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Abstract—We propose a fast calibration method for projector-
camera pairs which does not require any special calibration
objects or initial estimates of the calibration parameters. Our
method is based on a structured light approach to establish
correspondences between the camera and the projector view.
Using the vanishing points in the camera and the projector
view the internal as well as the external calibration parameters
are estimated. In addition, we propose an interactive projection
mapping scheme which allows the user to directly place two-
dimensional media elements in the tangent planes of the target
surface without any manual perspective corrections.

I. INTRODUCTION

With the common availability of digital projectors, the
augmentation of real world objects with projected content has
immersed as an own form of digital art, often called projection
mapping or shape adaptive projection. The goal is in general
the augmentation of three-dimensional target objects with
perspectively correct projections which respect the underlying
geometry of the object. Applications of this technique not only
include marketing campaigns and commercials but are also
used in the industry, e.g. in design processes [1].

In its simplest form the problem of a perspectively correct
projection to the scene geometry has occurred to almost
any projector user in terms of the keystone correction, i.e.
correcting the projector images for projection planes which are
not parallel to the projector image plane. While (automatic)
keystone correction only accounts for plane geometry and
therefore only requires the knowledge of the homography
between the projector image plane and the scene plane (cmp.
[2], [3]), projections to more complicated geometry usually
require a complete 3D reconstruction of the target scene or
object. In most situations a 3D model of the target object
is not available in advance and therefore requires a live 3D
reconstruction. Using a camera in addition to the projector,
structured light techniques allow a 3D reconstruction of the
scene [4]. A pattern which encodes the source pixel coor-
dinates within the projector image is projected to the target
object. The camera acquires the pattern images and decodes
them to obtain correspondences between the camera and the
projector. Nonetheless, a (up to scale) 3D reconstruction of
the scene not only requires the correspondences between the
projector and the camera but also their calibration parameters.
Assuming that the camera and the projector are calibrated
(the internal and external parameters of the camera and the

projector are known) the 3D reconstruction is obtained by the
triangulation of corresponding points.

Especially the requirement of a calibrated projector-camera
pair is often a hurdle. In [5] a checkerboard in conjunction with
the described structured light technique is used to warp the
camera views of the checkerboard to the projector view. The
camera view and the warped projector view are treated as a
standard stereo image pair such that existing stereo calibration
approaches can be used to estimate the internal and external
parameters of the camera. While this method leads to great
calibration results, checkerboards are often cumbersome to
carry around, especially for live events. In [6] the projector
calibration is achieved using a three dimensional calibration
object. Manually identifying projector pixels such that they
project to known three-dimensional points on the calibration
object allow a standard calibration from 3D-2D correspon-
dences [7]. The disadvantage of this method, besides the
calibration object, is the manual pixel identification process.In
[8] an calibration approach for a camera and a stripe laser
projector is presented which requires known position of an
LED marker. In [9] the authors use a more common calibration
object: A white planar surface with known size and orthogonal
edges is used to determine the calibration parameters from
projected checkerboard images and vanishing points of the
scene. The mentioned methods all have in common that they
require a calibration object which has to be placed in the scene
or even require a prior calibration of a subset of the parameters.
While this is perfectly feasible and accurate for static setups
where the camera and the projector are calibrated once, it is
often in-feasible for live shows where installers or artists bring
their own equipment and frequently change the projector and
camera zoom, therefore prohibiting any prior calibrations of
the projector-camera pair.

Within this article we propose a novel and fast calibration
scheme especially suited for artistic purposes in live events
which enables an interactive projection mapping of the scene.
The contributions of this scheme are: (1) It requires no initial
calibration parameters of the projector or the camera. (2) No
special calibration object is required, standard indoor geometry
like room corners can be used for the calibration. (3) The
calibration is fast such that the user is able to quickly re-
calibrate in the case of changing projector-camera parameters
such zoom, position or rotation. In addition to the calibration
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scheme we propose an interactive projection mapping method
which allows the users to place two-dimensional objects such
as images or videos in the tangent planes of the target surfaces
in a perspectively correct way (in the case of planar surfaces
the tangent planes coincide to the planes themselves). We
focus on the speed and the convenience of our method to
produce visually pleasing artistic results rather than focusing
on overall accuracy. Besides a projector, our method only
requires a camera where the resolution should be higher than
the projector resolution. Our method can be summarized as
follows: A gray-code pattern projection is used to establish 2D
correspondences between the camera and projector view which
will be explained in III. Afterwards, minimal user interaction is
required: The user has to draw three parallel line pairs lying in
the three mutually orthogonal planes in the scene. The drawn
lines are warped to the projector view. Using the lines in the
camera and the projector view we estimate three mutually
orthogonal vanishing points in the projector and the camera
view (see IV). The internal and external parameters of the
camera and the projector are obtained from the corresponding
vanishing points (see sections V, VI). Afterwards the user
is able to interactively apply our projection mapping method
described in section VIII.

