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Abstract—We aim to reconstruct an accurate neutral 3D
face model from an RGB-D video in the presence of extreme
expression changes. Since each depth frame, taken by a low-
cost sensor, is noisy, point clouds from multiple frames can
be registered and aggregated to build an accurate 3D model.
However, direct aggregation of multiple data produces erro-
neous results in natural interaction (e.g., talking and showing
expressions). We propose to analyze facial expression from an
RGB frame and neutralize the corresponding 3D point cloud if
needed. We first estimate the person’s expression by fitting blend-
shape coefficients using 2D facial landmarks for each frame and
calculate an expression deformity (expression score). With the
estimated expression score, we determine whether an input face
is neutral or non-neutral. If the face is non-neutral, we proceed
to neutralize the expression of the 3D point cloud in that frame.
To neutralize the 3D point cloud of a face, we deform our generic
3D face model by applying the estimated blendshape coefficients,
find displacement vectors from the deformed generic face to a
neutral generic face, and apply the displacement vectors to the
input 3D point cloud. After preprocessing frames in a video,
we rank frames based on the expression scores and register the
ranked frames into a single 3D model. Our system produces a
neutral 3D face model in the presence of extreme expression
changes even when neutral faces do not exist in the video.

I. INTRODUCTION

We aim to produce an accurate 3D face model in the
presence of extreme expression changes for non-cooperative
subjects. Due to the development of low-cost depth cameras,
such as Kinect [1], prior researches demonstrate how to
reconstruct an accurate 3D model with a low-cost depth sensor.
Since only a single raw frame is not enough to make an
accurate 3D model, due to the noisy input, multiple depth
frames are needed to be registered using iterative closest point
(ICP) [2], [3] to make an accurate 3D model [4]-[6]. Recently,
Hernandez et al. [4] show that a near laser scan quality 3D
face model can be reconstructed by registering multiple depth
frames.

The ICP algorithm is widely used for registration of two
point clouds by minimizing the difference of the two point
clouds [3]. The key limitation of using standard ICP, which
requires two rigid point clouds, for 3D face modeling is that
the person should keep the same expression and stay as still as
possible until a 3D model is reconstructed. However, in natural
environments, people can change their expressions such as
talking and smiling. Especially, reconstruction of an accurate
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Fig. 1. Overview of the proposed neutralization method.

model is challenging when the mouth opens due to large
expressions since the topology of the face is changed.

In this paper, we propose a method that aims to make an
accurate neutral 3D face model from a sequence of RGB-D
frames containing drastic expression changes. Although we
only produce a neutral 3D face model with many uses (e.g.,
face recognition), this method can be applied to generate other
non-neutral 3D face models as well.

Given an RGB frame in a video, we extract 2D facial land-
marks, estimate the facial expression parameters, and compute
the expression deformity (expression score). The expression
parameters are coefficients of the blendshapes. If the level
of deformity represents non-neutral, we neutralize the non-
neutral face, as shown in Fig. 1. We first generate a deformed
generic face based on the estimated expression parameters.
We then find a set of displacement vectors from points in
the deformed generic face to the corresponding points in the
neutral generic face. The displacement vectors are applied to
the point cloud of the input face in order to neutralize the
non-neutral face. At the end of video, we rank all frames
based on the expression scores and register the ranked frames
sequentially. Fig. 2 illustrates our approach.

Our contributions are as follows:

o« We estimate each input face’s expression parameters
with 2D facial landmarks by fitting coefficients of 3D
blendshapes, score a deformity of the expression, and
neutralize the 3D point cloud of the input face depending
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Fig. 2. Overview of the proposed system.

on the estimated deformation.

o We rank frames based on the estimated expression scores
in order to smooth drastic changes. We sequentially ag-
gregate the ranked frames of neutral faces or neutralized
non-neutral faces to make an accurate neutral 3D face
model.

o We can generate a neutral 3D face model even when there
are only non-neutral faces in an RGB-D video.

The remainder of this paper is organized as follows. Sec-
tion II summarizes the related work. Section III shows our
proposed method and section IV presents experimental results.
Section V concludes our paper.

II. RELATED WORK

We review 3D modeling, expression fitting, and expression
deforming methods.

3D reconstruction and modeling method: We review prior
methods of 3D reconstruction for static and dynamic objects
with a low-cost depth camera. In here, static objects mean that
it can move but do not change its shape.

