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Abstract—The ubiquitous hand gesture plays an important role
in the natural human machine interaction (HMI). Recently, the
consumer color and depth cameras have been used to estimate
hand shapes and postures for the mid-air HMI. Under the
observation that 3D hand contours possess much information
of hand postures, we estimate 3D hand contours from infrared
images with a limited computation complexity for the HMI on
mobile devices. A variant of the dynamic programming (vDP)
algorithm is proposed to handle complex self-occlusions in 3D
hand estimations, where a set of heuristic rules are introduced
to avoid finger missing. Furthermore, the constraints are used to
reduce the searching space in contour alignments. Given 3D hand
contours, a set of hand gestures, including touching, swiping, and
pinching, can be applied to mid-air interactions. The proposed
method is much faster than the traditional depth estimation of
the whole hand, and can achieve up to 500 Hz on PC, and 100
Hz on mobile devices.

I. INTRODUCTION

The recent developments in image capturing devices and
software for the natural human machine interaction (HMI)
have facilitated more and more intuitive human-machine in-
terfaces. The 3D hand plays an important role in the HMI.
Consumer color and depth cameras, including Kinect [3] and
the Leap Motion controller [4], have been used to acquire real-
time 3D hand positions and actions. A variety of techniques
have been proposed for 3D articulated hand estimation from
depth images [19], [20], [21]. The active illumination of the
structured light or the time-of-flight often requires a suitable
operation space for reliable depth estimations. The binocular
color and infrared cameras impose relatively few restrictions
on hand image capturing. The consumer binocular infrared
camera, e.g. the leap motion controller, can capture hand
gestures in a relatively small space close to the camera
and process up to 120 frames per second. Furthermore, the
binocular device has simpler hardware and lower price than
the depth camera. The stereo setup [15] and the data-driven
methods [17], [18], [2] have been used to get 3D hands.
However, computation complexities of the above techniques
are relatively high and sometimes with parallel processing of
GPUs, which are not suitable for the HMI on mobile devices.

Under the observation that hand contours possess much
posture information, 3D contours can be used for the gesture
recognition in a large variety of mid-air mobile interactions.
Since the time complexity of depth estimation from 2D images
depends on the pixel number to be reconstructed, the 3D hand

Fig. 1. System flowchart.

contour estimation is much efficient than that for the whole
hand. The 3D contour reconstruction has been addressed in
hand tracking tasks, where the iterative closest point (ICP)
[1] and the dynamic programming (DP) based methods [15]
were used to align the 2D hand contours. Since the holistic
ICP and the dynamic time warping (DTW) methods only
have limited capacities to deal with partial correspondences
between contours, only relatively simple postures with little
self-occlusions can be handled. The misalignment will occur
when part of finger contours do not have counterparts in
complex occlusion cases.

In response to this problem, we propose a variant of the dy-
namic programming (vDP) algorithm to establish hand contour
correspondences for fast 3D hand reconstruction from infrared
images (Fig. 1). In order to avoid matching ambiguities, the
side-labels of contours, together with the heuristic matching
rules, are introduced for reliable contour alignment. 3D finger
missing due to self-occlusions can be avoided. Moreover, the
heuristic rules can greatly reduce the searching space in the
cost matrix for an efficient contour alignment. Once given
3D hand contours, a set of hand gestures, including touching,
swiping, and pinching can be applied to mid-air interactions.
For instance, the fingertips extracted from 3D hand contours
can be used in virtual touching for object selection. However,
in the swiping-like task, the bounding boxes of 3D hand
contours could not provide accurate intersection detections
between objects and palms. A two-stage filling scheme is
employed to acquire the depth inside hand contours. Firstly, a
region-based linear interpolation along the scan line is used
to initialize the depth inside hand contours. Secondly, the
depth is refined based on the heat diffusion with contour
constraints, which is modeled by an Euler-Lagrange equation
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with Dirichlet boundary conditions. The diffusion problem is
relaxed by solving a large linear system. The proposed method
can process up to 500 infrared images per second on PC and
100 on the Samsung Galaxy S6 mobile platform [5], which is
efficient enough for mobile devices.

The main point of this work is to propose a vDP-based
method for the reliable contour alignment in 3D hand esti-
mation, as well as hand postures for the mid-air interactions.
The proposed method can ease the computation burden and
suitable for mobile devices.