II. CAMERA MODEL

Within this article we model the projector as well as the
camera according to the pinhole camera model. We do not
model any lens distortions, since the distortion does not
influence the overall results too much due to the focal lengths
and operating distances of the system. The internal parameters
of a pinhole camera are described by the internal matrix

K =

fu s u0
0 fv v0
0 0 1

 . (1)

We assume that the pixels of the camera and the projector
are square pixels such that fu = fv and s = 0. The
internal matrices for the camera and the projector will the
denoted by K̃ and K. Without loss of generality we assume
that the camera and the projector look along the positive z-
axis in their local left-handed coordinate systems. A point
X = (X1, X2, X3)T is then mapped to x = (x1, x2, 1)T on
projector image plane as

x = KRT (X− t). (2)

where the external parameters R and t denote the projector
orientation and position with respect to the world coordinate
frame (cmp. [7] for the notation). The same holds for the
camera image formation using K̃, R̃ and t̃.

III. GRAY-CODE PROJECTION

In order to acquire the geometry of the scene we follow
the approach in [4] and interpret the projector-camera pair
as a stereo camera setup. A fundamental requirement for the

Fig. 1. Two example scenes seen from the camera view. Top: Cube scene,
bottom: corner scene.

3D reconstruction of a scene from the stereo camera pair is
the establishment of correspondences between the two views.
Once the correspondences (and the calibration parameters) are
known, the 3D reconstruction is obtained by a triangulation
of the 2D correspondences. Since the projector is an active
device, we are able to uniquely encode each projector pixel
using a binary gray-code pattern which is afterwards decoded
by the camera. Let I : {0, ..., N − 1} × {0, . . . ,M − 1} →
[0, 255] denote a projector image of dimension N ×M and
Ĩ : {0, . . . , Ñ−1}×{0, . . . , M̃−1} denote a camera image of
dimension Ñ×M̃ . We encode each projector pixel coordinate
(i, j)T ∈ {0, . . . , N} × {0, . . . ,M} with the bit sequence of
the single coordinates resulting in bvmax = dlog2Ne vertical
and bhmax = dlog2Me horizontal code images denoted by
Iv,b, b ∈ {1, . . . , bvmax} and Ih,b, b ∈ {1, . . . , bhmax}. In
addition we also use the inverse code patterns Īv,b, Īh,b to
stabilize the decoding process [4].

The camera acquires an image for each pattern projection
resulting in 2(bvmax + bhmax) camera images in total and
decodes the corresponding projector pixel coordinates in terms
of two warp imagesWv,Wh. Examples of the acquired binary
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images and warp images for the cube and corner scene from
figure 1 are shown in figure 2. The camera resolution should
in general be higher than the projector resolution in order to
avoid aliasing artifacts. We favor the gray-code projection due
to its simplicity but more advanced structured light schemes
exist, which allow a decoding with sub-pixel accuracy [10].

IV. VANISHING POINT ESTIMATION

While the correspondences alone already allow a projective
reconstruction [7], we are interested in a (up to scale) metric
reconstruction of the scene. A necessary requirement is the
calibration of the internal and external parameters of the
projector-camera pair. Existing approaches like [11] propose
a method for complete self-calibration of a projector-camera
system from structured light correspondences. They propose
to concurrently solve a non-linear optimization problem for
the fundamental matrix and the internal parameters of the
projector and the camera. In the case of a correct solution,
the essential matrix and therefore the external parameters can
obtained. The method requires a reasonable initial solution
which especially in the case of the internal projector param-
eters is not always available. We were not able to apply the
method in a stable way and often got stuck in local minima.
Another complete self-calibration approach has recently been
introduced in [12]. An initial calibration is obtained using
structured light correspondences similar to [11] and further
refined using known points on a calibration object. Instead of
a complete self-calibration we propose a fast method which
requires minimal user interaction and no special calibration
object. At the beginning of the calibration process, the user
has to ensure that the projector-camera pair is able to see
three mutually orthogonal planes (e.g. a room corner, cmp.
figure 1). In each plane the user has to be able to draw a
parallel line pair. Overall, this is a reasonable assumption since
most rooms are for example equipped with windows and doors
which allow to draw the required lines. The camera image
of the scene is shown to the user on a screen (e.g. a tablet
device) and the user draws the required line pairs by dragging
the start- and endpoints of a line segment, resulting in three
parallel line pairs (l̃1,1, l̃1,2), . . . , (l̃3,1, l̃3,2) where each line
l̃i,j is described by the two drawn points (p̃i,j , q̃i,j). Each
annotated line in the camera view is warped to the projector
view resulting in (l1,1, l1,2), . . . , (l3,1, l3,2). Due to possible
errors and noise in the correspondence estimates we robustify
the warping of the lines using a RANSAC scheme. Not only
the endpoints of the lines are warped but the line segments in
the camera view are sampled and all the sampled points are
warped to the projector view. The projector line pairs are then
fitted to the warped sampled points using RANSAC. For each
parallel line pair we compute its intersection in the camera
and projector view respectively which constitute the vanishing
points of the scene:

ṽi = l̃i,1 ∩ l̃i,2 vi = li,1 ∩ li,2. (3)

Fig. 3. Top: Annotated mutually orthogonal parallel line pairs on the computer
screen (lines have been redrawn for better visualization). Bottom: Warped and
projected lines as seen by the camera.

