheral curves undergo 
pruning. Since removal of peripheral curves may cause other 
curves initially internal in CURV to become peripheral curves, 
pruning is iterated as far as prunable skeleton branches are 
identified. Each iteration of pruning is accomplished as follows. 

First, every peripheral curve of CURV is identified as the set 
of skeletal voxels that can be traced starting from an end point 
until a branch point is reached. Each peripheral curve is assigned 
an identity label.  

The reverse distance transformation is applied to the branch 
points found as the terminal voxels of all peripheral curves. The 
balls built in correspondence of branch points that are neighbors 
of each other or have a <3,4,5>-path-based-distance smaller than 
the sum of the corresponding distance values partially overlap.  
Thus, a number of connected components, called kernels, 
possibly different from the number of peripheral curves is found. 
As an example, see Fig. 5 top, where for an easier visualization 
we show the skeleton, left, and the kernels, right, found at the 
beginning of the second pruning step. We note that only 4 
kernels are obtained when applying the reverse distance 

transformation to the branch points found as terminal points of 
the current 12 peripheral branches.  

   

   

Fig. 5. The skeleton after the first pruning step, top left, and the kernels 
associated to the branch points delimiting the peripheral branches, top right. 

The limbs protruding from the kernels, bottom left, and their labeling by means 

of the <1,1,1>-path-based-distance from the kernels, bottom right. 

The reverse distance transformation is also separately 
applied simultaneously to all peripheral curves. Propagation of 
the identity labels assigned to the curves is accomplished while 
performing the reverse distance transformation, so as to 
individually identify the regions associated to the different 
curves. Voxels that could be assigned more than one identity 
label, e.g., the voxels in the ball centered on a branch point where 
different curves meet, are all assigned a common identity label 
denoting voxels in overlapping regions. At the end of the reverse 
distance transformation, the voxels in the overlapping regions 
are removed, so originating the regions, called limbs, whose 
voxels are recovered exclusively by the peripheral curves. See 
Fig. 5 bottom left, where the limbs are colored in red. 

To evaluate the significance of a peripheral curve, we count 
the number of “slices” of the corresponding limb that jut from 
the kernel including the branch point delimiting that peripheral 
curve. The larger is the number of slices, the larger is the 
perceptual relevance of the limb. To count the number of slices, 
we compute the distance transform of the limbs with respect to 
the kernels. Since the image includes besides limbs and kernels 
also a third set, the background, that cannot be traversed by the 
flow of distance information, an ordered propagation algorithm, 
e.g., [24], is used to compute the distance transform. We use the 
<1,1,1>-path-based-distance with equal weights for face-, edge- 
and vertex-neighbors to count the number of slices jutting from 
the kernel in any of the three principal directions. See Fig. 5 
bottom right, where different colors denote the slices detected 
by means of the <1,1,1>-path-based-distance. If a distance value 
d exists in the distance transform of a limb, this means that the 
limb juts from the kernel for at least d slices. 

Setting a threshold  on the minimum number of slices that 
should protrude from the kernels to consider the limbs as 
perceptually significant obviously depends on the needs of the 

user for the specific application. Moreover, the value of  
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certainly depends also on image resolution. If the same image is 

available at different resolutions, different values for  should be 

adopted. Finally, fixing for all limbs a unique value for  is not 
advisable. We should take into account that kernels may have 
different sizes and the relevance of any limb should take into 
account, besides the number of protruding slices of that limb, 
also the importance in terms of volume of the relative kernel. In 
any case, peripheral curves mapped into limbs jutting at most 
two slices are generally regarded as noisy skeleton branches, 
whichever application and image resolution are considered. 

By taking into account the above considerations, we set the 

value of  as follows. Let d be the largest distance value found 
in the distance transform of the j-th limb lj associated with the 
peripheral curve cj. Let us denote by m the maximum number of 
slices that the user accepts to lose when recovering the object 
from the pruned curve skeleton, at the resolution of the images 
in the application at hand. Let the i-th kernel ki be the one 
including the terminal branch point of the peripheral curve cj. 
Let us denote by Ki the volume of ki, measured by the number of 

voxels constituting ki. Finally, let us denote by  the sum of the 

volumes of all the kernels. We set  =mKi /, so as to take into 
account the relevance of each kernel. As for the value of m, we 
have set m=10, since we have experimentally found that such a 
value provides in the average satisfactory results when working 

with images of size 128128128, as the ones used in this work. 
We regard as prunable the peripheral curve cj with its terminal 
branch point in ki if the following condition is satisfied: 

  d≤2 OR d≤     (1) 

   

Fig. 6. The skeleton before pruning, left, and at the end of pruning, right. 

