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András Bódis-Szomorú
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Abstract—Airborne acquisition and on-road mobile mapping
provide complementary 3D information of an urban landscape:
the former acquires roof structures, ground, and vegetation at a
large scale, but lacks the facade and street-side details, while the
latter is incomplete for higher floors and often totally misses out
on pedestrian-only areas or undriven districts. In this work, we
introduce an approach that efficiently unifies a detailed street-side
Structure-from-Motion (SfM) or Multi-View Stereo (MVS) point
cloud and a coarser but more complete point cloud from airborne
acquisition in a joint surface mesh. We propose a point cloud
blending and a volumetric fusion based on ray casting across
a 3D tetrahedralization (3DT), extended with data reduction
techniques to handle large datasets. To the best of our knowledge,
we are the first to adopt a 3DT approach for airborne/street-
side data fusion. Our pipeline exploits typical characteristics of
airborne and ground data, and produces a seamless, watertight
mesh that is both complete and detailed. Experiments on 3D
urban data from multiple sources and different data densities
show the effectiveness and benefits of our approach.

I. INTRODUCTION

Structure-from-Motion (SfM) techniques have recently
been employed at unprecedented scales [10] to jointly recon-
struct outdoor scenes and geo-locate images. However, the
resulting point cloud is fragmented and inhomogeneous. Multi-
View Stereo (MVS) methods are often used to compute a dense
surface from known views. Advances in MVS have enabled
the automated production of large-scale urban models from
airborne imagery and it has become a solid alternative to
airborne LiDAR. Unfortunately, such models still often lack
facade and street-level details due to occlusions and shadows.
In turn, MVS has also been applied to street-side mapping
[21, 28], as an alternative to LiDAR mobile mapping [7].
Automated mobile mapping solutions are prepared to deliver
facade details at city-scale, but have no coverage of roofs,
higher floors (e.g. in narrow streets), or traffic-free areas such
as courtyards (see Figure 1). Attempts to model and abstract
buildings from such data typically result in facade models
much like a floating Potemkin village, i.e. with roofs and
ground missing [7, 24, 27]. We conclude that both airborne
and mobile mapping data needs to be exploited in order to
produce the next generation of large-scale city models that are
to be both complete and detailed.

In this paper, we propose a solution to fuse an airborne
point cloud of large coverage but possibly low detail and a
detailed but incomplete street-side point cloud in a volumetric
fashion. It is a two-step approach: a mutually exclusive point
cloud blending based on graph-cut segmentation, followed by
a volumetric optimization over a tetrahedral space-partitioning
and based on lines of sight to the points, inspired by [18, 19].

Fig. 1. Our method fuses a complete but inaccurate airborne point cloud
(top left) and a detailed but incomplete street-side point cloud (top right) into
a joint watertight mesh (right). In comparison, our mesh reconstructed solely
from airborne nadir data is shown on the left.

We introduce several simplifications to the volumetric reason-
ing in order to cope with larger amounts of data, and we show
that a drastic reduction of the number of visibility rays and
limiting the range of ray-shooting have little effect on recon-
struction quality, while the computational workload is reduced
significantly. In the same vein, we carry out experiments on
different input densities: sparse SfM and dense MVS data. The
result is a watertight mesh that is complete at a large scale,
but also detailed where street-side data is available.

Our contributions are the followings. (1) To the best of our
knowledge, we are the first to apply volumetric fusion based on
a 3D tetrahedralization (3DT) for joint airborne-streetside ur-
ban modeling. We propose (2) a mutually exclusive point cloud
blending to cope with gross ray conflicts prior to 3DT-fusion
(Sect. III-B) and (3) techniques to reduce the computational
workload for larger scenes (Sect. III-C). Finally, we provide
(4) detailed experimentation focusing on the trade-off between
computational workload and surface detail (Sect. IV).
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II. RELATED WORK

Many approaches have been proposed to convert a series
of depth maps (range images) or a point cloud – obtained from
SfM, MVS or LiDAR – into a consistent surface mesh.

