
Moving Object Reconstruction in Monocular Video
Data Using Boundary Generation

Sebastian Bullinger, Christoph Bodensteiner, Sebastian Wuttke and Michael Arens
Department Object Recognition

Fraunhofer Institute of Optronics, System Technologies and Image Exploitation, 76275 Ettlingen, Germany
Email: {sebastian.bullinger, christoph.bodensteiner, sebastian.wuttke, michael.arens}@iosb.fraunhofer.de

Abstract—We present a method to reconstruct the three-
dimensional shape of a moving instance of a known object
category in video data. We exploit state-of-the-art semantic
segmentation techniques to extract the object’s two-dimensional
shape in each frame. Therefore, our method is robust to occlusion,
handles stationary objects and extends naturally to multiple
video sequences. We apply Structure from Motion (SfM) to
previously generated object images in order to compute a three-
dimensional representation of the object. Our approach allows
us to remove outliers in SfM reconstructions and to compute
clean object meshes by leveraging previously computed semantic
segmentations and virtual camera positions. We evaluate the
accuracy of our method using a multi-view dataset of a moving
vehicle. A laser scan serves as ground truth. We applied our
algorithm on publicly available video data and on 25 sequences
from our dataset. The algorithm achieves an average point
distance of 3.3 cm evaluated on seven trajectories contained in
the dataset.

I. INTRODUCTION

A. Moving Object Reconstruction

The reconstruction of moving objects in monocular video
data recorded by moving cameras is a challenging task. This is
due to the fact that objects usually cover a minority of pixels
in video frames. Thus, conventional Structure from Motion or
Visual SLAM (VSLAM) techniques treat moving objects as
outliers and reconstruct background structures instead. Previ-
ous works, e.g. [1] and [2], tackle this problem by considering
multiple video frames simultaneously to determine moving
parts in the video. They use motion segmentation or keypoint
tracking to detect moving objects. Thus, their approach can
not handle stationary objects and is vulnerable to occlusion
and limited to single shots. In contrast, we exploit state-of-
the-art semantic segmentation Convolutional Neural Networks
(ConvNets), see for example [3] and [4], to extract the object’s
two-dimensional shape in each frame. Thus, our method is
robust to occlusion, handles stationary objects and extends
naturally to multiple video sequences. We refine the ConvNet
segmentations by applying the GrabCut [5] algorithm. Next,
we apply SfM to all images, even from different shots.
Therefore, we leverage the full available three-dimensional
shape information. Our approach works with any standard
SfM pipeline. We propose a method to remove outliers in
object reconstructions using semantic information computed
by the corresponding ConvNet. However, SfM point clouds
of moving objects with reflecting surfaces show high outlier

ratios and varying point densities. Meshes built on top of
these point clouds show irregular surface properties. For that
reason, we present an algorithm generating points consistent
to the semantic information provided by the ConvNet. The
resulting point cloud consists of uniformly distributed points
with consistent normal vectors. We compute clean object rep-
resentations superior to Structure from Motion based meshes
using these point clouds.

B. Contribution

We propose a pipeline to reconstruct the three-dimensional
shape of moving instances of rigid object categories in video
data. We present a method to compute object point clouds
consistent to constraints derived from semantic segmentations.
Because the resulting point clouds have high point densities
they are suitable for computing watertight meshes.
Due to the lack of publicly available video data of moving
objects with corresponding three-dimensional shape ground
truth we created an appropriate dataset. This dataset consists
of videos capturing a car performing several maneuvers. As
ground truth serves a laser scan of the vehicle present in the
video sequences. We evaluate the accuracy of our algorithm
using this dataset which is publicly available on our website1.
In addition, we compare our method visually to previous
works. We achieve superior results on public available Internet
video data.