Once the significance evaluation has been accomplished for 
all peripheral branches and the scarcely significant ones have 
been pruned, new peripheral branches may be created. Thus, 
pruning is newly applied. If at any iteration of pruning only one 
kernel is found, only the check d≤2 is done to measure the 
relevance of peripheral curves. Pruning terminates when no 
more removable peripheral branches are identified. The 
resulting pruned skeleton SKEL is shown in Fig. 6 right. The 
skeleton before pruning is shown again in Fig. 6 left to better 
appreciate the performance of pruning. For the running example, 
the process terminates after two iterations of pruning.  

VI. EXPERIMENTAL RESULTS 

We have tested the skeletonization algorithm on a large set 
of objects taken from repositories of 3D shapes of public 
domain, such as the Princeton Shape Benchmark [25] and the 
McGill 3D Shape Benchmark [26]. A small dataset of  eight 

images of size 128128128, the obtained curve skeletons 
before and after pruning are shown in Fig. 7.  

 

 

 

 

 

 

 

 

Fig. 7. From left to right, input object, its skeleton befor pruning, and after 

pruning. 

A skeletonization method should be evaluated in terms of the 
properties expected for the skeleton. The 3D curve skeleton is 
expected: 1) to have the same topology as the object, 2) to be 
unit wide and centrally placed within the object, 3) to reflect 
object’s geometry. These properties are satisfied by SKEL: 1) 
topology is preserved since we remove sequentially only simple 
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voxels, 2) skeleton centrality is guaranteed by selecting as 
anchor points suitably filtered CMB, which are all 
symmetrically placed within the 3D object, and unit thickness is 
satisfied by final thinning; 3) object’s geometry is also reflected 
by SKEL, which includes branches corresponding to the main 
parts intuitively perceived as composing the objects. 

Of course only partial recovery is possible when applying 
the reverse distance transformation to the skeleton, unless we 
deal with objects consisting only of snake-shaped parts. To 
check quantitatively whether a skeletonization algorithm has a 
reasonably good ability in object recovery, we suggest to 
evaluate the percentage of object’s voxels that are not recovered 
starting from the curve skeleton. The smaller is such a 
percentage, the better the curve skeleton represents the object. 
For the sample dataset, the average percentage of non recovered 
object voxel is 20,10% starting from CURV and 26,08% starting 
from SKEL.  

As for the sensitivity to noise and stability under object 
rotation, we point out that the images taken from the available 
repositories are rather clean. Otherwise, even if the suggested 
pruning is good enough to deal with complex cases, we 
recommend to use some cleaning before skeletonization to 
reduce the creation of spurious branches. Finally, the <3,4,5>-
path-based-distance is a good approximation of the Euclidean 
distance and, hence, favors skeletonization stability under object 
rotation.  

We point out that the thresholds 1 and 2 on local convexity, 
set to 8 and 4 in the experiments carried on in this work, can be 
modified to select weaker or sharper convexities. As for the 

threshold  on the minimum number of slices that should 
protrude from the kernels to consider the limbs as perceptually 

significant, the value  =m Ki/ used in this work has provided 
satisfactorily results. We are currently investigating how to 
adapt the value automatically to the case of images at different 
resolution. 

VII. CONCLUSION 

We have introduced a new skeletonization method based on 
the notion of local convexity. The distance transform, DT, of the 
object is computed and the centers of maximal balls, CMB, are 
detected in the DT. Filtering is then accomplished to select as 
anchor points only the CMB that are located on sharp local 
convexities.  Once the anchor points have been selected, 
skeletonization is done by resorting to topology preserving 
removal operations applied to the object voxels in increasing 
distance value order. This process originates a set, SURF, 
consisting of surfaces and curves, which is then reduced to a set, 
CURV, exclusively consisting of curves by means of iterated 
anchor point detection and voxel removal. A pruning phase is 
also taken into account to remove skeleton branches associated 
to regions that are scarcely meaningful.  

REFERENCES 

[1] H. Blum, A transformation for extracting new descriptors of shape, in 
Models for the Perception of Speech and Visual Form, W. Wathen-Dunn, 
Ed., MIT, Cambridge, MA, pp. 362–380, 1967. 

[2] Y. Zhou, A. Kaufman, A. W. Toga, Three-dimensional skeleton and 
centerline generation based on an approximate minimum distance field, 
The Visual Computer, 14, pp. 303-314, 1998. 

[3] J. Chuang, C. Tsai, Min-Chi Ko, Skeletonization of three-dimensional 
object using generalized potential field, IEEE Trans. PAMI, 22-11, pp. 
1241-1251, 2000. 