Explicit methods directly construct mesh faces over the
input points or depth data or join multiple meshes by zippering
them, e.g. [7, 8, 21]. These are often interpolatory, sensitive
to noise and can result in open meshes with holes and non-
manifold areas. Implicit methods extract the surface as a
level-set of a volumetric function evaluated over a spatial
grid. The seminal work [5] integrates range images into a
voxel grid via a weighted average over Truncated Signed
Distance Functions (TSDF). It has inspired many indoor fusion
techniques, e.g. KinectFusion [12]. Poisson reconstruction [16]
is another popular approach due to its robustness to noise.
In general, SDF-based methods tend to oscillate around noisy
input. Thus, [11, 20] drop the sign of the distance function
and find the surface as an s/t-cut in a graph over voxels,
with regularization for a smooth result. Both only show results
for small objects. Convex variational methods have also been
applied for fusing noisy depth maps over a 3D voxel grid [31]
or a 2.5D height map [22].

Volumetric reasoning over a voxel grid is prohibitively
expensive for large outdoor scenes, motivating adaptive space
partitioning methods. Octrees are used in Dual Contour-
ing [14] and Poisson reconstruction [16] but 3D Delaunay-
tetrahedralization (3DT) [17, 29], and a cell complex built from
a plane arrangement [4] have also been applied to such scenes.
Labatut et al. [17] build a 3DT on top of MVS points and do
inside/outside classication of tetrahedra while enforcing line-
of-sight and photoconsistency constraints. Later, the expensive
photoconsistency term was dropped, and a remarkable robust-
ness to outliers and to subsampling was shown [18]. Their
street-side results appear superior in quality compared to TV-
L1 fusion [31]. As a drawback, the output mesh is interpolatory
with the noisy input points as vertices. The 3DT approach has
been extended by a photoconsistency-driven mesh optimization
[29], and it has been adapted to point clouds with no visibility
data by casting ray “tubes” [19]. Another extension addressing
weakly-supported surfaces is implemented in CMP-MVS [13],
which outputs a good-quality mesh in a matter of hours from
hundreds of images of a street scene on a 3 GHz computer
with GPU. It shall be noted that none of these techniques are
specific to fusing aerial and street-side data.

Recently, we proposed an efficient view-driven meshing
approach for street-side images and for large-scale height
maps [2]. The benefits of combining different data sources for
urban modeling have also been recognized by others [27, 23].
However, surface fusion of street-side and aerial data has re-
ceived significantly less attention to date. Many works focus on
geo-localization of either images or street-side reconstructions
[27, 15, 26], a prerequisite for fusion. Their input is community
photo collections, which are spatially fragmented, i.e. only
represent popular landmarks. In turn, systematic industrial
airborne/street-side mobile mapping deliver denser coverage
and geo-registered data by means of GPS/IMU sensors and/or
ground control points. Therefore, our approach assumes that
the input is geo-registered (aligned) and focuses on the surface
reconstruction step that tolerates minor misalignments.

Last but not least, there exist only a few works that
combine street-side and aerial data for joint mesh recon-
struction [8, 6, 25]. Früh and Zakhor [8] construct meshes
over street-side LiDAR range maps and over a large-scale
Digital Surface Model (DSM). Unlike in our approach, they
reconstruct a facade and an airborne mesh separately without
topological fusion. Shan et al. [25] solves the problem by
directly applying Poisson surface reconstruction [16] over
the joint dense point cloud computed by patch-based MVS
[9] without a cross-consistency check between airborne and
street-side data. Fiocco et al. [6] integrate over 200M points
from a tripod-mounted ground LiDAR and an aerial DSM, by
using a distance field over an octree and an out-of-core dual
contouring approach. Despite the quite complex algorithm,
results are noisy and contain many large holes. In contrast, our
approach performs cross-consistency filtering and produces a
good quality watertight surface.

III. THE PROPOSED METHOD

In what follows, we first detail the volumetric fusion
method, then propose an a priori point cloud blending, and
finally discuss how we reduce the computational effort.

