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Abstract—Active one-shot scanning techniques have been
widely used for various applications. Stereo-based active one-
shot scanning embeds a positional information regarding the
image plane of a projector onto a projected pattern to retrieve
correspondences entirely from a captured image. Many combi-
nations of patterns and decoding algorithms for active one-shot
scanning have been proposed. If the capturing environment lacks
the assumed conditions, such as the absence of strong external
lights, then reconstruction using those methods is degraded,
because the pattern decoding fails. In this paper, we propose a
general reconstruction algorithm that can be used for any kind
of patterns without strict assumptions. The technique is based on
an efficient feature extraction function that can drastically reduce
redundant information from the raw pixel values of patches of
captured images. Shapes are reconstructed by efficiently finding
correspondences between a captured image and the pattern
using low-dimensional feature vectors. Such a function is created
automatically by a convolutional neural network using a large
database of pattern images that are efficiently synthesized by
using GPU with wide variation of depth and surface orientation.
Experimental results show that our technique can be used
for several existing patterns without any ad hoc algorithm or
information regarding the scene or the sensor.

I. INTRODUCTION

Active 3D measurement techniques have been studied for a
long time. Techniques for acquiring the 3D shapes of dynamic
objects from dynamically moving sensors becomes important
for various critical applications, such as self-driving cars,
motion analysis, medical diagnosis, and virtual reality systems.
One-shot active 3D scanning techniques have been widely
studied, and actual systems have been built and used in real
applications [1], [2], [3]. From a technical point of view,
those systems can be categorized into two types, active stereo
systems and time of flight (TOF) systems. Although both
techniques have advantages and disadvantages, we propose in
this paper a new active stereo system due to the advantages
on such systems have over TOF systems in regard to energy
efficiency, high resolution, and stable reconstruction.

Active stereo systems are based on encoding positional
information of the image plane of the projector onto its
projected pattern, after which 3D shapes are reconstructed
by decoding them from the captured image [4]. Two types
of approaches are known for this encoding/decoding process:
spatial and temporal. Since temporal methods require multiple
frames, they are not suitable for one-shot scanning, and thus,

spatial methods, which encode the information into a specific
area of the pattern and require just a single frame, have been
intensively studied and commercialized.

One problem with active stereo methods based on spatial
encoding is difficulty in deciding the best set of pattern
and decoding algorithms for various environments, such as
the baseline between pattern projector and camera, lighting
conditions, the texture, material, and shape frequency of the
surfaces of target objects, as well as the depth range of
the projector and camera. Since a general solution for such
large variations does not yet exist, each technique usually
assumes its own conditions for its own purpose, and there are
no standard and clear criteria for evaluating the appropriate
patterns and algorithms for specific conditions. This creates
difficulty even for experts in finding the best set of patterns
and algorithms for the specific purposes. Our purpose is to
provide a general algorithm not dependent on such conditions,
to allow users to concentrate on finding the best patterns for
their purposes.

The decoding of a system can be regarded as the extraction
of a necessary, compact, and low-dimensional representation
of positional information from high-dimensional raw input
signals with strong redundancy. Universal algorithms for such
problems have been intensively studied and formulated in
other areas, such as file compression and pattern recognition.
Our method follows the same approach for extracting 2D
positional information from small patches of captured im-
ages by using machine learning techniques. Unlike previous
techniques, which usually assume special noise or distortion
models depending on their purposes, such complicated as-
sumptions are avoided by our technique by just preparing
exemplars for learning. In the experiments, we show that our
method is comparable to several one-shot algorithms without
any manual interventions or information regarding the sensor
and its settings.

II. RELATED WORK

3D surface reconstruction methods based on active stereo
using coded structured light have been widely studied in
terms of their practical usefulness. These methods are typically
categorized as temporal or spatial coding techniques [4].
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Temporal coding methods are superior to spatial resolutions,
but inferior to temporal resolutions.

Research into spatial coding has increased in recent years,
because of growing demands for dynamic scene capturing.
Some methods use color coding [5], [6], [7], [8]. One problem
of color codifications is that the results are often affected
by the surface colors and/or textures. Some researchers use
PCA for the color space analysis [6], [9] or clustering ap-
proaches [8] to cope with this problem. As another approach,
dependencies on color information can be reduced by using ge-
ometrical characteristics of structured patterns [1], [10], [11].
The geometrical characteristics of patterns include random-
dot [1], or grid-structured patterns [10], [11].