C. Related Work

Our method builds on top of recent semantic segmentation
as well as 3D reconstruction techniques.
Semantic segmentation is the task of providing semantic
information at pixel-level. Early works, like Rother et al.
[5], require rough human annotated fore- and background
information to compute an exact fore- and background seg-
mentation. In contrast, semantic segmentation approaches
using pre-trained ConvNets do not require any supervision
at operating time. Early semantic segmentation approaches
using ConvNets, e.g. Farabet et al. [6], exploit patchwise
training. Long et al. [3] proposed a new architectural style
of ConvNets, so called Fully Convolutional Networks, which
are trained end-to-end. These ConvNets inspired many state-
of-the-art semantic segmentation approaches. Different works

1Project page: http://s.fhg.de/boundarygeneration

2016 23rd International Conference on Pattern Recognition (ICPR)
Cancún Center, Cancún, México, December 4-8, 2016

978-1-5090-4846-5/16/$31.00 ©2016 IEEE 235

[4], [7], [8] combine Convolutional Networks with Conditional
Random Fields. Recently, Dai et al. [9] proposed an instance-
aware semantic segmentation approach.
The field of Structure from Motion can be divided into iterative
and global approaches. Iterative or sequential SfM methods
[10]–[13] are more likely to find reasonable solutions than
global SfM approaches [12], [13]. However, the latter are less
prone to drift. SfM point clouds provide only sparse geometric
information. Thus, we are interested in dense point clouds
[14], [15] and watertight meshes [15], [16]. Mesh colorization
can be performed using [17].
Previous moving object reconstruction approaches using video
data usually exploit some kind of color or motion detection.
Feng et al. [18] present a color-based segmentation to achieve
3D monocular tracking. Yuan et al. [19] and Kundu et al.
[1] use motion segmentation to distinguish objects and back-
ground. Yuan et al. of [19] use this information to apply SfM
to single objects, where as Kundu et al. [1] perform multibody
VSLAM. In contrast to previous methods, Lebeda et al. [2]
use feature tracking in order to extract moving objects in
unstructured video data. The object shape is visualized using
watertight meshes.

D. Paper Overview

The paper is organized as follows. In section II-A we
describe the computation of object images, i.e. pictures where
non-object pixels are masked out. We explain the reconstruc-
tion of objects using object images in section II-B. In section
II-C we describe the removal of outliers exploiting semantic
segmentations. We present in section II-D an approach to
compute an approximation of the object boundary by combin-
ing information derived from SfM and semantic segmentation
computations. In section III we evaluate the presented method
on our dataset and compare it visually to state-of-the-art results
using publicly available video data. Section IV concludes the
paper.

II. METHODS

A. Computation of Object Images

Given a frame of an input video sequence, we extract image
parts showing only the object category of interest using the
semantic segmentation approach presented by Zheng et al.
in [4]. The ConvNet computes for a given input image the
corresponding semantic segmentation at pixel level. However,
the result of the ConvNet yields no smooth edges along the
object’s contour, i.e. a large number of pixels along the objects
contour are misclassified. We refine the segmentation by ap-
plying GrabCut [5]. The algorithm requires a mask containing
possible and obvious foreground as well as possible and
obvious background pixels as input. We apply a dilation and
an erosion operation to the semantic object mask computed by
the ConvNet, simultaneously. This produces two new masks.
Let Mconv , Mdil and Mero be pixel sets corresponding to
the masks generated by the ConvNet, the dilation and the
erosion operation, respectively. We set the obvious foreground
to Mero, the possible foreground to Mconv\Mero, the possible

Fig. 1. Illustration of the pixel sets used to refine the original ConvNet seg-
mentation. The red line shows the shape of the original ConvNet segmentation.

background to Mdil \ Mconv and the obvious background
to Mdil

C as shown in Fig. 1. Thus, GrabCut determines
the object contour along the segmentation provided by the
ConvNet within the image area Mdil\Mero. Finally, we use the
GrabCut segmentations to compute object images, i.e. pictures
where non-object pixels are masked out.