A. Volumetric fusion

Inspired by the elegance of tetrahedral space partitioning
methods [18, 19], we use a 3D Delaunay-tetrahedralization
(3DT) over the joint point cloud from airborne and street-
side acquisition (with the modifications discussed later). The
underlying data structure is simpler than an octree or cell
complex, yet it is adaptive to data density, a prerequisite for
scalability. Denote the vertex set of the 3DT as V = {vi}, the
set of tetrahedra by T = {ti}, and the triangular facet between
any adjacent tetrahedra ti and tj as fij . Our goal is to assign a
binary label li ∈ {in, out} to every tetrahedron ti ∈ T , while
minimizing the energy function

E(L) =
∑
i:ti∈T

Ei(li) +
∑
i

∑
j:j<i

Eij · I[li 6= lj ], (1)

where the unary term Ei(l) encodes the preference for tetra-
hedron ti to obtain label l, the pairwise regularization term
Eij is the preference for two adjacent tetrahedra ti and tj to
obtain the same label, I[li 6= lj ] is the indicator (1 if li 6= lj ,
0 otherwise), and L = (l1, l2, . . . , ln) is a complete labelling.

As input, we construct lines of sight (rays) from the
visibility information of the SfM or MVS (or laser scanning)
procedure. Every ray r = (v, s) goes from a vertex v ∈ V to
a sensor location s. The logic behind inside/outside reasoning
is that tetrahedra crossed by rays should be labelled as out,
while tetrahedra behind each ray’s vertex of origin should be
labelled as in up to a certain distance δinmax. This distance
should be conservative to avoid mistakes around corners and
behind narrow objects. In practice, rays either penetrate or do
not reach the true surface due to noise as shown in Fig. 2.

Each ray contributes to the unary terms Ei(l) in Eq. (1).
For l = out, we follow the path of each ray r by walking in
the 3DT (Fig. 3). The walking procedure starts from the source
vertex v of the ray, returns each traversed tetrahedron t, and
the walking distance to the point where the ray exits t. The
walk ends with the tetrahedron containing the sensor location
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Fig. 2. 2D illustration of the effect of noise on tetrahedralization (green)
and on the visibility rays (blue) to a single sensor. Point samples on the true
surface (black) are Delaunay-triangulated without (left) and with noise (right).
Close-ups are also shown. Noise increased the number of triangles by 8%.

sensor
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tetrahedra

score for outside
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Fig. 3. Penalties arising from a single ray (solid blue) originated from
vertex v. The true surface (black lines) is oriented towards outside (arrows).
Vertices are off-surface due to noise. Crossed tetrahedra {t1, t2, t3, t4} have
a preference for l = out, while {t5, t6} have preference for l = in.

s, or where the ray exits the 3DT, whichever occurs first. For
l = in, the inverted ray is traced (dotted blue line in Fig. 3)
until the tetrahedron at distance δinmax from v.

In order to take noise (Fig. 2) into account, we employ a
soft-voting scheme, similar to [18]. Denote the exit distance
of ray r from tetrahedron t by dl(r, t), where l ∈ {in, out}
distinguishes the two walking directions. dl(r, t) = 0 for
tetrahedra not affected by ray r. For a single ray r, the score
of any tetrahedron t to be labelled as l ∈ {in, out} is

Sl(r, t) = 1− e−d
2
l (r,t)/(2σ2

l ), (2)

where σin and σout are noise tolerance parameters. The
truncation distance is fixed to δinmax = 3σin, i.e. the last
tetrahedron traversed backwards obtains the full score 1 for
l = in (see Fig. 3). The penalty Ei(l) of tetrahedron ti for
label l is then defined as a monotonic function of the sum of
the preferences of the opposite label l̄ over all rays:

Ei(l) = 1− e−Ui(l)/γl with Ui(l) =
∑
r

Sl̄(r, ti), (3)

where γin and γout control how many in and out votes col-
lected from all rays per tetrahedron count as “many enough”,
and can be used to trade-off robustness and accuracy.

The terms Eij in Eq. (1) enforce spatial regularization for
a smooth solution, and propagate labels to tetrahedra that have
no unary preference. Eij is a pairwise term that is a function
of properties of two adjacent tetrahedra ti and tj . In this paper,
we show experiments using a simple minimal area force

Eij = λAij , (4)

where λ is a global regularization factor, and Aij is the area
of triangle fij between tetrahedra ti and tj . Other forces are
also possible: an initial experimentation with forces against
elongated triangles, long-edge triangles, or preference for faces
fij between any two elongated tetrahedra [18] (see Fig. 2 for
an intuition) shows that the area penalty works best with our
datasets. Further comparison is out of the scope of this paper.

Note that the margins introduced by the soft-voting scheme
(Fig. 3) for the unary term let the optimization select from a
larger pool of faces.