[4] I. Bitter, A.E. Kaufman, M. Sato, Penalized-distance volumetric skeleton 
algorithm, IEEE Trans. on Visualization and Computer Graphics, 7-3, 
pp.195-206, 2001. 

[5] S. Svensson, I. Nyström, G. Sanniti di Baja, Curve skeletonization of 
surface-like objects in 3D images guided by voxel classification, Pattern 
Recognition Letters, 23-12, pp. 1419-1426, 2002. 

[6] W. Xie, R.P. Thompson, R. Perucchio, A topology-preserving parallel 3D 
thinning algorithm for extracting the curve skeleton, Pattern Recognition, 
36-7, pp. 1529-1544, 2003. 

[7] S. Bouix, K. Siddiqi, A. Tannenbaum, Flux driven automatic centerline 
extraction, Medical Image Analysis, 9, pp. 209-221, 2005. 

[8] T. Wang, A. Basu, A note on a fully parallel thinning algorithms and its 
applications, Pattern Recognition Letters, 28-4, pp. 501-506, 2007. 

[9] O. K-C. Au, C-L. Tai, H-K. Chu, D. Cohen-Or, T-Y. Lee, Skeleton 
Extraction by Mesh Contraction, ACM Trans. Graphics, 27/3, Article No. 
44, 2008. 

[10] C. Arcelli, G. Sanniti di Baja, L. Serino, Distance-Driven Skeletonization 
in Voxel Images, IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 33- 4, pp. 709-720, 2011. 

[11] T. He, L. Hong, D. Chen, Z. Liang, Reliable path for virtual endoscopy: 
ensuring complete examination of human organs, IEEE Trans. 
Visualization and Comp. Graphics, 7/4 pp. 333-342, 2001. 

[12] E. Sorantin, C. Halmai, B. Erdohelyi, K. Palagyi, L.G. Nyul, K. Olle, 
et.al., Spiral-CT-based assessment of tracheal stenoses using 3-D 
skeletonization, IEEE Trans. Medical Imaging, 21/3, pp. 263-273, 2002.  

[13] Y. Fridman, S.M. Pizer, S. Aylward, E. Bullitt, Extracting branching 
tubular object geometry via cores, Medical Image Analysis, 8/3, pp. 169-
176, 2004. 

[14] N.D. Cornea, D. Silver, Curve-skeleton properties, applications, and 
algorithms, IEEE Trans. Visualization and Computer Graphics, 13/3, pp. 
530-548, 2007. 

[15] P.K. Saha, G. Borgefors, G. Sanniti di Baja, A survey on skeletonization 
algorithms and their applications, Pattern Recognition Letters, 76, pp. 3-
12, 2016. 

[16] G. Borgefors, On digital distance transforms in three dimensions, 
Computer Vision and Image Understanding 64/3, pp. 368-376, 1996. 

[17] B. Verwer,  Local distances for distance transformations in two and three 
dimensions, Pattern Recognition Letters 12/11, pp. 671-682, 1991. 

[18] I. Nystrom, and G. Borgefors, Synthesising objects and scenes using the 
reverse distance transformation in 2D and 3D, in Image Analysis and 
Processing, C. Braccini et al., Eds., LNCS 974, Springer, Berlin, pp. 441-
446, 1995. 

[19] S. Svensson, G. Sanniti di Baja, Using distance transforms to decompose 
3D discrete objects, Image and Vision Computing, 20, 529-540, 2002. 

[20] G. Borgefors, G. Sanniti di Baja, Analyzing nonconvex 2D and 3D 
patterns, Computer Vision and Image Understanding 63/1, pp. 145-157, 
1996. 

[21] P.K. Saha, B.B. Chaudhuri, Detection of 3D simple points for topology 
preserving transformations with application to thinning, IEEE Trans. 
PAMI, 16/10, pp. 1028-1032, 1994. 

[22] G.Bertrand, G.Malandain, A new characterization of three-dimensional 
simple points, Pattern Recognition Letters, 15/2, pp. 169-175, 1994. 

[23] P.K. Saha, Y. Xu, H. Duan, A. Heiner, G. Liang, Volumetric topological 
analysis: a novel approach for trabecular bone classification on the 
continuum between plates and rods, IEEE Trans Med Imaging, vol. 29, 
pp. 1821-38, 2010. 

[24] J. Piper, E. Granum, Computing distance transformations in convex and 
non-convex domains, Pattern Recognition, 20/6, pp. 599-615, 1987. 

[25] P. Shilane, P. Min, M. Kazhdan, T. Funkhouser, The Princeton Shape 
Benchmark, Shape Modeling International, Genova, Italy, June 2004. 

[26] http://www.cim.mcgill.ca/~shape/benchMark/, McGill 3D Shape 
Benchmark. 

 

2860