Most previously active stereo methods have been based
on explicitly coded patterns, in which the positional infor-
mation has been embedded into the pattern images using
rules. However, with increases in the computational power of
PCs, matching-based active stereo methods, in which captured
images and pattern signals are directly compared and matched,
have been studied recently [12], [13], [14]. These methods can
be considered as “implicit” coding of projected patterns.

For those example- or matching-based approaches, com-
paring image patches allowing variations caused by depth
and normal changes is important. Such a problem is one of
the main topics of computer vision research and normalized
cross correlation (NCC) is a standard technique for passive
stereo. Another widely used solution is image matching in the
eigenspace of the set of sample images with those variations.
Such approaches have been used for face recognition with
various changes in illumination or facial expressions [15], [16],
object recognition with various pose changes in 3D space [17],
and fast image matching using dimensionality reduction [18].

Some recent new approaches for image matching allow-
ing variations in appearances are learning based. Convo-
lutional neural networks (CNN) [19] have been proven to
provide a powerful method for image recognition tasks. While
eigenspace-based methods are constrained to linear transfor-
mations for dimensionality reduction, CNNs can be trained to
estimate low-dimensional representations of model images that
use nonlinear transformations of image patches. Some recent
research uses CNNs for comparing image patch pairs of stereo
images for dense estimations of depth images [20], [21], but
not in active stereo.

III. LEARNING-BASED PATTERN ENCODING/DECODING

A. System configuration

We assume a system that consists of a single pattern
projector and camera, as shown in Fig. 1(a). The camera and
the projector are assumed to be calibrated (i.e., the intrinsic
parameters of the devices and their relative positions and
orientations are known). Since the projector casts a static
pattern, no synchronization is required, and it is suitable for
acquiring a 3D shape of a dynamic scene. In terms of the
projecting pattern, we assume only a single color, which has
advantages for the simple construction of a pattern projector

Projector

Camera

Target scene

(i) (ii)

(iii) (iv)

(a) (b)
Fig. 1. (a) System configuration of projector and camera system. (b) Several
patterns for one-shot scanning. (i) random dots, (ii) [22], (iii) [23] and
(iv) [24].
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Fig. 2. Flow chart of our shape reconstruction algorithm.

and robust detection of a pattern over texture as shown in
Fig. 1(b).

B. Algorithm Overview

Our method has two phases, pattern learning and 3D recon-
struction, as shown in Fig 2. In the pattern-learning phase, first,
the projector and camera are calibrated. Then, through the use
of calibration parameters, virtual images are synthesized by
assuming that a planer board is placed at a specific depth,
and the pattern is projected onto the board from a virtual
projector and captured using a virtual camera. Those images
are synthesized and stored by changing the depth, orientation,
and material of the board. Finally, parameters and kernels of a
two-layer CNN are estimated using a deep-learning framework
to map the input image to low-dimensional values, typically
ten-dimensional, in our case.

In the 3D-reconstruction phase, the input image is converted
to a low-dimensional representation by applying a trained
CNN with estimated parameters. Then, at each position of the
captured image, distances from all of the depths are calculated
and stored in a cost volume used to apply belief propagation
(BP) in the next step. Once the depth values of all of the pixels
are estimated, 3D shapes are recovered using the camera and
projector calibration parameters.

C. Low dimensional representation for matching

In our method, images are mapped/encoded into a low
dimensional representation. If the surface around a point p
is assumed to be a local plane, then the homography H for
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Fig. 3. The CNNs consist of two layers for encoding the local pattern. The
input patch is 21× 21 in this paper, and the dimension of the output feature
vector is ten.

calculating the corresponding point of p is determined by the
plane parameters, the orientation and depth of the plane. In
this paper, the intensity of an input image at the point p is
modeled as

I(p) = aP (Hp) + b(p) + c, (1)

where P (Hp) is the intensity of the pattern image at the
point Hp. The parameters a, b, and c represent the pattern
brightness, the pixel noise of the imaging sensor, and the
ambient brightness, respectively. Therefore, the input patch
around the point p varies according to the parameters H, a, b,
and c. Although other sources of variation can be considered,
such as texture in a patch, focusing, and subsurface scattering,
they will be considered in future work.