The energy function (1) can be globally minimized using
graph-cuts [3]. The sought optimal surface mesh can be
extracted as the set of all faces between inside and outside
tetrahedra. Although this mesh is watertight, it is interpolatory,
since the 3DT is built on top of noisy points. This results in a
jagged surface inherent in most 3DT-based methods. To obtain
a smoother surface, we apply basic Laplacian smoothing by
replacing every vertex by the mean of its neighbors. Finally,
only the largest component is kept in order to eliminate
(typically a few) minor components not attached to the ground.

B. Point cloud blending

Unfortunately, applying the proposed volumetric fusion
procedure directly to the joint airborne/street-side set of points
does not give satisfactory results in practice. The main reason
is that airborne reconstructions are usually substantially lower
quality and oversmoothed at facades, which results in duplicate
surfaces and ray conflicts across the two data types. Rays from
airborne data often intersect the true surface or show inside
evidence far outside of the true surface. Setting our fusion
parameters σin, σout loose would result in loss of detail. To get
the best out of both data types, we rather propose a mutually
exclusive point cloud blending prior to volumetric fusion.
Besides the considerations that (i) the airborne data has broad
coverage, (ii) street-side input is incomplete or fragmented and
(iii) airborne data is of substantially lower quality where street-
side data is available, it is reasonable to eliminate airborne
points where street side data is present. The removal of points
comes with the additional computational benefit of lowering
the number of tetrahedra in the partitioning.

We formulate this as a segmentation over the airborne point
cloud P , which assigns a binary label l ∈ {0, 1} to each point
pi ∈ P , points to remove being marked by 0. Given the street-
side point cloud Q, an airborne point pi has a (supposedly
better quality) street-side substitute qi ∈ Q if qi is the nearest
neighbor of pi in Q and if both the Euclidean distance di
between them and the angle θi between their normals n(pi)
and n(qi) are small. The likelihood for an airborne point to
have a substitute can be formulated as

φi = φ(di, θi) = e−d
2
i /(2σ

2
b ) ·max{0, cos θi}, (5)

where cos θi = n(pi)
Tn(qi), and φ ranges from 0 (no

substitute) to 1 (perfect substitute). σb is a blending parameter
to control our notion of vicinity, which should incorporate
deviations of P from Q due to registration and reconstruction
errors. Normals are computed in P and Q separately by least-
squares plane fitting to the k-NN neighborhood of each point
(k = 10), and by flipping normals according to visibility. For a
smooth segmentation, we define the influence between adjacent
nodes of the k-NN graph over P as

ψ(pi, pj) = exp(−dij/med dij), (6)

where dij is the distance between any two adjacent points pi
and pj , and med dij is the median of all k-NN distances in P .
We seek the binary labelling over P that minimizes

Eb(L) =
∑
i:pi∈P

Ebi (li) + λb
∑
ij

ψ(pi, pj) · I[li 6= lj ], (7)
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Fig. 4. Our pipeline applied to Münsterhof (PMVS). Overview (top) and a close-up (bottom). From left to right: input aerial point cloud, input street side point
cloud, blending energies, airborne point cloud segmentation, blended aerial and street-side point clouds, output fused mesh with street-side parts in orange.

where li ∈ {0, 1} is the label of point pi, I is the indicator
function, and λb is a regularization parameter. The unary
penalties Ebi (l) for point pi to obtain label l are defined as

Ebi (0) = 1− φi and Ebi (1) = φi. (8)

We minimize Eq. (7) by graph-cuts [3] and eliminate the
airborne points labelled 0 prior to volumetric fusion. Although
point quality measures could be incorporated into this scheme,
we have found that the distance and normal cues prove
sufficient to obtain a good mixture of the two point clouds.

C. Data reduction

Our aim is to apply the pipeline to large scenes. To reduce
the computational complexity, we propose different simplifi-
cations, whose effect will be exprimented in Section IV.

1) Input point decimation: We cluster the blended point
cloud using a voxel grid, and replace the points in each voxel
by their centroid. The visibility information is also merged
accordingly. To keep the method scalable, only occupied
voxels (a small fraction) are stored, using an associative array
indexed with the global voxel index.

