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Abstract—A number of critical factors arises when a complex
3D scene is to be reconstructed by means of a large sequence of
different views. Some of them are related to the ability to recover
the correct identity and the accurate projection of each observed
feature. Other sources of error are tied to the reliability of the
orientation estimate for each view. With this paper we propose
a method that tries to solve both problems at the same time,
while being also inherently resilient to outliers. At the core of
the approach stands a widely adopted game-theoretical selection
technique, which has already been successfully embraced to
address similar tasks. The original inception, however, has been
further refined to address a wider range of scenarios, as well
as to offer a reduced memory consumption and computation
complexity. By exploiting these enhancements, we were able
to apply our technique to a large-scale setup involving several
hundreds of view points and tens of thousands of independent
observations.

I. INTRODUCTION

Image-based 3D reconstruction relies on two major factors:
the ability to match observations from different cameras and
the knowledge of the relative pose between these cameras.
Over the last decades countless approaches have been pro-
posed to solve both problems.

Correspondences can be found by exploiting the local
appearance of the scene, by means of concise descriptors
capturing such information including SIFT [1], SURF [2],
GLOH [3], BRISK [4], FREAK [5] and many others. While
all these descriptors seek repeatability and distinctiveness, they
are still prone to lead to false matching due to noise or
similarities in appearances. Correspondence reliability can be
improved, for instance, using high-level matching frameworks
accounting for multi-feature consistency [6], [7], [8] or by
ditching photometric descriptors in favor of intrinsically robust
identification methods, including structured light or artificial
markers [9].

Several methods also exist to estimate the pose between
cameras. Some of them adopt special calibration targets char-
acterized by a known model based on features exhibiting
some projective invariant, such as squares [10] or circles [11].
Such approaches, however, are only feasible when dealing
with fixed cameras that can be calibrated offline. Differently,
self calibration methods allow to exploit directly the observed
features. This usually happens by minimizing the overall
reprojection error of feature points triangulated under the
estimated poses [12]. The use of self calibration is especially

useful when addressing scenarios including multiple cameras
organized in a network [13], [14] or a sequence of frames
generated by an unknown camera motion [15].

Unfortunately, when dealing with feature-based self cali-
bration, points labeling and pose estimation are tightly inter-
twined. As a matter of fact, uncertainty about points localiza-
tion on the image and wrong features labeling could result in
large pose estimation error, due to the ill-posed reprojection
function to be minimized. On the other hand, an inaccurate
pose estimate could hinder any attempt to validate correspon-
dences on the basis of the epipolar constraint. Of course many
solutions have been proposed to deal with this quandary, such
as RANSAC-based feature selection [16], restriction to affine
transforms [17], [6] or enforcement of the transitive closure
for the recovered poses [18].

With this paper, we propose a novel approach to the simul-
taneous selection of camera orientations and corresponding
feature projections. The key idea underlying our method is
to adopt a game-theoretical validation of mutually consistent
observations. Indeed, Game theory has been successfully used
as an inlier selection framework for problems ranging from
image registration [19] and classification [20] to interest points
detection [21]. Actually, game-theoretical methods are not
novel even with respect to camera poses selection. In fact
a dynamic optimal path selection for camera networks has
already been introduced in [22], where abundant triangulation
hypotheses, produced by means of different pairs of cameras,
are validated according to mutual consistence.

This work advances such previous method by extending
its scope and, at the same time, by reducing its computa-
tional complexity and memory footprint. Namely, the original
approach was only able to select paths of rigid transforms
connecting cameras observing the same physical point or a
set of already labeled points. By contrast, our method works
equally well with unlabeled points, making it possible to
find correspondences between observations. Moreover, if some
function is available to measure the compatibility between
observations, it can be exploited to reduce the probability of
mismatches. Finally, since we operate directly on the point
images (rather than on their triangulations), the number of
potential hypotheses to validate is reduced from O(n2) to
O(n), where n is the total number of observations among
all the involved cameras.
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Fig. 1. The general scenario we are addressing includes several cameras,
a (partial) graph of pairwise pose estimation and a set of observations of
physical points (see the text for a detailed description).