Encoding the patch to a low-dimensional representation
must be stable with respect to the variation. One typical
method for comparing local patches is the sum of squared
distances (SSD). Comparison using SSD depends on the
orientation of the local surface of the object, since the pattern
reprojected to the camera image deforms according to the
orientation. Therefore, it must calculate the SSD between the
camera image and the projected pattern multiple times by
changing the assumed orientation to improve the robustness of
comparison. This increases the computational cost to find the
correspondence between the camera image and the projected
pattern. NCC or similar methods are known to perform better,
but they typically require greater computational cost and are
still not sufficient to compensate for variations.

The goal of mapping the projected pattern is to generate
a low dimensional representation to reduce the computational
cost to find the correspondence, which involves decoding the
encoded pattern. In this paper, we propose a method for
mapping/encoding the projected pattern to low-dimensional
representation, which absorbs the above variation to compare
image patches stably by low computational cost.

D. Learning the encoding model

The proposed method learns the encoding model specific
to a given projected pattern. As described, we assume the
projector-camera system is already calibrated. The training
samples for learning are generated by reprojecting the pattern
to the camera image by using the calibration parameters.

The encoding model proposed in this paper is based on
CNNs. The network consists of layers, as shown in Fig.3. We
assume that the pattern is locally encoded, and consider the
distribution of intensity in a patch, whose size is 21×21 pixels
in this paper. Since the projecting pattern typically consists
of alphabet symbols encoded in a small area in the patches
that are distinguishable from each other, the first layer is a
convolutional layer with small window size, which is 5 × 5

pixels in this paper, to detect the structure of alphabet symbols.
Since the symbols are detected by applying the convolution, it
is not necessary to encode the pattern explicitly. An implicit
encoding such as random dots can be used.

The codes of the pattern consist of combinations of symbols.
Therefore, the second layer detects combinations of features
calculated by the first layer. The output is the feature vector
used for comparing patterns as the result of encoding. Because
the number of patterns occurring in a patch is much smaller
than the degrees of freedom of intensities in the patch, the
dimension of the output can be much lower than that of the
patch (10 in this paper). The rectified linear unit function is
used as the activation function of the first layer.

Parameter estimation is based on the standard framework,
mini-batch gradient descent, for estimating a neural network
model with adaptive hyper-parameters [25]. The parameters
are optimized by iterating the following steps.

• Randomly select multiple points in the camera image, and
calculate the corresponding homographies by assuming
the orientation and depth of surface planes.

• Reproject the pattern to the patches around the points,
and add random pixel noises b to the patches in Eq.(1).

• Normalize the intensity for each patch using the mean
and standard deviation of the patch. The pattern and
ambient brightness, a and c in Eq.(1), are canceled by
normalization.

• Construct a mini-batch of training samples and apply
stochastic gradient descent to update the parameters.

In this paper, we design the feature vector so that the
Euclidean distance between two features is equal to the SSD
of the original patches that have no variation with respect to
the projective distortion and pixel noise. Therefore, the loss
function for estimating the parameters is defined as follows.

min
f

(∥ f(x)− f(y) ∥2 − ∥ x0 − y0 ∥2)2, (2)

where f is the function of dimensional reduction by the
neural network. x and y are two patches generated by adding
variation, and x0 and y0 are the patches generated without
variation.

E. Decoding input image using encoded features

The next step is decoding the input image to find the
correspondence between the camera and projector. Since the
pattern is encoded implicitly, the correspondence is provided
by finding the best match of feature vectors along the epipolar
line. Since the features of the projector pattern are independent
of the camera image, they are calculated in advance of the
decoding step. The matching cost for each pixel is calculated
using the following steps.

1) Calculate the local mean and standard deviation for the
patch, and normalize the intensity x.

2) Apply the function of dimensional reduction to calculate
the feature vector f(x).

3) Assume a depth for the pixel and calculate the cor-
responding point in the projector pattern. The feature
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vector of the corresponding point f(y) is determined
by bilinear interpolation of the pre-calculated feature of
the projector pattern.