B. 3D Object Reconstruction and Virtual Camera Filtering

In contrast to the original frames, object images contain only
camera pose information relative to the object. The scene is
equivalent to one, where the virtual camera is moving and the
object is stationary. To reconstruct the object any off-the-shelf
Structure from Motion tool chain like [11], [12], [13] or [15]
can be used.
The SfM computation produces a point cloud representing the
object and parameters of corresponding virtual cameras. Let n
be the number of virtual cameras. n may be smaller than the
number of input frames due to failed image registrations. SfM
reconstructions contain sometimes single isolated virtual cam-
eras. However, valid virtual camera positions extracted from
the same video sequences possess usually similar distances to
their respective closest virtual camera, since the camera as well
as the object move and rotate gradually from frame to frame in
each scene. In order to detect isolated cameras, we compute
for each camera i the distance di to the respective nearest
neighbor. We assume that there are less than 25 % isolated
cameras. If there are more than 25 % isolated cameras it is
likely that the reconstruction is degenerated and not useful at
all. Thus, we consider the 75th percentile p75 of all distances
{di|i = 1, . . . , n} as a valid nearest neighbor distance. In
video data the distance of valid virtual cameras to their nearest
neighbor is limited due to the gradual movement of object
and capturing device. Thus, we define a validity threshold tval
which describes the accepted exceeding of p75. tval should be
several orders of magnitude greater than p75. We compute the
validity of a given camera by testing if di < tval holds. The
removal of isolated cameras is important for the algorithms
presented in section II-C and II-D.

C. Objectness and Outlier Removal

Misclassified pixels in the semantic segmentation sometimes
lead to noise in the resulting three-dimensional reconstruction.
We determine outliers in the object point cloud by computing
the objectness for each 3D point Xj . We use the camera
calibrations Ki, rotations Ri and centers Ci estimated during
the Structure from Motion process to project the points Xj

236

Fig. 2. Projection of 3D points onto the image plane for each virtual camera
in order to compute the objectness for each object point.

TABLE I
PROJECTION POSSIBILITIES

3D Object (O.) Point 3D Background (B.) Point

Visible Projected on O. Projected on B.
Occluded by O. Projected on O. Projected on O.
Occluded by B. Projected on B. Projected on B.

onto the focal plane of each virtual camera cami. Here, i
and j denote camera and point indices, respectively. Let xij

denote the projection of Xj into the virtual camera cami. The
mapping of Xj to xij is performed according to equation 1,
where Xj is represented in homogeneous coordinates.

xij = KiRi[I| − Ci]Xj . (1)

The mapping of equation 1 is visualized in Fig. 2. By analyz-
ing the projections xij of point Xj we determine a measure for
the objectness of this point. Projections of a point lying behind
a virtual camera are in the corresponding image not visible and
therefore not regarded. For each visible projection xij of a
point Xj we use the corresponding segmentation information
in order to determine if the point belongs to the object or
background category. This way, we can count the number of
projections projected onto object category pixels.
Defining a threshold ratio robject allows us to filter the three-
dimensional points, i.e. we keep only points for which equation
2 holds.

nopj > robject × nvpj (2)

Here nopj and nvpj are the number of object projections and
visible projections of point j, respectively. By weighting each
camera equally and without any prior knowledge the optimal
decision is achieved using robject = 0.5.
However, if the video data contains low object occlusion a
better choice is possible. Let us assume for simplicity that our
segmentation is perfect for a certain picture. Table I shows
which projection cases occur for a 3D point in such an image.
The evaluation of 3D point projections can be understood
as a 3D object point classification task. A False Positive
(FP) describes the case where a background point is being
considered as part of the object and a False Negative (FN)
represents the complementary situation. The cases FP and
FN may lead to a wrong filtering of 3D points. In order to
handle FPs resulting from 3D points close to the object surface

Fig. 3. An example showing the projection results of eight different cameras
with respect to the background cluster. All object (O) projections are False
Positives (FPs). Only a high emphasis of background (B) projections, i.e. True
Negatives (TNs), will remove the background cluster correctly. Concretely,
robject must be greater than 5

8
.

we give background projections more emphasis. This can be
achieved by selecting a high robject value. Fig. 3 shows an
example.
However, increasing robject will also increase the influence

of FNs. Fortunately, video data with low object occlusion and
stable segmentation results allows us to increase robject to an
appropriate level. For example, we used robject = 0.98 in our
experiments.