II. GENERAL CONTEXT AND PREVIOUS WORK

The general context we are dealing with includes a network
of k cameras C = {C1, C2 . . . Ck}. Each camera, referred by
an unique label Cα, observes the same scene and captures
projective images of material points in the scene as single
observations Ouα, where u is the sequential label of the obser-
vation for that particular camera. A set of rigid transformations
M = {M11,M12 . . .Mkk−1} between pairs of cameras is
available. Within this set each entry Mij is a 4 × 4 roto-
translation matrix which transforms 3D points expressed in the
reference frame of Cj to point expressed in the reference frame
of Ci. We make no assumption about how observations and
pairwise transformations are obtained, thus each camera could
observe just a partial subset of the points in the scene, each
point could be observed with any amount of positional error on
the image plane, it could be subject to wrong labeling, and the
rigid transform between a pair of cameras might be available
or not and, when available, could be subject to any amount
of uncertainty (see Fig. 1). Within this context our goal is not
to correct the error affecting the observations or the camera
poses. Rather we are seeking, on a point-by-point basis, for the
best combination of camera orientations and point projections
to get the most reliable 3D reconstruction.

A. Game-Theoretical Inlier Selection

Following other inlier selection schemas (such as [23] or
[24]), we ground our notion of reliability upon the mutual
support between pair of hypotheses Hi, Hj ∈ H , expressed
by some payoff-monotonic function π(i, j) : H ×H → IR≥0,
where i and j are labels to hypotheses Hi and Hj . By properly
selecting the hypotheses to compare and the payoff function it
is possible to solve different types of problems by enforcing
the selection of a mutually consistent set of hypotheses by
means of an evolutionary process.

This evolutionary process is performed over a population,
that is a discrete probability distribution ~x = (x1, . . . , xn)T

over the available strategies H . Any population vector is
bound to lie within the n-dimensional standard simplex
∆n = {~x ∈ IRn : xi ≥ 0 for all i ∈ 1 . . . n,

∑n
i=1xi = 1}

The support of a population ~x ∈ ∆n, denoted by σ(~x), is
defined as the set of elements chosen with non-zero prob-
ability: σ(~x) = {i ∈ O | xi > 0}. In order to find a set of
mutually coherent hypotheses, we are interested in finding con-
figurations of the population maximizing the average payoff.

Given the matrix Π = (πij), where (πij) = π(i, j), the total
payoff obtained by hypothesis i within a given population ~x is
(Π~x)i =

∑
j πijxj , and the (weighted) average payoff over all

the considered hypotheses is exactly ~xTΠ~x. Unfortunately, it is
not immediate to find the global maximum for ~xTΠ~x, however
local maxima can be obtained using a rather wide class of
evolutionary dynamics called Payoff-Monotonic Dynamics. A
quite common evolutionary process starts by setting an initial
population ~x near the barycenter of the simplex and then
proceeds by evolving it through the discrete-time replicator
dynamic [25]:

xi(t+ 1) = xi(t)
(Π~x(t))i
~x(t)TΠ~x(t)

(1)

where xi is the i-th element of the population and Π the payoff
matrix. This family of dynamics are guaranteed to converge to
an equilibrium where the support does not include strategies
with mutual payoff zero. This means that hard constraints
expressed by zero compatibility are actually guaranteed to be
enforced. Finally, once the equilibrium is reached, the density
of the population vector corresponding to each hypothesis can
be used to assess its degree of participation to the inliers set.

B. Hypotheses and Payoff for the Optimal Path Selection

As noted in the introduction, our method builds directly
over the Optimal Path Selection (OPS) approach [22]. The
basic assumption of OPS is that a (mostly) correct labeling
already exists, thus correspondences are already established
and the optimal paths can be selected independently for each
material point. Within OPS, the set H of hypothesis to be
validated is made up of all the possible triangulations. To
this end, it must include exactly two observations and two
paths connecting the observing cameras to the world frame.
Without any loss of generality we can assume the world frame
aligned with C1, this way each hypothesis is a quadruple
(M1x . . .Myi, O

a
i ,M1w . . .Mvj , O

b
j). Here M1x . . .Myi and

M1w . . .Mvj are paths that combine a sequence of rigid
transformation matrices connecting cameras Ci and Cj to C1.
Accuracy of observations depends on several sources of noise,
usually distributed as a zero-mean Gaussian. In addition, each
wrong labeling could result in a totally misplaced point.