4) Calculate the cost C =∥ f(x)− f(y) ∥2
5) Iterate the above steps 3 and 4 by changing the assumed

depth.
Although the correspondence can be provided by selecting

the minimum cost of the matches, some of the projector
patterns do not provide a unique correspondence along the
epipolar line. In such cases, a spatial constraint is added to
determine the correspondence robustly similarly to the case
of passive stereo methods. The proposed method applies the
constraint based on a Markov random field (MRF) model. The
matching cost for all pixels is defined as follows.∑

p

C(dp) + λ
∑
p,q

|dp − dq|, (3)

where C(dp) is the cost if the depth at the point p is dp. The
points p and q are neighboring pixels in the camera image.
λ is a user-defined weight. The cost is minimized by iterative
computation based on belief propagation [26]. The depth of
the minimum cost after minimization is selected as the best
match.

F. Detecting pixels without patterns

In some cases, there are pixels in a camera image that the
pattern is not projected onto. Those pixels must be omitted
from the depth estimation because they have no information
for finding correspondence. Although a simple method for
finding them is thresholding by brightness, this is not applica-
ble if the pattern brightness is low or if the ambient brightness
is high. The proposed method uses the following criteria to
discriminate pixels with and without patterns. If the following
condition is satisfied, the pixel is regarded as one that the
pattern is projected onto it.

max
dp

C(dp)/min
dp

C(dp) > θ, (4)

where C(dp) is the cost after MRF minimization and θ is
a user-defined threshold. After thresholding, morphological
operations are applied to remove small regions.

IV. EXPERIMENTS

In the experiments, we set up a projector-camera system
using an off-the-shelf video projector, as shown in Fig.4.
The resolutions of the camera and projector are 1600× 1200
pixels and 1024×768 pixels, respectively. Since the proposed
method has no limitations on the projector pattern, it can
theoretically be applied to monochrome, color, and time-
multiplexing patterns, but we focus on monochrome fixed
patterns as shown in Fig. 1(b). Therefore, only a single channel
of the input data is used to reconstruct the 3D shape of a target
object.

The proposed method uses the imaging model of Eq.(1)
to estimate the function of dimensional reduction. Since it is
expected that the proposed method is robust with respect to the
noise of the input image, the noise model is introduced in the

CCD camera

Target object

Projector

Extra light

Fig. 4. Experimental system with a camera and a video projector. External
lights are used as ambient light source.
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Fig. 5. The proposed method is compared to an NCC-based method in the
case of low S/N images. The images in the top row are input images. The
images in the second row are brightened from the input images. The third
and bottom row show the depthmaps using the NCC-based method and the
proposed method, respectively. The object is placed on a black cloth, which
is reconstructed successfully using the proposed method.

training data set. In the first experiment, we test the robustness
of the proposed system in the case of a low signal-noise (S/N)
ratio.

Under a wide variation of brightness change of an input
image, NCC is often used to compare image patches, and
thus, we compare the proposed method to a method that
calculates the matching cost using NCC. MRF-based energy
minimization is applied to find the correspondence using the
NCC data cost and the regularization cost between adjacent
pixels. Fig.5 shows the results for the images of a low S/N
ratio. A random dot pattern is projected to the object in this
experiment. The leftmost column shows the input images. The
images of the left column have low gain and are dark. In the
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TABLE I
THE RMS ERRORS ARE CALCULATED BY COMPARING THE RESULTS

OBTAINED USING THE FOUR METHODS AND THE GROUND TRUTH, WHICH
IS OBTAINED BY THE TIME-MULTIPLEXING 3D SCANNING METHOD THAT

USES GRAY CODES. THE UNIT IS MILLIMETERS.

Methods Boots Hand Skull Lizard Average
Wave-oneshot 3.61 1.76 5.83 13.28 6.12

NCC/dot 5.91 2.78 7.64 3.66 5.00
NCC/wave 6.70 3.85 7.00 9.18 6.68
PCA/dot 11.92 9.91 13.01 11.66 11.63

PCA/wave 6.59 8.12 8.84 13.41 9.24
Proposed/dot 3.32 2.05 3.44 4.13 3.24

Proposed/wave 2.76 5.33 6.07 3.04 4.30

center column, the image is captured with high gain. In the
right column, the object is illuminated using external lights
as an ambient light source. The images in the second row
are brightened from the input images by color correction.
The object is placed on a black cloth and the pattern is also
projected onto the cloth. The figures in the third row are the
depthmaps obtained using the NCC-based method. The darker
pixels indicate closeness to the camera. The low intensity
pixels after normalization are regarded as background and
discarded from reconstruction. The reconstruction works well
in the case of low gain, but the background detection fails in
the case of high gain. The reconstruction of the image with
external light fails around the neck. In the bottom row, the
proposed method succeeds in reconstructing the shapes of both
the object and the black cloth even if the S/N ratio is low.
While the reconstruction is degraded in the case of high gain
and external light, the background is correctly detected and
depth is obtained for most of the object.