D. 3D Boundary Generation

Reconstructions of moving objects with reflecting surfaces,
e.g. cars, often produce outliers and points with incorrect
normals. SfM computations typically find only a small number
of points on homogeneous surfaces. Both facts often lead to
meshes with poor shapes. We compute clean object meshes
by replacing the original object point cloud with virtually
generated points. We exploit virtual camera poses, computed
during the SfM reconstruction process, as well as semantic
segmentations to create 3D points consistent to the object
shape. The generated points are uniformly distributed and
show consistent normal vectors.
First, we compute a three-dimensional bounding box corre-
sponding to the original sparse point cloud. Next, we divide
the space of this bounding box equally in O(k3) subspaces
and represent each cell with one point at the center. Here k is
the number of subdivisions in each dimension. By applying the
algorithm described in section II-C we can assign an object
or a non-object flag to each point in the grid. This divides
the space of the bounding box in an object and a background
volume. We compute the corresponding object boundary by
removing all background points as well as all non-boundary
points in the object volume. A point is considered as a bound-
ary point if and only if one of the corresponding neighbors
has a complementary flag.
Unfortunately, the computation of an accurate surface recon-
struction using this approach is not reasonable as it requires
O(k3) (non-)object flag computations. Therefore, we extend
the approach as follows. First, we use a coarse subdivision of
the bounding box space to compute an initial set of boundary

237

Fig. 4. Outline of the Boundary Generation Algorithm
BPs1 = BPsCoarse

for i = 1...k do
PBPsi ← ∅
for p ∈ BPsi do

NNs← getNearestNeighbors(6, p, BPsi)
RNs← getRealNeighbors(p,NNs)
PBPsi ← PBPsi ∪ createPossibleBPs(p,RNs)

end for
PBPsi = assignFlagsToPoints(PBPsi)
PBPsi = PBPsi ∪BPsi
BPsi+1 ← ∅
for p ∈ PBPsi do

NNs← getNearestNeighbors(26, p, BPsi+1)
RNs← getRealNeighbors(p,NNs)
if isBoundaryPoint(p,RNs) then

BPsi+1 ← BPsi+1 ∪ {p}
end if

end for
end for

points, i.e. points lying on the boundary of the object or the
background volume. Next, we create points on a more fine-
grained level inside the space spanned by the current boundary
points which are possibly closer to the true object boundary.
Thus, we assign (non-)object flags to the newly generated
points. This allows us to update the set of real boundary points
and thus to adjust the shape of the object boundary represented
by these points. We repeat these computations, iteratively.
The basic steps of our algorithm are depicted in Fig. 4. We
initialize the set of boundary points (BPsi) in iteration 1 with
boundary points computed at a coarse division of the bounding
box space (BPsCoarse). In each iteration i we build a kd-
tree containing all points of BPsi to efficiently determine the
nearest neighbors of each boundary point. It is important to
note that the neighbors of a boundary point differ in terms
of their distance. The different neighbor types are illustrated
in Fig. 5a. The varying distances must be considered while
using the kd-tree to determine the nearest neighbors of a
boundary point. We iterate over the current boundary points
and determine for each BP the set of neighbors with distance
d to create a set of possible boundary points (PBPs). We
use the points (x + d, y, z), (x, y + d, z) and (x, y, z + d)
to compute new points on a on a more fine-grained level
according to Fig. 5b. Here, (x, y, z) represents the three-
dimensional coordinate of the current boundary point. We
generate only a subset of points or no new points at all, if
there are less or no points meeting the criteria above. This
is equivalent to a division of the cell into eight cuboids as
well as increasing the point density by a factor of two, if
applied to all boundary points. Next, we compute (non-)object
flags for all newly generated PBPs. By removing all non-
boundary points in PBPsi ∪ BPsi we adjust the boundary.
We analyze all 26 neighbors of each boundary point. After
several iterations we cover the space on a fine-grained level.

(a) Neighbor types of a boundary
point.

(b) Creation of possible bound-
ary points.

Fig. 5. (a) For reasons of clarity, this figures shows only one of eight grid
cells which are considered to determine the neighbors of a boundary point
(black). A boundary point has maximal 26 neighbor points. Six neighbors
with distance d (red), twelve neighbors with distance

√
2d (blue), and eight

neighbors with
√
3d (green), where d is the length of the edges of the cells

in the grid. (b) Creation of seven new possible boundary points (blue) using
three neighbors with distance d (red).

The generated boundary point set is used to generate a mesh
describing the object contour.
The number of required iterations depends on the granularity
of the points before the first iteration d0 as well as the desired
point density di. In each iteration the distance between points
is halved. To reach a point density of dd the algorithm requires
dlog d0

di
e iterations.