II. RELATED WORK

The hand gesture plays an important role in the HMI.
A bundle of works addressed the automatic hand detection,
tracking, modeling, and gesture recognitions in vision-based
systems [9], [11]. The hand contour can provide much in-
formation on hand postures, which is independent of skin
colors and illuminations [13]. The ICP algorithm and an
assumption of the affine motion model were used for 3D
hand contour reconstruction [1]. The DTW was used for
matching and reconstructions of contour points for the purpose
of 3D hand contour tracking [15]. The holistic alignment of
the ICP method, or the DTW method with limited searching
capacities often failed to find correct contour alignments in
the case of self-occlusions. In this work, a vDP-based method
with augmented searching power is employed for contour
alignments and 3D hand estimations.

A number of mid-air interaction systems have been pro-
posed to augment the touchscreen or the acceleration sensors
based mobile interactions. LucidTouch combined a multi-
touch input surface with a pseudo transparent display [22].
A compact high-frame-rate camera and white LEDs were
used for in-air typing [10]. The SixthSense as a wearable
gestural interface used a tiny projector and a camera coupled
to a pendant-like mobile wearable device [8]. The hybrid
classification-regression forests were used to estimate dense
3D hands with a modified 2D camera and the simple LED-
based illumination [2]. The similar cascaded random forests
were used to infer hand shapes and positions from a monocular
RGB imagery for mid-air interactions in unmodified portable
devices [17], [16], and the hand pose estimation from con-
sumer depth cameras [19], [20]. Jang et al. [6] handled self-
occlusions of fingers in selecting objects in an AR/VR space
with an egocentric viewpoint of the camera-attached HMD.
Convolutional networks were employed for the real-time hand
pose recovery [21]. However, the computation complexities
of most above techniques are relatively high [19], [20], [6]
and not suitable for mobile devices. Some color-camera-based
systems had limited capacity to provide 3D gestures for the
HMI [17], [16]. Considering the limited computation power
of the mobile devices, we propose a vDP-based method for a
fast 3D hand posture estimation.

III. VDP-BASED CONTOUR ALIGNMENT

In this work, we cope with the 3D reconstruction of hand
contours from stereo infrared images. In the stereo setting,

Fig. 2. Illustration of contour alignments.

the reliable contour correspondence is essential to 3D contour
estimation. Given the contour matching, the contour depth
can be estimated based on the stereo geometry. The contour
correspondence falls into a sequence matching problem, and
the dynamic programming based methods, e.g. the DTW,
is feasible to solve correspondences [15]. However, due to
repetitive structures and self-occlusions, it’s a nontrivial task
to acquire reliable contour correspondences. Confronted with
this problem, we propose a vDP-based method for the contour
alignment.

A. Pairwise Contour Point Similarity

Let Cl and Cr denote the hand contours on the two
infrared images respectively. From the stereo matching view,
the matching points should be on the epipolar line [15].
It’s intuitive the point should be close to the epipolar line
of its counterpart considering device noises. In the rectified
stereo image pairs, the distance between contour points can
be measured simply by the difference in the y-direction. The
epipolar-based local feature is defined as: fe(ci) = ci,y, where
ci,y denotes the y-direction coordinate of contour point ci.
However, when the epipolar line intersects the contour with
more than one point, the mapping confusion will occur. For
instance, point a1-4 are all matching candidates of point a,
and points b1 and b2 are both matching candidates of b as
shown in Fig. 2. The spatial consistency can be used to
discriminate the wrongly matching. We introduce the shape
descriptor defined as the first order difference of neighboring
contour points, and fr(ci) =

ci−ci−1

max
c
j
,c

j−1
∈C

∥cj−c
j−1∥

. fr can be

seen as the contour direction. Although point a2 and a4 are
on the epipolar line and viewed as the candidate counterparts
of a as shown in Fig. 2, the directions of a2 and a4 are almost
reverse to that of a. The local shape descriptor can remove
most such wrong epipolar-based matchings. Considering the
repetitive shape pattern of fingers, the displacement from the
palm center is used to describe the position of the contour
point, and fc(ci) =

ci−c̄

max
c
j
∈C

∥cj−c̄∥ , where palm center c̄ is defined

as the contour centroid.
The pairwise distance d between the contour points Cl and

Cr is computed as a combinatorial difference of epipolar-
based features, together with the shape descriptor including
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Fig. 3. Cost matrices of four sampled hand contours with input infrared
images corner-plotted.

the contour direction vector and the displacement from the
palm center.

d(i, j) = αe

∥∥fe(ci)− fe(cj)
∥∥+ αrγ

⟨
fr(ci), fr(cj)

⟩
+ αc

⟨
fc(ci), fc(cj)

⟩
, and

(1)

γ =

{
∞, if

⟨
fr(ci), fr(cj)

⟩
< 0,

1, otherwise,

where γ is the penalty coefficient used to avoid the wrong
matching pairs with reverse directions. αe, αr, and αc are
constant coefficients, and set at 0.5, 1, and 1 respectively in
our experiments.