Static objects. In order to make a 3D model from multiple
depth frames for static objects, depth frames of different views
can be aligned by using ICP registration such as rigid ICP
[4], [5]. Rigid ICP makes point pairs from two different
views and finds transformation by minimizing the distances
of corresponding pairs. Since static objects do not differ in
their shape, initial alignment of source and target matters for
registration. Izadi et al. [5] propose the KinectFusion which
provides a 3D reconstruction of a static scene by moving a
Kinect sensor around with ICP based tracking. Hernandez
et al. [4] propose a method that multiple depth frames are
registered and integrated to generate a near scan 3D quality
face model using rigid ICP registration. But these approaches
cannot apply to non-rigid shape and need a subject to stay
still.

Dynamic objects. There are several proposed methods to
reconstruct a 3D model in a dynamic environment [7]-[9].
Izadi et al. [7] propose a method that reconstructs a static
background by removing a moving object. It uses dense ICP
tracking to detect the moving object. But, it cannot deal with
continuous moving. Li er al. [9] present a system where a
user can scan themselves by rotating in front of a depth

camera with the same posture. The system uses global non-
rigid registration method that can handle tiny movements.
However, large deformation of movement causes registration
to fail. Newcombe et al. [8] present a SLAM system which
extends KinectFusion. The system reconstructs an object with
a wide range of moving and scenes by non-rigidly deforming
scenes. However, it is limited to a scene with slow moving and
it is hard to reconstruct a motion that moves from a closed to
open topology.

2D Expression fitting method: Traditional expression anal-
ysis methods focus on pixel value information extracted from
an image of a frontal face. Recently, 3D models have been
adopted to help analyze expressions in non-frontal faces. Chu
et al. [10] use extended 3D Morphable Models (3DMM)
with expression variations proposed by Blanz ef al. [11] to
estimate facial expressions in a still image and normalize the
expressions using an image warping technique for 2D face
recognition. The system minimizes the projection error be-
tween an image and parameterized 3D face model projection.
Such optimization technique is known to be computationally
expensive. In addition to 3DMM, Blendshape [12], a computer
animation technique used to construct desired 3D models
using a combination of different basis shapes, has also been
adopted. Cao et al. [13] shows an expression regressor for
videos using a tensor of identity and expression blendshapes.
The expression regressor pioneered in using blendshapes to
track facial expression in 2D. The system, however, requires
multiple frames to stabilize expression tracking.

Expression deformation method: There are several proposed
methods to deform face expression [14]-[16]. Lu et al. [14]
get synthesized deformations by learning from control groups
where each subject made 7 different expressions in order to
make a deformable model. Then, they fit the deformable model
to a given test scan 3D model. Al-Osaimi et al. [16] use a
PCA for modeling the expression deformation and obtain a
generic expression deformation model trained by PCA with
pairs of non-neutral with neutral scans of people. Mpiperis
et al. [15] propose a method to use a bilinear model for
jointly addressing a 3D face and facial expressions. They
can produce a neutralized face by manipulating expression
control parameters in the bilinear model. There are also other
deformation methods of non-neutral 3D face model. Most of
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the methods have an assumption that accurate 3D non-neutral
face models are acquired. But, in the presence of dynamic
expression changes, it is hard to reconstruct any non-neutral
3D face model. Therefore, we focus on generating an accurate
neutral 3D face model from dynamic expression changes even
when there is no neutral face at all.

III. PROPOSED METHOD

We take a sequence of RGB-D frames from a low-cost
depth camera, PrimeSense [17], and reconstruct a neutral 3D
face model. We detect a face and 2D facial landmarks using
dlib library [18] from an RGB frame. In order to estimate
the deformation of an input face, we fit the coefficients of
the blendshapes using the 2D facial landmarks and compute
the expression deformity (expression score). We extract a point
cloud within the face bounding box of the corresponding depth
frame and neutralize it depending on the expression score. At
the end of the video, we rank all point clouds with increasing
order of the expression scores and register the point clouds
sequentially to generate a single neutral 3D face model.

A. Face detection, 2D facial landmark detection, and segmen-
tation

We first use the dlib [18] module to detect a face bounding
box and 68 2D facial landmarks from each RGB frame.
The dlib face detector uses a histogram of oriented gradients
(HOG) [19] for training and a method of an ensemble regres-
sion trees [20]. We then segment a face region more precise
using the 2D facial landmarks and convert the corresponding
depth frame to a point cloud.