2) Reducing the number of rays: Lines-of-sight are dis-
tributed densely in free-space areas, leaving space for a spar-
sification. We reduce the number of rays per point to one. The
ray that is closest to the normal direction of each point is kept,
to minimize surface penetration due to noise in the points.

3) Ray truncation: When collecting inside votes in the
fusion algorithm (Sect. III-A), the penetration depth has in-
tentionally been limited to δinmax = 3σin to preserve narrow
structures. We introduce a similar limit δoutmax = 3σout when
tracing the rays from each vertex v towards the sensor (solid
blue line in Fig. 3) for a shorter walk in the 3DT.

IV. EXPERIMENTS

Our mixed C++/Matlab single-core implementation relies
on Matlab/CGAL [1] for tetrahedralization, and on the GCOp-
timization library [3] for graph-cuts. We implemented 3DT
adjacency computations and ray shooting in C++.

We are not aware of any publicly available dataset with
both airborne and street-side data for the same geographic loca-
tion. Thus, we show experiments on our datasets, Münsterhof

(140×160 m2, Fig. 4) and Limmatquai (400×400 m2, Fig. 5)
captured in Zürich, Switzerland. 23 nadir images of 15 cm
ground resolution, taken at a height of 3 km, were fed to
a state-of-the-art MVS pipeline1 to obtain an airborne point
cloud. 629 (Münsterhof) and 847 (Limmatquai) street-side
images were taken manually in the same areas, and we ran Vi-
sualSfM [30] to produce an SfM point cloud, as well as PMVS
[9] for a denser cloud. The aerial data was geo-registered
via ground control points, and the street-side models were
registered manually to the aerial data (assuming that street-
side geo-registration can be solved automatically in industrial
mobile mapping). To quantify input misalignment (incl. noise),
we measure distances between mutual nearest neighbors across
the SfM/aerial clouds along the normal directions pointwise,
and report the median, 90- and 99-percentiles. These are 0.2,
0.5, 1.0 m for Münsterhof and 0.2, 0.6, 1.2 m for Limmatquai.

Fig. 6. Our reconstruction of airborne-only (left) airborne + street-side SfM
(middle) and airborne + street-side PMVS input (right).

We applied our method to airborne-only data as a base-
line and to airborne combined with street-side data from (i)
SfM and (ii) PMVS and using different combinations of the
reductions of Sect. III-C. Fig. 4 shows different stages of
our pipeline. We focus on the trade-off between runtime and
output quality. Fig. 6 compares models from different data
types, while numerical results are summarized in Table I. In
all experiments, we fix our parameters as σb = 2 m and λb = 1
for point cloud blending, and σin = 0.1 m, σout = 0.5 m and
γin = γout = 2 for 3DT-fusion. The volumetric regularization
parameter λ is shown in Table I. Denser input allows for better
noise suppression without oversmoothing (higher λ). Input
point decimation (Sect. III-C) is parametrized by the voxel
size vox (0 for no decimation), ray truncation is marked by a
Xin column tr and reduction of the number of rays is marked

1RealityCapture, https://www.capturingreality.com/
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Fig. 5. Output of our fusion for the Limmatquai dataset using PMVS street-side input (see PMVS (*) in Table I). Vertices originated from street-side data are
colored orange. The left image shows the full 400×400 m2 result. Around 20% of surface area is covered by street-side data.

Params Airborne data Street-side data 3DT & Ray shooting Mesh Mesh distance from ref (cm) Timings
Experiment vox tr λ #pts #/m2 #vis #pts #/m2 #vis #verts #tets #rays #verts meana means 10cms 50cms tet ray gco total