B. Cost Function

Given the pairwise distance matrix, the goal is to find the
hand contour alignment with the smallest cost. The dynamic
programming technique is efficient to solve such problem with
optimal substructures. The optimal matching between Cl and
Cr relies on the solution of sub problems. Let function p(i, j)
denote the minimum cost from the starting point to point pair
(cli, c

r
j). p(i, j) can be estimated based on the optimal cost in

the previous subsequences. It’s deserved to note that there is
no guarantee that all points in one contour have counterparts
in the other due to occlusion. A comparatively large searching
region is needed to handle the self-occluded fingers. The cost
function of contour alignment is defined as follows.

p (i, j) =

{
d(i, j), if i = 1 or j = 1,
Φ(i, j) + d(i, j), otherwise,

(2)

where Φ(i, j) = min{p(i − ki, j − 1), p(i − 1, j − kj)}. The
first row is related to the starting point in the contour. The
gaps ki and kj in the x- and y-directions can vary from 1 to
i− 1 and j − 1 respectively.

C. Constraints

In order to avoid the mapping ambiguity, the side-label is
assigned to the contour point. Here, the odd intersected points
with the scan line are denoted as the left-sided point Ll, while
the even intersected points are denoted as the right-sided points
Lr as showed in Fig. 2. The foreground finger is on the right

side of Ll, and on the left side of Lr. Traditional DP-based
method for contour matching only considered the contour
as a sequence of points, but ignored the relation between
contours and foreground hand regions. By virtue of the side
label, we can use a variety of rules to improve the contour
matching. (i) It’s intuitive that the matching points should
have the same side label based on the spatial consistency,
and the points in the current matching pair cli, c

r
j ∈ Ll or

cli, c
r
j ∈ Lr. (ii) Since the foreground finger is on the right

side of Ll, the gap from the preceding left-sided point to
the current left-sided one should not be large to avoid finger
missing. (iii) Similarity, the gap from the preceding left-sided
point to current right-sided one should be small enough to
avoid finger missing. (iv) The disparity between neighboring
matching pairs, e.g. (cli,x, c

r
j,x) and (cli′,x, c

r
j′,x), should be

small, and ∥cli,x − crj,x∥ ≃ ∥cli′,x − crj′,x∥.
In the case of complex self-occlusions of fingers, relatively

large transfers are needed in both contours. For instance,
the middle finger is occluded by the index finger in one
image, while occluded by the ring finger in the other image
as shown in Fig. 2. It means that the searching for the
optimal path needs to be performed in the sub-block of the
processed contour points. Fortunately, since the epipolar-based
local feature should be similar and the above side-label-based
rules should be satisfied, the searching space is limited. In
our system, the number κ of possible matching candidates
is approx. 5. The time complexity is O(κnc) for contour
alignment with nc points. The cost matrices of four sampled
hand contours are illustrated in Fig. 3. As we can see, the cost
matrix is sparse, and the candidate space is limited by virtue
of the proposed constraints.

IV. DEPTH INTERPOLATION

Given the contour alignment, it’s straightforward to compute
the 3D hand contour by the stereo geometry. The 3D hand
contour is enough to detect and locate the fingertips used
in the touching-like interactions. However, when the virtual
objects interact with the palm in the swiping-like interactions,
3D depth missing inside hand contours can cause confusions.
The bounding box determined by the 3D hand contour is not
accurate enough for the intersection detection.

Depth filling with boundary conditions can be mathe-
matically modeled by the Euler-Lagrange equation: ∆g =
0 over Ω with g|∂Ω = VC , where ∆ is the Laplace operator.
Ω denotes the hand region with contour ∂Ω. The depth
function g(vi) with contour VC can be seen as the solution
of the following minimization problem as in [12]:

E =

∫ ∫
Ω

|∇g|2with g|∂Ω = VC , (3)

where ∇ is the gradient operation. We employ the discrete
image grid of the infrared image, where each pixel has
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Fig. 4. The depth interpolation inside 3D hand contours.

regular four-connected neighbors. By combining the boundary
condition, the energy function is relaxed as follows.