Figure 3 shows the line annotation in the camera view and
the warped projected lines seen from the real camera view.

V. INTERNAL CALIBRATION

The vanishing points in the camera and projector views are
the key to the internal calibration. Using vanishing points for
camera calibration is not a new concept. A comprehensive
overview for stereo camera calibration using vanishing points
can be found in [13]. The monocular setup is studied in
detail in [14] and [7]. Vanishing points have also already been
used in [9] for projector-camera calibration. Nonetheless the
method requires a white planar calibration object of known
size and orthogonal edges. Further the authors assume, that
the principal point of the camera and the projector is in the
center of the images. In the case of projectors this in general a
false assumption. We neither require a calibration object, nor
do we impose any constraints on the principal points of the
camera or the projector. Without loss of generality we consider
only the projector view, since the same principle applies to the
camera view as well. It has been shown in [7] that the internal
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Fig. 2. Top row: Examples of extracted binary patterns from the camera view for the cube and the corner scene. Bottom row: Warp images containing the x
and y coordinates in the projector view for the cube and the corner scene.

camera calibration matrix K is determined by image of the
absolute conic ω as

ω = (KKT )−1. (4)

Due to the restriction that the pixels of the projector are
square pixels, the image of the absolute conic is given by

ω =

ω1 0 ω2

0 ω1 ω3

ω2 ω3 ω4

 . (5)

Further, since the vanishing points are mutually orthogonal
they impose the three linear constraints

vT
1 ωv2 = 0 (6)

vT
1 ωv3 = 0 (7)

vT
2 ωv3 = 0 (8)

which lead to the linear system

v1,1v2,1 v1,1 0 0
v1,2v2,2 0 v1,2 0

0 v2,1 v2,2 1



ω1

ω2

ω3

ω4

 = 0. (9)

The system is solved for ω using the singular value decom-
position. Once the image of the absolute conic is known, K
can be obtained using a Cholesky factorization and a matrix
inversion since ω is symmetric and positive-definite.

VI. EXTERNAL CALIBRATION

The vanishing points vi and ṽi not only describe mutually
orthogonal vanishing points but also corresponding vanishing
points. Using the internal parameters from the previous sec-
tion, corresponding directions in the projector and the camera
view can be obtained as

di = K−1vi/||K−1vi|| and d̃i = K̃−1ṽi/||K̃−1ṽi||.
(10)

Assuming that the three directions correspond to the canon-
ical Cartesian directions in the world coordinate system, the
rotations for the projector and the camera are given by

R =

dT
1

dT
2

dT
3

 R̃ =

d̃T
1

d̃T
2

d̃T
3

 . (11)

The translations t, t̃ of the projector and the camera can
be obtained from two known 3D points in the world co-
ordinate system and their corresponding 2D projections in
the projector and camera view. Without loss of generality
we again only consider the projector view. The translation
of the camera is obtained analogously. Let X,Y ∈ R3

denote these two known points in world coordinates and let
p = (p1, p2, 1)T ,q = (q1, q2, 1)T denote the corresponding
projections in the projector view. Then

z1 RK−1p + t = z1a + t = X (12)

z2 RK−1q + t = z2b + t = Y (13)

where z1, z2 denote the distances of X,Y from the projector
along the z-axis in the projector coordinate frame. Solving

[
a −b

](z1
z2

)
= x− y (14)

yields the desired translation

t = x− z1 RK−1p = y − z2 RK−1q. (15)
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Due to the construction of the vanishing points two known
3D points are X = (0, 1, 0)T and Y = (0, 0, 0)T (the scale of
X is arbitrary). To obtain the corresponding projections, we
always declared one line during the vanishing point annotation
as the y-axis (e.g. the green line in figure 3) and automatically
calculated p,q and p̃, q̃ as the intersections of the line pairs
corresponding to the x-direction in the projector and camera
views such that the user had no additional annotation cost
(cmp. magenta and cyan squares in figure 3).