B. Face deformation estimation

Fitting expression: We estimate how much a face deforms
from its neutral state by fitting n expression blendshapes,
represented by B € R3™ X" to m inferred 3D facial landmark
points x € R3™*! We obtain 3D expression coefficients
w € R"™ by solving a simple linear equation

w = argmin ||Bw — x]||. (1)
w

To obtain inferred 3D landmark points x, we first estimate
the 3D head pose by solving for the camera matrix using
the corresponding rigid 2D and 3D landmark points. Then
we revert project our detected 2D landmark points onto our
pose-aligned 3D model to obtain revert-projected 3D landmark
points.

Compute expression score: We simply compute L2-norm of
w to measure the face deformity. The larger the expression is
(e.g., big open mouth) the higher ||w||2 will be.

Generate deformed generic 3D model: To generate a
deformed 3D face X given expression coefficients W, we
multiply W back to our full blendshape basis By, that
contains all vertices of the generic model

X =Brauw. 2

C. Neutralization

If a computed expression score, ||[W||2, is above a threshold
(e.g., 0.35), we consider the input expression as a non-neutral
expression and neutralize the corresponding point cloud. Fig.
1 shows an overview of the neutralization method. After
we produce a deformed generic face from an input face,
we register the deformed generic face with the input face
by finding a 3D similarity transformation matrix. Then we
calculate displacement vectors from the deformed generic face
to the the neutral generic face. We apply the displacement
vectors to the input point cloud of the face to neutralize the
point cloud.

Registering a deformed generic face with an input face:
The point cloud of an input face and the point cloud of
the deformed generic face differ in 3D shape, number of
points, and scale. We first find the 3D similarity transformation
between two point clouds using the corresponding 3D facial
landmarks of the input face and the deformed generic face.
Since the detected boundary points can be inaccurate with
a low-cost depth camera, we exclude landmarks of a jaw
in order to get a more reliable transformation matrix. We

use 51 facial landmark points from the input face {y'"“'}

. (2
generic

and the deformed generic face {y; }. The similarity

K3
transformation matrix [¢, R, t] , computed as

51
&, R, t] = argmin » _[ly;"""" — cRy{"""* —t|3, (3)
¢ i=1

where c is a scale factor, R is a 3 x 3 rotation matrix, and t is a
3 x 1 translation vector. We use the SVD [21] algorithm to get
R,t with varying scale c. We apply the estimated similarity
transformation matrix to the generic face model, as shown in
Fig. 3.

Finding displacement vectors: The generic 3D face model
is a point cloud which consists of n number of 3D points (e.g.,
n = 3440). A displacement vector is a translation vector from
a point of the deformed model to the corresponding point of
the neutral generic face, as shown in Fig. 4. In our experiments,
we compute 3440 displacement vectors from all 3440 points.

Applying displacement vectors: After we align the input
face with the deformed generic face, we find the nearest point
from a point of the input to the point of the deformed generic
in order to get a corresponding displacement vector. For every
point in the input face, we find a corresponding displacement
vector and apply it to the point of the input face.

D. Ranking frames

After estimating expression scores from all frames, we rank
all facial point clouds of the frames in an RGB-D video. A
low score corresponds to a more neutral face. We sort the list
of point clouds in order of closeness to a neutral face. This
method changes the order of frames in the RGB-D video. This
method makes the 3D face modeling system independent of
the order of frames.
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E. ICP registration and rejection

To aggregate multiple facial point clouds, we use only
neutral or neutralized faces instead of raw non-neutral faces.
We start with the point cloud which has the lowest expression
score in a video and register point clouds in increasing
order of the expression scores. We use the rigid ICP method
which iteratively computes a rigid transformation (rotations
and translations) that minimizes the difference between the
point clouds. We use the rejection strategy, described in [4],
where we reject a frame if the difference between a previously
reconstructed 3D model and the input is too large. We calculate
the difference by averaging of the pixel-wise Euclidean dis-
tances. Because of the rejection strategy, making an accurate
reconstructed model in an initial stage is more important. As
the model becomes more accurate, a noisy input point cloud is
more likely to be rejected. In other words, a poor registration
in an initial stage is less likely to reject a noisy input point
cloud.

IV. EXPERIMENTAL RESULTS

We have compared our 3D face modeling result with the
state of the art 3D face modeling method (baseline) [4] on an
RGB-D database containing large expression changes.

A. Data

We used a fixed PrimeSense camera [17], and set its
resolution 640x480. From 10 subjects, we recorded 10 videos
which consist of neutral and expression parts. The neutral
part contains a sequence of person’s neutral faces in order
to make a reference face model. The expression part contains
a sequence of expression changes where a person opens the
mouth at a maximum, closes the mouth again, and repeats
this expression changes for 4 times. We intended to include
exaggerated expressions in this database.