The payoff function is designed to account respectively
for the consensus between triangulations coming from two
hypotheses and their individual reliability. This is done by
considering both the positions of the reconstucted points ~x(Hi)
and the triangulation skewness s(Hi). Even if these two error
sources are not really independent, we can still reasonably
approximate them as a bidimensional Gaussian function:

π′(Hi, Hj) = e
− 1

2 (
(|~x(Hi)−~x(Hj)|)

2

σ2p
+
max(s(Hi),s(Hj))

2

σ2s
)

(2)

Where σp and σs are two parameters that represent respec-
tively the expected standard deviation of point position and of
skewness. Note that (|~x(Hi)−~x(Hj)|)2 is a pairwise measure.
Differently, s(Hi) and s(Hj) are independent one from the
other, thus the max operator is needed to account for them
within the pairwise function π′.
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While π′ expresses the degree of consensus between hy-
potheses, we must also account for special cases where two
hypotheses are not compatible regardless of the quality of
triangulation. The first one is the case when the hypotheses
include two different observations from the same camera. The
other unfeasible case consists in the presence of two different
paths to the same camera. As observed in Sec. II-A, these
constraint can be enforced by explicitly setting a value of zero
in the final payoff function:

π(Hi, Hj)) = π((Puα , O
a
α, P

u′
α′ , O

a′
α′), (P

v
β , O

b
β , P

v′
β′ , O

b′
β′)) (3)

=



0 if α = β ∧ (u 6= v ∨ a 6= b)

α′ = β′ ∧ (u′ 6= v′ ∨ a′ 6= b′)

α′ = β ∧ (u′ 6= v ∨ a′ 6= b)

α = β′ ∧ (u 6= v′ ∨ a 6= b′)

π′(i, j) otherwise

where Puα represents a path connecting camera Cα to the world
frame.

C. Shortcomings of the Optimal Path Selection Method

All the major shortcomings of OPS are due to the definition
of the hypothesis set H . In fact, since the method works by
validating triangulations, it needs to know in advance which
projections to triangulate, thus a cadidate labeling must be
provided as an input. While such labeling can be obtained
with several methods, it is clear that this requirement limits
the overall utility of the method, which can be used only to
select the optimal path for each triangulation (hence the name).

The other main hurdle with OPS is related to its complexity,
both in terms of memory and computational requirements.
Since each hypothesis is based on a combination of two
observations through two distinct paths, even with perfect
labeling the overall number of hypotheses grows with the
square of the feasible paths. Since the side of matrix Π is
equal to the size of the hypotheses set |H| ' |P |2, this means
that each iteration of equation (1) is potentially O(|P |4). This
is also true for the size in memory of matrix Π, albeit it is
not mandatory to actually store the entries of Π in memory
since they can be computed on the fly (although, increasing
the overall number of computations to perform).

III. A ROBUST OBSERVATIONS SELECTION

The proposed enhancements over OPS are quite simple, still
they represent a substantial upgrade of the original method
both in terms of capabilities and scalability. The key idea is
that the preliminary triangulation can be totally avoided by
adopting a simpler (but less strict) hypotheses set.

A. Enforcing Transitive Closure on a Reduced Hypothesis Set

We propose to base the selection process on a set H where
each hypothesis is just the line of sight (or ray) resulting from
the combination of a path P and an observation O. Since this
new hypothesis corresponds to a line in space, rather than to a
point, the payoff functions (2) and (3) make no sense anymore,
since the Euclidean distance between triangulated points can’t

be computed. Our guess, however, is that equally good results
can be obtained using a reduced formulation that only accounts
for the skewness of the rays:

π′(i, j) = π′((Puα , O
a
α), (P vβ , O

b
β)) = e

− 1
2 (
s(Hi,Hj)

2

σ2s
)

(4)

Of course it is much easier for two rays to exhibit low
skewness by chance, in fact this happens for all the rays lying
in the same epipolar plane for a pair of cameras. The rationale
of the approach, however, is that for a large enough population
of candidate rays, the probability of transitively exhibiting low
skewness by chance among all the pairs is much lower. In
principle this could happen for the epipolar subspace, but this
is in general a different plane for different pairs of cameras.
Of course, for this guess to be satisfying, it must withstand a
proper experimental validation, which we perform in Sec. IV.

B. Joint Path Selection and Feature Labeling

Given the smaller size of H (which is reduced to the square
root from OPS) and since no early triangulation is performed,
there is nothing preventing to include more than one material
point at the same time and letting the evolutionary process
select the clusters of rays belonging to the same bundle. Note
that some a-priori information about the likelihood of two ob-
servations to be related might be available (feature descriptors,
tracking, etc.). If such information is available, without loss
of generality, it can be used to define a compatibility function
C(Hi, Hj) : H × H → {0, 1}, indicating the feasibility of
the correspondence according to the a-priori information. With
this function at hand, the complete payoff can be defined as:

π(Hi, Hj)) =

{
0 if C(Hi, Hj) = 0 or α = β

π′(i, j) otherwise
(5)

where, in addition to th compatibility function C, two obser-
vations are automatically not corresponding if they came from
the same camera.