III. EXPERIMENTS AND EVALUATION

A. Dataset

The dataset2 consists of 25 videos capturing a car moving
on eight different trajectories. The video sequences cover a
high variety of viewing angles. We created a laser scan, see
Fig. 7a, of the vehicle present in the dataset serving as ground
truth. The laser scans were acquired using a Zoller+Fröhlich
scanner. The distance to the reflecting object is estimated based
on the phase shift between received and emitted signal. The
scanning head was operated on a rigid tripod which results
in ranging accuracies of a few millimeters. The laser scans
are automatically registered. Noise in the measurement is
manually removed.

B. Semantic Segmentation

All evaluations presented in the following use the semantic
segmentation ConvNet proposed by Zheng et al. [4]. We
choose this one over [3] since the latter creates a less ac-
curate silhouette, produces sometimes false positives as well
as disconnected components. All segmentations have been
refined using the method described in section II-A. In order
to compute the dilation and erosion we select an ellipse as
structuring element and set its radius to ten pixels, since our
investigation of different segmentation samples showed that
the boundary inaccuracies of the ConvNet are usually smaller
than five pixels. Fig. shows 6e the refinement of a ConvNet
segmentation [4].

2Project page: http://s.fhg.de/boundarygeneration

238

(a) Input Image Sequence (b) Sparse Reconstruction with Out-
liers

(c) Dense Reconstruction with Out-
liers

(d) Boundary Generation Iteration 0

(e) Refined Segmentation (f) Sparse Reconstruction without
Outliers

(g) Dense Reconstruction without
Outliers

(h) Boundary Generation Iteration 2

(i) Left: ConvNet Segmentation,
Right: Refined Segmentation

(j) Colorized Mesh Using Sparse
Points without Outliers

(k) Colorized Mesh Using Dense
Points without Outliers

(l) Colorized Mesh Using Boundary
Points (Iteration 2)

Fig. 6. Results using a single sequence of 510 images.

C. Example Model Computations

Fig. 6 shows some example results using a video sequence
of 510 images viewing the car from all sides. Fig. 6b shows
the sparse point cloud of the car using [11]. The dense
model representation shown in Fig. 6c is computed applying
the Multi-View Stereo algorithm [20]. The stereo matching
technique uses a previously computed SfM result to build
a depth map for each virtual camera. The dense model is
created by projecting the depth values of each virtual camera
into the world coordinate system. For both, the sparse and
the dense point clouds, outliers are removed using the method
described in section II-C. The corresponding results are shown
in Fig. 6f and 6g. Also the boundary generation uses the virtual
camera poses estimated during the SfM computation. Fig. 6d
and 6h show the results after the first and third iteration,
respectively. All meshes, see Fig. 6j, 6k and 6l, are computed
using the Poisson surface reconstruction algorithm [16]. The
colorization is performed by applying [17].

D. Boundary Generation Accuracy Evaluation

We applied our pipeline to all 25 sequences contained
in our dataset. In nine cases the SfM fails, i.e. produces
multiple models or matches wrong images due to object
symmetries (e.g. wheels). In seven of the eight trajectory-types
the car is captured from at least three sides. We select for
each of these seven trajectories one sequence and compute
the distance between the boundary and the laser scan point
cloud. We automatically scale and register the boundary point

(a) Laser Scan (b) Overlay of Boundary and Laser
Scan Points

Fig. 7. Laser scan (a) and overlay of a generated boundary with the ground
truth (b).

cloud to the ground truth using the Iterative Closest Point
implementation of CloudCompare [21]. It is important to note
that in contrast to the generated object boundaries the laser
scan data contains no points at windows and at the bottom side
of the vehicle. Since there is no correspondence information
between laser scan and boundary generation points, we use the
following steps to find reasonable correspondences. First, we
compute for each boundary point the nearest neighbor in the
laser scan. We determine the distance between each boundary-
laser-scan-point-pair. If multiple boundary points share the
same nearest neighbor we keep only the boundary point with
the smallest distance. We use the average distance and the
standard deviation of the remaining boundary-laser-scan-point-
pairs as quality measure. Since our video has no occlusion we
use a high object ratio of robject = 0.98. Fig. 7 shows the laser
scan and an overlay of a generated boundary and the ground
truth. Table II shows the evaluation of the seven trajectories

239

TABLE II
EVALUATION BOUNDARY ACCURACY.