E =
nc∑
i=1

∥g(vi)− Vc(vi)∥2

+ β
nv∑
i=1

∑
vj∈Neib(vi)

∥g(vi)− g(vj)∥2.
(4)

The first term is the boundary conditions to make the depth
g(vi) of contour point vi equal to the 3D estimated contour
VC(vi) based on the stereo geometry as described in Section
III. The second is the smoothness term to make the depth
difference of neighboring points small enough. β is a constant
coefficient, and set at 0.01 in all experiments. nv denotes
the number of points in the hand region. By setting the first
derivative of Eq. 4 to zero, the energy function is converted
to a large sparse linear system.

g(vi) + β

|Neib(vi)|g(vi)−
∑

vj∈Neib(vi)

g(vj)

 = Vc(vi).

(5)
Here, we employ the straightforward linear interpolation to

provide the initial value of g(vi). Since the depth inside one
finger is relatively independent of others, the hand region is
coarsely divided according to finger valleys. In our system,
since the contour points are side labeled, the separation points
in the finger valleys are easily located by the local minimum
of finger contour points with different side-labeled neighbors.
The linear interpolation is performed inside each region. Given
the initial depth estimation by the linear interpolation, the
conjugated gradient method is used to solve depth g(vi) inside
the contours. The 3D hands after depth interpolation are
shown in Fig. 4 with textures from infrared images. The time
complexity is O(nvρ

0.5), where ρ is the spectral condition
number of the coefficient matrix in the linear system.

V. EXPERIMENTS

In order to validate the proposed method, we perform
experiments in the toy data set with the hand image pairs
rendered from a virtual 3D hand. We also perform the 3D
contour estimation from the real images captured by the
infrared camera.

In our system, the number of input contour points varies
from 200 (hand is about 20 cm away from camera) to 1000
(5 cm away). In order to get a constant processing time, we
down sample the contour to approx. 400 points. A grid of

20 × 20 is used for depth interpolation. One of the time-
consuming procedure is the silhouette extraction. Here we
directly call the OpenCV function cv :: findcontour(). We
test the proposed method on a Samsung Galaxy S6 mobile
platform. The average processing time is 10 ms, which almost
catches up with the frame rate of the infrared camera of
120Hz. Moreover, for the touch-like interactions, there is no
need to estimate the inside depth, and the time cost is even
lower. The average time cost of main procedures, including
the contour extraction (CE), the feature definition (FD), the
vDP-based contour alignment and 3D reconstruction, and the
depth interpolation (DI), on the PC and the mobile device
(MD) are shown in Table I. This system is the fastest mid-air
hand interaction system on the mobile platform as far as we
know.

TABLE I
AVERAGE TIME COST OF MAIN PROCEDURES ON PC AND MOBILE

DEVICES (MD). CE-CONTOUR EXTRACTION; FD-FEATURE DEFINITION;
DI-DEPTH INTERPOLATION

Time (ms) CE FD vDP DI Total
PC 0.93 0.21 0.69 0.20 2.03
MD 4.8 1.0 3.4 0.81 10.0

A. Evaluations

We compare the proposed method with the matching based
on the commonly-used DTW [15], and the ICP [1] methods
as shown in Fig. 5 and Table II. The contour alignment can be
solved by finding the largest common sub-contours, which is
the same as the longest common substring (LCS) problem [7].
Here we also compare with the LCS-based method. We use the
y-coordinate (epipolar in rectified images) as the character of
the string. The proposed method outperforms other dynamic
programming and ICP-based methods, especially in the re-
gions without counterparts due to self-occlusions. For instance,
when the middle finger is partially occluded by the index and
the ring finger respectively, parts of the index finger contour in
Cl and the ring finger contour in Cr have no counterparts as
illustrated in Fig. 5, 3rd column. The relatively large transfer
gaps in both hand contours are needed for reliable matchings
as described in section III. The proposed method can handle
self-occlusion cases and acquire correct matchings. Whereas,
the other methods all failed as shown in Fig. 5.

The depth of 3D reconstructed hand contours by the pro-
posed method, the LCS [7], the DTW [15], and the ICP [1]
methods, along with the ground truth are illustrated in Fig.
6. The 3D contours estimated by the proposed methods are
more consistent with the ground truth, especially in the self-
occluded regions.