M
ün

st
er

ho
f

PMVS (*) 0 3 272k 8.0 11.9 1.54M 108.0 6.8 1.75M 11.0M 13.2M 1.44M (ref) (ref) (ref) (ref) 32s 182s 27s 285s
PMVS (a) 0 X 3 272k 7.9 11.9 1.54M 106.8 6.8 1.75M 11.0M 13.2M 1.43M 2.9cm 1.3cm 0.7% 0.0% 32s 80s 28s 182s
PMVS (b) 0 3 272k 8.4 1.0 1.54M 108.9 1.0 1.75M 11.0M 1.75M 1.24M 6.7cm 1.5cm 0.8% 0.0% 32s 28s 34s 137s
PMVS (c) 0 X 3 272k 8.5 1.0 1.54M 108.5 1.0 1.75M 11.0M 1.75M 1.23M 8.6cm 1.6cm 0.9% 0.0% 32s 15s 34s 125s
PMVS (d) 0.10 3 272k 8.4 1.0 780k 56.3 1.0 996k 6.27M 996k 756k 6.8cm 1.7cm 1.0% 0.0% 18s 16s 24s 82s
PMVS (e) 0.20 3 266k 8.2 1.0 310k 23.5 1.0 522k 3.33M 522k 416k 7.1cm 2.2cm 2.5% 0.1% 9.4s 7.9s 16s 46s
PMVS (f) 0.35 1 213k 6.3 1.0 127k 6.3 1.0 293k 1.89M 293k 262k 3.0cm 3.1cm 5.1% 0.3% 5.2s 4.2s 6.0s 23s
SfM (*) 0 1 272k 7.8 11.9 233k 18.6 4.6 452k 2.84M 3.91M 410k 3.6cm 7.7cm 19.8% 1.4% 8.0s 45s 7.6s 70s
SfM (a) 0 X 1 272k 7.6 11.9 233k 18.7 4.6 452k 2.84M 3.91M 412k 3.6cm 7.1cm 18.1% 1.1% 9.8s 19s 6.5s 47s
SfM (b) 0 1 272k 7.8 1.0 233k 18.7 1.0 452k 2.84M 452k 382k 3.6cm 7.5cm 18.9% 1.3% 8.1s 6.4s 8.4s 33s
SfM (c) 0 X 1 272k 7.7 1.0 233k 19.0 1.0 452k 2.84M 452k 383k 3.5cm 7.5cm 18.7% 1.3% 8.5s 3.2s 8.4s 29s
aerial (*) 0 1 272k 6.2 11.9 not used 272k 1.77M 3.24M 269k 3.1cm 69cm 86.4% 49.1% 5.0s 41s 3.3s 52s
aerial (a) 0 X 1 272k 6.3 1.0 not used 272k 1.77M 272k 253k 3.1cm 70cm 86.5% 49.2% 7.3s 2.0s 4.0s 16s

L
im

m
at

qu
ai

PMVS (*) 0.20 3 1.65M 6.8 11.5 1.14M 26.0 43.6 2.60M 16.7M 67.8M 2.41M (ref) (ref) (ref) (ref) 49s 1059s 53s 1261s
PMVS (a) 0.20 X 3 1.65M 6.7 11.5 1.14M 26.3 43.6 2.60M 16.7M 67.8M 2.45M 0.2cm 0.3cm 0.9% 0.1% 51s 314s 53s 517s
PMVS (b) 0.20 3 1.65M 6.9 1.0 1.14M 26.5 1.0 2.60M 16.7M 2.60M 2.11M 3.7cm 2.6cm 8.1% 0.3% 49s 50s 79s 277s
PMVS (c) 0.20 X 3 1.65M 6.8 1.0 1.14M 26.9 1.0 2.60M 16.7M 2.60M 2.13M 3.8cm 3.0cm 8.9% 0.4% 50s 19s 78s 248s
SfM (*) 0 1 1.68M 6.5 11.5 259k 9.1 4.6 1.79M 11.5M 19.6M 1.72M 0.3cm 20cm 44.4% 8.9% 35s 262s 35s 380s
SfM (a) 0 X 1 1.68M 6.5 11.5 259k 9.2 4.6 1.79M 11.5M 19.6M 1.73M 0.3cm 19cm 42.4% 7.7% 35s 95s 35s 213s
SfM (b) 0 1 1.68M 6.6 1.0 259k 9.0 1.0 1.79M 11.5M 1.79M 1.62M 0.6cm 19cm 44.0% 8.4% 34s 30s 39s 153s
SfM (c) 0 X 1 1.68M 6.5 1.0 259k 9.5 1.0 1.79M 11.5M 1.79M 1.62M 0.6cm 21cm 44.0% 8.8% 34s 12s 39s 134s
aerial (*) 0 1 1.68M 6.0 11.5 not used 1.68M 10.9M 19.3M 1.66M 0.0cm 81cm 88% 47.3% 33s 269s 33s 340s
aerial (a) 0 X 1 1.68M 6.0 1.0 not used 1.68M 10.9M 1.68M 1.57M 0.3cm 81cm 88% 47.4% 33s 12s 26s 103s
TABLE I. SUMMARY OF OUR RESULTS FOR TWO DATASETS. CHANGES W.R.T. THE LINE (*) IN EACH GROUP ARE MARKED BY BOLD TEXT.