B. Qualitative analysis

We first set reference 3D face models (Fig. 5 (a)) recon-
structed with only neutral faces. We then reconstructed 3D face
models using the baseline method (Fig. 5 (b)) and the proposed
method (Fig. 5 (c)) in the presence of expression changes, as
shown in Fig. 5. We generated heat maps of the reconstructed
3D face models with respect to the corresponding reference
models. In Fig. 5 (b), a region around the mouth shows
distorted reconstruction results due to the expression changes.
However, the results from our method (Fig. 5 (c)) show better
results compared with the baseline method [4]. Note that a
region around the mouth in the proposed method is more
similar to the reference.

C. Quantitative analysis

To compare the qualities of reconstruction results of our
method with the baseline method, we measure the similarities
between the reconstructed 3D face models and the references
as shown in Fig. 6. We use the 3D matching distance metric for
face identification proposed by Min ef al. [22]. As described
in [22], we exclude unstable features (e.g. hair), register a
reference with an input face using ICP, segment facial regions
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Fig. 6. 3D matching distances between a reference with only neutral faces
and a 3D face model with expression changes from 10 subjects.

for different weighting, and measure a distance between the
two faces. Even though the weight for a region around a
mouth is the smallest, all of the distances from the proposed
method are smaller than those of the baseline method. It
means that the proposed method worked well in the presence
of expression changes. The proposed method outperforms
Hernandez method for the 10 subjects.

D. Further analysis of the proposed method

Since the proposed method uses both the ranking method
and neutralization method, we show the effectiveness of these
two methods in this section.

Ranking frames method: We use two videos. The first video
consists of 30 frames neutral faces and the expression changes.
The second video consists of the expression changes and 30
frames neutral faces. Due to the rejection strategy (Sec. III. E),
if we can gather enough neutral faces before the expression

Video Sequence ‘ Neutral faces ‘ Expression changes ‘ ‘ Neutral faces | Expression changes
.7 St
(a) Baseline [4] \\ a
s

r@
\/

Fig. 7. 3D face model results with the two video sequences. (a) uses baseline
method [4]. (b) uses ranking frames method.

(b) Ranking frames
only

changes, adding non-neutral faces do not change a 3D face
model significantly (Fig. 7(a) left). Otherwise, adding non-
neutral faces may deform the 3D face model seriously (Fig.
7(a) right). Ranking frames method selects neutral faces during
expression changes and make the neutral faces be registered
first. In this way, ranking frames method makes the system
independent of the order of frames. As a result, ranking frames
method generates a good quality of 3D face model in any order
of frames (Fig. 7(b)).

Neutralization method: We use a video where there are only
16 frames of expression changes and no neutral faces. Since
neutral faces do not exist in the video, ranking frames method
may also fail to reconstruct a 3D face model (Fig. 8(a)). For
the case of this failure, we need to neutralize non-neutral faces.
Although neutralization method cannot generate the same as
a real neutral input face, it still makes better neutral 3D
face models (Fig. 8(b)). In short, both ranking frames and
neutralization method are complementary to each other.

In order to compare improvements of each method, we mea-
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Fig. 8. 3D face results for (a) only ranking frame method and (b) the proposed
method from a video where there are no neutral faces.
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Fig. 9. Comparison of the mean of 3D matching distances from each method
with 10 subjects

sured each method’s mean distances of 3D matching distances
between a reference and 3D face models using each method
with the expression changes in the 10 videos (Sec. IV. A).
Fig. 9 shows mean distances from each method. In Fig. 9, the
proposed method shows the best performances. Neutralization
and ranking method also generated better results than that of
the baseline method.

V. CONCLUSION

We propose a neutral 3D face modeling system in the
presence of expression changes for non-cooperative subjects.
We estimate the subject’s expressions and compute the expres-
sion score for each frame. Based on the estimated expression
scores, we rank frames and neutralize non-neutral faces before
registrations. Our method generates visually and quantitatively
better 3D face models compared to the state of the art
method [4]. Although we focus on generating neutral 3D face
models, our method can be applied to generate a 3D face
model with specific expression in the presence of expression
changes.

ACKNOWLEDGMENTS

This research is funded in part by the IT R&D program
of MOTIE/KEIT (10041610, The development of automatic
user information extraction and recognition technology based
on perception sensor network under real environment for
intelligent robot).