As described in Section III-A, the epipolar-based and the
shape-based features are used as the contour descriptors. We
compare the reconstruction errors based on different feature
channels as shown in Table II. In our experiments, the feature
fusion (vDPfusion) outperforms those using the epipolar-based
(vDPepi) or shape-based feature (vDPshape) alone. The same
occurs to the DTW and ICP-based contour alignment, where
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Fig. 5. The contour alignment and 3D hand contour estimation by the proposed methods with constraints (vDP) and without constraints (vDP-nc), the ICP,
the LCS, and the DTW methods (from top to bottom) with error matchings yellow-blocked. 3D estimated hand contours are green colored with fingertips red
colored.

TABLE II
3D RECONSTRUCTION ERRORS (MM) OF THE PROPOSED METHOD, THE

LCS, THE DTW, AND THE ICP METHODS. nc-WITHOUT CONSTRAINTS;
co-WITH CONSTRAINTS.

Methods
Errors (mm)
nc co

Ours

vDPshape 27.3 18.8
vDPepi 14.5 9.72
vDPfusion 12.8 8.55

DTW[15]

DTWshape 80.1
DTWepi 73.4
DTWfusion 68.8

ICP[1]

ICPshape 50.2
ICPepi 43.4
ICPfusion 37.8

LCS[7] 84.2

the feature fusions (DTWfusion and ICPfusion) outperform
those using epipolar-based feature alone (DTWepi and ICPepi)
or shape-based feature alone (DTWshape and ICPshape).

In our system, the heuristic constraints are used to avoid
matching ambiguities. The searching space is largely reduced
based on the side-labels and transfer constraints as described
in Section III-C. We compare the contour alignment with and
without constraints as shown in Table II. The constrained
version can improve the reconstruction accuracies compared
with unconstrained ones.

B. Interactions

Given the 3D hand, it’s straightforward to interact with
virtual 3D objects. We only need to detect the collision of
the hand and objects. A loose axis-aligned bounding box

Fig. 6. Depth comparison of 3D reconstructed hand contours by the proposed
methods with constraints (vDP) and without constraints (vDP-nc), the LCS
[7], the DTW [15], the ICP [1] methods, along with the ground truth.

(AABB) is used to represent the 3D object. In the fingertip
touching task, the system needs to detect the intersection of
the fingertip with the object. When the collision occurs, the
object is selected. In order to reduce the high-frequency noise
and avoid the temporal lags, a temporal filter is imposed on
the hand motion vectors q.

qi =
1

A

∑k−1

j=0
wjqi−j , (6)

where the normalization factor A =
∑k−1

j=0 wj . The coefficient
w is dynamically adapted based on the exponential moving
average technique [14], and wj = exp(−j ∥qi − qi−j∥). As
shown in Fig. 7 and the video, the 3D fingertips estimated
from the hand contours can be used to select virtual objects in
the space. The cubes touched by the fingertips are red-colored,
and those touched by other parts of the hand are gray-colored.
The cubes untouched are blue-colored.
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Fig. 7. The virtual touching with one and two fingers. The touched cubes
by fingertips are red outlined. The touched by other parts of the hand is gray
outlined, and the untouched blue outlined.

The commonly-used SVM classifier is used for the gesture
recognition. In the system, we define a set of 11 hand gestures,
including swipe up, swipe down, swipe left, swipe right, scroll
clockwise, scroll counterclockwise, push, pull, one fingertip
touch, two fingertips touch, and pinch. The confusion matrix
of the gesture recognition is shown in Fig. 8. The recognition
result is nearly perfect. The only confusions occur between
the swipe left and scroll counterclockwise, along with swipe
right and scroll clockwise, due to the nearly identical starting
phase of the gestures.

VI. CONCLUSION

In this paper, we proposed a vDP-based method for 3D
hand contour estimation from stereo infrared images. The
side-label based heuristic rules are introduced to avoid the
ambiguity in the contour alignment. By virtue of the heuristic
rules, the searching space in the cost matrix can be greatly
reduced. The efficient iterative method is employed for depth
filling inside hand contours for the palm-related interactions.
We compared our method with commonly-used dynamic pro-
gramming methods, including DTW and LCS, along with the
ICP-based method in contour alignment. The proposed method
can greatly improve the reconstruction accuracies and acquire
reliable hand contours even in the case of complex finger
occlusions. Since only the contour points are processed, the
3D reconstruction is apparently more efficient than the dense
3D hand estimation. The proposed system can achieve up to
100 Hz for the 3D hand posture estimation on mobile devices,
which almost catches up with the image capturing rate of the
consumer infrared camera.
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Fig. 8. The confusion matrix of contour based gesture recognitions.
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