VII. CALIBRATION RESULTS

For our experimental setup we used a PointGrey Grashopper
GRAS-20S4C-C camera with a resolution of 1600 × 1200
pixels and a pixel size of 4.4µm (square pixels) with a
Cosmicar/Pentax 12mm lens such that the optimal focal length
in the pinhole setting is 2727.27 pixels For the projector we
used a BenQ W1070 with a built in zoom lens whose focal
length is within f ∈ [16.88mm, 21.88mm]. The maximum
resolution of the projector is 1920 × 1080 pixels. We used a
resolution of 1280 × 720 pixels. The image diagonal of the
projector image at a distance of 1m is 1,02m resulting in a
pixel size of 11.2µm at a resolution of 1280× 720 such that
the expected focal lengths in pixels is f ∈ [1498.79, 1942.74].
We compare the vanishing point based calibration (VP) with
a standard calibration method from 3D-2D correspondences
(see [7], [6]) using the known reference points on the cube
in the scene. The results are shown in table I. The deviations
in the v0 component did not impact the overall quality of the
final projections. A 3D reconstruction from the triangulation
of the correspondences using the estimated parameters of the
vanishing point based method is shown in figure 4.

TABLE I
INTERNAL CALIBRATION RESULTS

Camera Projector

Parameters VP 3D-2D VP 3D-2D

f 2857.75 2609.866 1892.56 1787.12
u0 911.59 804.422 674.25 579.68
v0 357.16 669.48 755.56 817.86

VIII. INTERACTIVE PROJECTION MAPPING

If projectors are used for artistic projection mapping pur-
poses, e.g. installations at fair stands, the content usually
consists of several two-dimensional media elements (images,
videos) which are supposed to be mapped to the target sur-
faces. Using the 3D reconstruction of the scene in conjunction
with the image data from the camera view, we enable the
user to interactively paint those two-dimensional primitives
(e.g. rectangles, triangles, circles) in the tangent plane of
a target surface without any manual perspective corrections.
In the case of planar structures such as the mutually or-
thogonal planes used in the calibration process, the user is
able to directly place the objects within the planes such that

Fig. 4. Three-dimensional reconstruction (pointcloud) of the cube scene (top)
and the corner scene (bottom) using the calibration parameters of the vanishing
point based method.

he only needs to adjust the desired parameters for the in-
plane position (translation), rotation and scale, thus completely
avoiding any manual perspective corrections. In order to place
a two-dimensional primitive in the tangent plane of the target
surface the user selects a target point p̃ = (p̃1, p̃2, 1)T in the
camera view. The 2D points p̃i,j = p̃ + (i, j, 0)T , (i, j) ∈
[−n, . . . , n]2 from a local (2n + 1) × (2n + 1) neighbor-
hood and the corresponding 2D points in the projector view
pi,j = (Wv(p̃i,j),Wh(p̃i,j), 1) are triangulated resulting in
the 3D points Xi,j = (Xi,j,1, Xi,j,2, Xi,j,3)T . The surface
normal vector and the local tangent plane at x is obtained
from the singular value decomposition of the 3×3 co-variance
matrix C with

Ci,j =
1

(2n+ 1)2 − 1

n∑
k=−n

n∑
l=−n

(Xk,l,i − µi)(Xk,l,j − µj)

(16)

and

µi =
1

(2n+ 1)2

n∑
k=−n

n∑
l=−n

Xk,l,i, i ∈ {1, 2, 3}. (17)

The singular vector corresponding to the smallest singular
value corresponds to the normal vector of the surface (ensuring
that it points towards the camera and the projector view),
whereas the two remaining singular vectors describe the local
tangent plane. This local basis is used as the local coordinate
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Fig. 5. Virtual camera view the user interacts with and the augmented scenes captured by the camera for the cube and the corner scene.

system for the two-dimensional primitives which are supposed
to be rendered in the tangent planes of the surface. Further the
user is able to directly manipulate the primitives in the tangent
plane (translate, rotate, scale) without any manual perspective
correction. Using OpenGL, the camera and the projector view
are simulated and the two-dimensional primitives are rendered
in a virtual 3D scene from the camera and the projector
view. Figure 5 shows the projection results for several two-
dimensional quads which have been interactively placed on
the surface of a cube and a room corner.

IX. CONCLUSION AND FUTURE WORK

We have proposed a fast and flexible calibration approach
for projector-camera pairs which requires neither prior cali-
bration parameters nor any calibration objects. It is especially
suited for projection mapping installations where parameters
of the projector-camera pair might change often and require
a flexible re-calibration. In addition we have proposed an in-
teractive projection mapping scheme for perspectively correct
projections of two-dimensional media elements in the tangent
planes of the scene surfaces without any manual perspective
corrections.

Future work will investigate the interactive mapping of
non-planar primitives on curved surfaces such as spheres and
cylinders using local curvature information estimated from the
surface reconstruction.

In addition we will investigate interactive projection map-
ping methods in the case of dynamic scenes and projection
surfaces using real-time depth sensors.
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