Next, we evaluate the accuracy of the proposed method
by projecting two different patterns, random dots and wave
grid [24], for one-shot 3D scanning in this experiment. The
top row in Fig.6 shows the input images of four objects. The
random dot and wave grid patterns are projected on the left and
right sides, respectively. The middle and bottom rows show
the depthmaps and meshes, respectively using the proposed
method. The proposed method is compared to three other
methods, Wave-oneshot [24], a NCC-based, and a PCA-based
method. The Wave-oneshot method uses a wave-grid pattern
to reconstruct a 3D shape. The NCC-based method is the
same as the one in the above experiment. The PCA-based
method is a learning-based approach that extracts features
using PCA. It calculates the eigenvectors of the patches
synthesized from the projector pattern, and chooses ten vectors
with large eigenvalues. These eigenvectors are convolved with
the input image as the kernel, and the ten convolutions are
used as the feature vector for matching. In particular, the
PCA-based method is a linear method of extracting features
for comparison. MRF energy minimization is also applied to
the PCA-based method after calculating the data cost as the
Euclidean distance using the feature vectors.

To evaluate the accuracy, we compared the 3D shapes
obtained by four methods, Wave-oneshot [24], NCC-based,

Fig. 7. The RMS errors are compared for four methods. The proposed method
shows robust results for all cases compared to the other methods.

(a) (b)
Fig. 8. Calculating depthmaps by projecting two patterns: (a) PN-sequence
grid pattern [23], (b) density modulated binary pattern [22]

PCA-based, and the proposed method. The input images are
captured by changing the conditions, as shown in Fig.5. The
errors of depthmaps are calculated using the root-mean-square
(RMS) errors from the ground truth, which is obtained by the
time-multiplexing 3D scanning method that uses Gray codes.
The background including the black cloth is discarded from
the comparison. Table I and Fig.7 show the RMS error results.
The unit of the values is millimeters. The errors of the PCA-
based method are larger than those of other methods, which
are considered to be the result of the linear approach being not
sufficient to absorb the variation of input images. The Wave-
oneshot method basically shows good results, but the error
is large in the case of Lizard, which has a high frequency
texture and detecting lines is difficult. The results of the NCC-
based method are generally better than those of the PCA-based
method, and this shows best in the random dot patterns for
Hand and Lizard. However, the proposed method results in
low RMS errors for all cases and is, consequently, the most
robust of these methods.

Next, we tested 3D reconstruction using the proposed
method by projecting other patterns. Fig.8 shows the input
images and the depthmaps that result from projecting two
different patterns. Pattern (a) is a chess-board grid pattern
encoded based on a pseudo-noise (PN) sequence [23]. Pat-
tern (b) is density-modulated binary patterns [22], combining
window matching and phase-shift approach. Even though the
proposed method does not have explicit knowledge of the
patterns, it succeeded in calculating the depthmaps by using
these patterns, proving that the proposed method provides a
universal approach for various patterns of the active stereo
methods.
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Random dots Wave grid

Fig. 6. Two different patterns, random dots and wave grid, are projected onto the objects. The depthmaps and meshes are generated by the proposed method
for four objects, Boots, Hand, Skull, Lizard. These objects are placed on a black cloth.

V. CONCLUSION

In this paper, we proposed a universal decoding algorithm
based on a learning approach. Parameters of a mapping
function from a raw image to a low-dimensional representation
were efficiently trained using a deep learning technique. With
our technique, since critical features of the pattern are auto-
matically extracted from a huge database that is synthesized by
using a virtual projector and camera, no manual intervention
or customized algorithm is necessary, greatly helping to realize
learning based approach without actually preparing huge im-
age data set. Experimental results were shown to demonstrate
that our technique is stable, irrespective of the target object
material, lighting conditions, or sensor noise, compared to
existing methods. In the future, real-time implementation on
GPU will be important.
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