The first iteration of the evolutionary process based on (5)
will yield a single material point and the same label can be
applied to all the supporting rays. Once the bundle is obtained
two actions must be undertaken:
• the point must be triangulated according to the rays that

are not extinct in the final population. This can be done
in several ways, the simpler being by just triangulating
the two rays with the higher density. A more sensible
approach (which we will use in the evaluation) is to find
the point that minimizes the squared distance from all
the rays, weighted according to the population density of
each ray;

• the non extinct rays must be removed from the hypotheses
set H since they have already been assigned to a material
point.

Once H has been reduced, additional iterations of the evo-
lutionary process can be performed, until all the observations
have been labeled or a satisfying number of material points
has been reconstructed.
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Fig. 2. A graphical depiction of the 6 main factors that are accounted for in
our synthetic experimental setup (see the text for a detailed description).

IV. EXPERIMENTAL VALIDATION

Beside the reduced complexity, there is unfortunately no
technical or theoretical reason that guarantees the proposed
enhancement to be superior (or even on par) with respect
the original OPS method. To this end, the only sensible way
to assess the merits of this novel technique is to perform
an extensive set of comparisons over different experimental
conditions. This has been done using synthetically generated
data. The rationale of the synthetic analysis is based on the
need of a well-defined ground truth to be able to finely assess
the performance of the technique under a range of controlled
conditions.

A. Synthetic experiments setup

The final goal of each reconstruction technique is to accu-
rately recover the geometry of the scene regardless of the error
sources. For this reason, within our synthetic experiments,
we adopted as a measure of the quality of the obtained
result the RMS error between the ground-truth model and the
reconstructed points. It should be noted that some methods
we compare against might change the reference system due to
modifications of the camera poses. In order to be invariant with
respect to such effects, the RMS has always been computed
after a best-fit alignment between the obtained points and the
model [26]. We call this quality measure Prms.

To be able to study different aspects of the proposed method,
we devised a general synthetic experimental framework which
allows to control a wide range of different hindrances that
could affect the process. Specifically, we think that it is
critical to be able to control the overall density of material
points, the visibility achieved by each camera over the scene,
the different noise sources and the amount of outliers, i.e.
incorrectly labeled correspondences. A graphical overview
of the simulated scenario is presented in Fig.2. The control
parameters, also depicted in the figure, are the following:
• Np (Number of points): the number of material points

that have been generated in the model observed by the

cameras. Such points are generated in a cube box of side
10 and captured by cameras with focal length 1;

• Vr (Visibility ratio): the ratio of material points that can
be observed by each camera. This parameter is needed
to model complex networks (especially under motion
scenarios) where only a portion of the points are captured
by a given camera;

• σr (Orientation rotational error): the standard deviation
of the rotational noise added to the orientation of each
camera in the network. The rationale of adding only
rotational noise (as opposite to translational) is to allow
a single measure of noise intensity while still adressing
the most influential factor;

• σo (Observation positional error): the standard deviation
of the positional noise added to the projection of each
observed material point;

• Ir (Inlier ratio): the ratio of observations that can be
classified as inliers;

• Om (Outlier multiplier): the multiplier to be applied to
σo in order to amplify the positional error for outliers.

According to this parameterization, each camera observes
exactly NpVr material points from the scene. Among these
points, the projections of exactly NpVrIr are subject to an
additive positional error with standard deviation σo, while the
remaining, being outliers, are displaced by a (larger) positional
error of standard deviation σoOm.

Following [22] we created different network topologies,
namely: grid, hemisphere and line (see Fig. 3). We first
generated the exact relative motion between couple of adjacent
cameras and then we added rotation noise distributed accord-
ing to a Gaussian of standard deviation σr. All the evaluation
presented have been computed by creating a ground truth of
points using the specified parameters and then averaging the
Prms obtained over the three topologies.

Using this setup we first performed an analysis of the
sensitivity of the method to its parameters, then we compared
the new technique with the original OPS method, as well as
with the same two baseline approaches adopted in [22].

B. Sensitivty Analysis

The Joint Observation and Projection Selection (JOPS)
methods depends on a single parameter σs. To assess how
sensitive is the method with respect to this parameter we
measured the average Prms obtained for different values of σs
with fixed experimental conditions (Np = 10, Vr = 0.9, σr =
0.018, σo = 7 · 10−3, Ir = 0.9, Om = 10). As shown in

Fig. 3. The three different network topologies used for synthetic experiments.
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Fig. 4. Study of the behaviour of our approach with respect to the sensitivity parameter σs.

the first plot of Fig. 4, JOPS is not very sensitive to σs as
long as it is large enough to avoid a too strict inlier selection.
This is a behaviour similar to the one exhibited by OPS in
[22], however being dependent on a single parameter makes
it easier to tune the method. Notice also that, while increasing
the value of σs above a threshold of about 0.5 has a limited
effect on Prms, the shape of the selected population can be
very different. As shown in the second and third plot of Fig.
4, stricter values lead to a tighter selection with less successful
hypotheses. This could result in a less stable triangulation (due
to the reduced number of samples contributing to the average)
and on a duplicate detection of the same physical point, which
could appear in subsequent evolutionary processes, due to the
lower number of rays culled out.