by value 1.0 in the columns reporting the number of visibility
rays per point (#vis) in Table I. The input point density (#/m2)
is estimated as the number of input points divided by output
surface area. The table also reports the number of points (#pts),
tetrahedra (#tets), and mesh vertices (#verts) in each case. Note
that the number of triangles in the 3DT (resp. output mesh) is
nearly twice the vertex count. Since no detailed ground-truth
3D model exists for the fusion task to date, we evaluate the
effect of the proposed simplifications w.r.t. the best-quality 3D
model obtained by our method (marked by (ref) in Table I).
The distances from each vertex of the (dense) reference mesh
to the output mesh is measured using AABB-trees [1]. As the
aerial input is not altered in our experiments, and to report
results independently from street-side coverage, we partition
the reference mesh into street-side and aerial regions based
on the origin of its vertices, and plot the error distributions
for the street-side part in Fig. 7. Similarily, Table I reports the
mean error over the aerial (meana) and stree-side part (means)
separately, and the percentage of distances larger than 10 and
50 cm over the street-side part.

Runtimes are measured in Linux on a single i7-2600K
3.4GHz CPU core, 16 GB RAM. Table I also lists runtimes
for computing the 3DT and its adjacencies (tet), ray shooting
(ray), energy computations and volumetric optimization (gco)
and total time, which also includes point cloud k-NN and
normal computation, point cloud blending and post-processing.
For Limmatquai, we limited the input density to around 26
points/m2 (via vox = 0.2 m) having a memory peak of
around 11.6 GB, the most memory-intensive steps being the
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Fig. 7. Cumulated distribution of mesh errors for the cases in Table I over the
street-side data regions of Münsterhof, the reference being PMVS(*). Vertical
lines mark the thresholds 10cm and 50cm used for error reporting in the Table.

volumetric decomposition and graph-cut optmization over it.

Our results in Table I and Fig. 7 consistently show that the
quality of the model improves substantially by fusing street-
side details into the airborne model, as expected. Improvements
of using PMVS data instead of SfM are in the 1-10 cm range.
Depending on the use-case, the quality provided by the street-
side SfM may suffice. As an example, our method could be
used for improving satellite or airborne Digital Surface Models
(DSMs). It is also clear from the results that the proposed
simplifications cause only little harm in quality (curves of
the same color are close in Fig. 7) while a significant gain
in runtime (and memory requirements) is achieved. We also
found that ray truncation improves robustness to gross outliers.
In particular, PMVS results in larger groups of outlier rays
crossing the interior of certain buildings, while their effect
remains local due to truncation. Although ray truncation makes
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the optimization local (unary terms are only non-zero in a crest
around the data) [20], there are no serious consequences, once
δoutmax is set high enough so that street-side rays sweep out
protrusions of the airborne input at the bottom of walls (see
left of Fig. 6). As a failure case, point cloud blending tends
not to disambiguate narrow structures (e.g. towers) if these are
duplicated distinctively due to misregistration in the input.

V. CONCLUSION

This paper proposes an efficient method for reconstructing
a surface mesh from a detailed but incomplete street-side and
a complete but low-detail airborne point cloud, which are pre-
aligned. Although the next generation of 3D urban models
should be both complete and contain street-side details, the
problem received only little attention to date. Our method joins
strengths of the two data types by fusing them via volumetric
reasoning over a tetrahedralization, preceded by a point cloud
blending to avoid gross line-of-sight conflicts due to inaccurate
airborne measurements where more accurate street-side data
is available. Our detailed experimentation with both SfM and
dense MVS data over large urban scenes shows good surface
quality and proves that additional simplifications can be used
with little harm in output quality but substantial reduction
in runtime. Applying the method at city scale via mobile
mapping data is part of our future work. Ways to auto-adapt the
parameters to input noise, ray density or tetrahedra volumes
would also be interesting to study in the future.
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