Trajectory 1 2 3 4 5 6 7

Average Distance (cm) 4.4 3.0 2.6 3.1 3.2 3.3 3.4
Standard Deviation (cm) 5.8 3.0 2.6 2.9 3.1 3.3 3.4

using the output of the 4th iteration and roughly 1000 cells as
initial subdivision.

E. Comparison to Results Presented by Lebeda et al.

We compare our boundary generation method visually to the
approach presented in [2] on publicly available video data.
The video sequence consists of 76 input images showing a
rally car. Fig. 8 contains two example input pictures, the result
computed by Lebeda et al. as well as a mesh based on the
output of our boundary generation algorithm. The shape of
our result is clearly more accurate, i.e. closer to the real shape
of the car. A quantitative comparison is due to missing ground
truth data not possible.

IV. CONCLUSION

We presented a pipeline to reconstruct the three-dimensional
structure of objects in video data using semantic segmentations
computed by ConvNets. In contrast to previous approaches,
our extraction pipeline does not rely on object movement
present in subsequent frames. We are able to extract the
object’s 2D shape from a single image. This approach has
several advantages over previous works, i.e. it is robust to
occlusion, handles stationary objects and extends naturally to
multiple video sequences. We observed that SfM based point
clouds of moving objects with reflecting surfaces result in
crumbled meshes due to outliers, irregular point densities and
incorrect normal vectors. We successfully tackled this prob-
lem by introducing an algorithm combining the information
contained in virtual camera poses and semantic segmentations.
This approach even constrains surfaces not directly seen by the
camera. We applied our algorithm on publicly available video
data and on 25 sequences from our dataset. The algorithm
achieves an average point distance of 3.3 cm evaluating seven
trajectories contained in the dataset using a laser scan as
ground truth.

A. Limitations

Currently, our implementation does not handle multiple
instances of the same object category. For example, the re-
construction process of two moving cars present in the same
video sequence may interfere with each other. However, we
are able to tackle this issue by integrating tracking function-
ality. Furthermore, we observe that our current segmentation
pipeline fails to segment objects correctly seen from a bird’s
eye perspective. This is due to the fact that these views are
missing in the training data. Finally, it is important to note
that the quality of the derived information is relative to the
camera as well as the object motion. Moreover, our method is
subject to general SfM constraints.

B. Future Work

In future work, we will enable our pipeline to handle
multiple instances of the same object category, independently.
Moreover, we intend to analyze the distribution of virtual cam-
eras in the reconstruction to create a more efficient boundary
generation algorithm. Another research direction is the com-
bination of boundary information and dense reconstructions
such that the resulting point cloud contains accurate structure
information as well as regular point densities and consistent
normal vectors.

REFERENCES

[1] A. Kundu, K. M. Krishna, and C. V. Jawahar, “Realtime multibody
visual slam with a smoothly moving monocular camera,” in Computer
Vision, 2011. ICCV 2011. IEEE International Conference on, 2011. 1,
2

[2] K. Lebeda, S. Hadfield, and R. Bowden, “Dense rigid reconstruction
from unstructured discontinuous video,” in Proceedings of the Interna-
tional Conference on Computer Vision workshop on 3D Representation
and Recognition, IEEE. Santiago, Chile: IEEE, 17Dec. 2015. 1, 2, 6,
7

[3] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” CVPR (to appear), Nov. 2015. 1, 4

[4] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du,
C. Huang, and P. Torr, “Conditional random fields as recurrent neural
networks,” in International Conference on Computer Vision (ICCV),
2015. 1, 2, 4

[5] C. Rother, V. Kolmogorov, and A. Blake, “”grabcut”: Interactive
foreground extraction using iterated graph cuts,” ACM Trans.
Graph., vol. 23, no. 3, pp. 309–314, 2004. [Online]. Available:
http://doi.acm.org/10.1145/1015706.1015720 1, 2