C. Comparison with Optimal Path Selection

We compared the performance of JOPS with the original
OPS, Bundle Adjustment (SBA) and Dual Quaternion averag-
ing [18]. Since the other methods cannot be used to perform
feature matching, in order to be able to compare JOPS with
them we had to reduce the scope of our method. We defined
a labeling l according to the actually observed points and a
compatibility function to be used with JOPS:

C(Hi, Hj) =

{
1 if l(Hi) = l(Hj)

0 if l(Hi) 6= l(Hj)
(6)

Regarding the other methods, they have been feeded directly
with the correct matches.

The sensitivities to different error sources have been studied
separately. This has been done by exploring the obtained Prms
by varying one error source and keeping the others fixed. The
results are shown in Fig. 5. The performance with increasing
levels of noise on observations (first plot) and on orientations
(second plot) are on par with OPS and are superior to both

SBA and Dual Quaternions (which has already been observed
in [22]). An accuracy comparable to OPS is also obtained for
the tested ranges of visibility ratio (Vr) and inlier ratio (Ir).
These latter experiments, however, highlight the shortcomings
of SBA, which is unable to reconstruct the correct orientations
where not enough correct observations are available and of
Dual Quaternion, which is unable to avoid outliers since it
just deals with orientations.

D. Applications to Large-Scale Scenarios

The final and most important test has been designed to
simulate a general scenario with about 200 cameras before
a scene of about 1000 material points producing unlabeled
observations. The observations are characterized by an hypo-
thetical descriptor vector that can be used to filter out unfeasi-
ble correspondences. For this hypotetical descriptor we want
to simulate different levels of repeatability and distinctiveness.
To this end we define the following compatibility function:

C(Hi, Hj) =


1 with prob. Rf ,
0 with prob. 1−Rf if l(Hi) = l(Hj)

0 with prob. Df ,
1 with prob. 1−Df if l(Hi) = l(Hj)

(7)

The value Rf stands for Repeatability Factor and models the
probability that the descriptors computed over two projections
of the same physical points are considered corresponding.
By contrast, 1 − Rf expresses the probability to be unable
to recognize a matching feature. The value Df stands for
Distinctiveness Factor and represents the probability that
the projections of two different material points are actually
considered not corresponding. According to these parameters,
compatibility function (6) corresponds to Rf = 1 and Df = 1,
by contrast, a totally worthless descriptor corresponds to
Rf = 0 and Df = 0.
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Fig. 5. Comparison of our approach with OPS and other widely adopted methods.

3696



0.1
0.2

0.3
0.4

R
f

0.5
0.6

0.7
0.8

0.9
1  1  

0.9
0.8

0.7
0.6

0.5

D
f

0.4
0.3

0.2
0.1

12

4

10

8

6

2

0

P rm
s

0

2

4

6

8

10

12
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In Fig. 6 we show the average Prms obtained for dif-
ferent combinations of Rf and Df . We can observe that
JOPS behaves very well also with substantially low values
for Rf and Df (which rarely occurs with well designed
descriptors). Moreover, when the repeatability is high enough,
the distinctiveness is less critical since, as long as correct
hypotheses are available in H , outliers can be easily phased
out by the evolutionary process because of lack of geometrical
consistency.

V. CONCLUSIONS

With this paper we are proposing a game-theoretical ap-
proach that is able to jointly perform the selection of cor-
respondences between point projections and of the optimal
camera orientations required to triangulate such observations.
This approach can be adopted over a wide range of scenarios,
including camera networks, sequences of frames or collec-
tion of images coming from the web. In fact, we make no
assumption about the method used to obtain the initial pose
estimation. Neither we make any assumption as to the tech-
nique used to capture material point images, however, if some
kind of feature descriptor or similarity assessment is available,
it can be easily exploited. The experimental evaluation of
the method has shown that it is able to yield a performance
level comparable to a similar approach characterized by a
narrower application range and some major shortcomings.
Finally, when adopted to solve the more general problem of
simultaneous observations and paths selection, it exhibited a
strong resilience even when dealing with feature descriptors
characterized by low distinctiveness and repeatability.
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