[6] C. Farabet, C. Couprie, L. Najman, and Y. LeCun, “Learning hierarchical
features for scene labeling,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, August 2013. 1

[7] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Semantic image segmentation with deep convolutional nets and fully
connected crfs,” CoRR, vol. abs/1412.7062, 2014. [Online]. Available:
http://arxiv.org/abs/1412.7062 2

[8] G. Lin, C. Shen, I. D. Reid, and A. van den Hengel, “Efficient piecewise
training of deep structured models for semantic segmentation,” CoRR,
vol. abs/1504.01013, 2015. [Online]. Available: http://arxiv.org/abs/
1504.01013 2

[9] J. Dai, K. He, and J. Sun, “Instance-aware semantic segmentation
via multi-task network cascades,” CoRR, vol. abs/1512.04412, 2015.
[Online]. Available: http://arxiv.org/abs/1512.04412 2

[10] N. Snavely, S. M. Seitz, and R. Szeliski, “Photo tourism: Exploring
photo collections in 3D,” ACM Trans. Graph., vol. 25, no. 3, pp.
835–846, Jul. 2006. [Online]. Available: http://doi.acm.org/10.1145/
1141911.1141964 2

[11] C. Wu, “Visualsfm: A visual structure from motion system,” 2011.
[Online]. Available: http://ccwu.me/vsfm/ 2, 5

[12] P. Moulon, P. Monasse, R. Marlet, and Others, “Openmvg. an open mul-
tiple view geometry library.” https://github.com/openMVG/openMVG. 2

[13] C. Sweeney, Theia Multiview Geometry Library: Tutorial & Reference,
University of California Santa Barbara. 2

[14] Y. Furukawa and J. Ponce, “Accurate, dense, and robust multi-view
stereopsis,” IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol. 32, no. 8, pp. 1362–1376, 2010. 2

[15] S. Fuhrmann, F. Langguth, N. Moehrle, M. Waechter, and M. Goesele,
“MVE – An Image-Based Reconstruction Environment,” Computer and
Graphics, 2015. 2

[16] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface
reconstruction,” in Proceedings of the Fourth Eurographics Symposium
on Geometry Processing, ser. SGP ’06. Aire-la-Ville, Switzerland,
Switzerland: Eurographics Association, 2006, pp. 61–70. [Online].
Available: http://dl.acm.org/citation.cfm?id=1281957.1281965 2, 5

240

(a) Image of the video input se-
quence.

(b) Image of the video input se-
quence.

(c) Mesh using [2]. (d) Mesh using our boundary gen-
eration method.

Fig. 8. Comparison of our boundary generation method using the video sequence presented in [22].

[17] M. Waechter, N. Moehrle, and M. Goesele, “Let there be color!
Large-scale texturing of 3D reconstructions,” in ECCV 2014, ser.
Lecture Notes in Computer Science, D. Fleet, T. Pajdla, B. Schiele, and
T. Tuytelaars, Eds., 2014, vol. 8693, pp. 836–850. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-10602-1 54 2, 5

[18] Y. Feng, Y. Wu, and L. Fan, “On-line object reconstruction and tracking
for 3D interaction.” in ICME. IEEE Computer Society, 2012, pp. 711–
716. 2

[19] C. Yuan and G. G. Medioni, “3D reconstruction of background
and objects moving on ground plane viewed from a moving
camera,” in 2006 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR 2006), 17-22 June 2006,
New York, NY, USA, 2006, pp. 2261–2268. [Online]. Available:
http://dx.doi.org/10.1109/CVPR.2006.16 2

[20] M. Goesele, N. Snavely, B. Curless, H. Hoppe, and S. M. Seitz, “Multi-
view stereo for community photo collections,” in Proceedings of the
11th International Conference on Computer Vision (ICCV 2007). Rio
de Janeiro, Brazil: IEEE, 2007, pp. 265–270. 5

[21] D. Girardeau-Montaut, “Cloudcompare 2.62,” 2016. [Online]. Available:
http://www.cloudcompare.org/ 5

[22] K. Lebeda, S. Hadfield, and R. Bowden, “2D or not 2D: Bridging the
gap between tracking and structure from motion,” in Proceedings, Asian
Conference on Computer Vision (ACCV), 2014. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-16817-3 42 7

241