(1]
(2]

3

—_

(4]

[5]

(6]

[7

—

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

2368

REFERENCES

J. Smisek, M. Jancosek, and T. Pajdla, “3d with kinect,” in Consumer
Depth Cameras for Computer Vision. Springer, 2013, pp. 3-25.

P. J. Besl and N. D. McKay, “Method for registration of 3-d shapes,” in
Robotics-DL tentative. International Society for Optics and Photonics,
1992, pp. 586-606.

U. Castellani and A. Bartoli, “3d shape registration,” in 3D Imaging,
Analysis and Applications. Springer, 2012, pp. 221-264.

M. Hernandez, J. Choi, and G. Medioni, “Near laser-scan quality 3-d
face reconstruction from a low-quality depth stream,” Image and Vision
Computing, vol. 36, pp. 61-69, 2015.

S. Izadi, R. A. Newcombe, D. Kim, O. Hilliges, D. Molyneaux,
S. Hodges, P. Kohli, J. Shotton, A. J. Davison, and A. Fitzgibbon,
“Kinectfusion: real-time dynamic 3d surface reconstruction and inter-
action,” in ACM SIGGRAPH 2011 Talks. ACM, 2011, p. 23.

P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “Rgb-d mapping:
Using kinect-style depth cameras for dense 3d modeling of indoor
environments,” The International Journal of Robotics Research, vol. 31,
no. 5, pp. 647-663, 2012.

S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli,
J. Shotton, S. Hodges, D. Freeman, A. Davison et al., “Kinectfusion:
real-time 3d reconstruction and interaction using a moving depth cam-
era,” in Proceedings of the 24th annual ACM symposium on User
interface software and technology. ACM, 2011, pp. 559-568.

R. A. Newcombe, D. Fox, and S. M. Seitz, “Dynamicfusion: Recon-
struction and tracking of non-rigid scenes in real-time,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2015, pp. 343-352.

H. Li, E. Vouga, A. Gudym, L. Luo, J. T. Barron, and G. Gusev, “3d
self-portraits,” ACM Transactions on Graphics (TOG), vol. 32, no. 6, p.
187, 2013.

B. Chu, S. Romdhani, and L. Chen, “3d-aided face recognition robust
to expression and pose variations,” in Proceedings of the 2014 IEEE
Conference on Computer Vision and Pattern Recognition, ser. CVPR
’14. Washington, DC, USA: IEEE Computer Society, 2014, pp. 1907—
1914. [Online]. Available: http://dx.doi.org/10.1109/CVPR.2014.245

V. Blanz, C. Basso, T. Poggio, and T. Vetter, “Reanimating Faces in
Images and Video,” Computer Graphics Forum, 2003.

J. P. Lewis, K. Anjyo, T. Rhee, M. Zhang, F. Pighin, and Z. Deng,
“Practice and Theory of Blendshape Facial Models,” in Eurographics
2014 - State of the Art Reports, S. Lefebvre and M. Spagnuolo, Eds.
The Eurographics Association, 2014.

C. Cao, Q. Hou, and K. Zhou, “Displaced dynamic expression
regression for real-time facial tracking and animation,” ACM Trans.
Graph., vol. 33, no. 4, pp. 43:1-43:10, Jul. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2601097.2601204

X. Lu and A. K. Jain, “Deformation modeling for robust 3d face match-
ing,” Pattern Analysis and Machine Intelligence, IEEE Transactions on,
vol. 30, no. 8, pp. 1346-1357, 2008.

I. Mpiperis, S. Malassiotis, and M. G. Strintzis, “Bilinear models for
3-d face and facial expression recognition,” Information Forensics and
Security, IEEE Transactions on, vol. 3, no. 3, pp. 498-511, 2008.

F. Al-Osaimi, M. Bennamoun, and A. Mian, “An expression deformation
approach to non-rigid 3d face recognition,” International Journal of
Computer Vision, vol. 81, no. 3, pp. 302-316, 2009.
Primesense camera. [Online].
https://en.wikipedia.org/wiki/PrimeSense

Dlib, c++ open source library. [Online]. Available: http://dlib.net/

N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on, vol. 1. 1EEE, 2005, pp.
886-893.

V. Kazemi and J. Sullivan, “One millisecond face alignment with an
ensemble of regression trees,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2014, pp. 1867-1874.
K. S. Arun, T. S. Huang, and S. D. Blostein, “Least-squares fitting of
two 3-d point sets,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, no. 5, pp. 698-700, 1987.

R. Min, J. Choi, G. Medioni, and J.-L. Dugelay, “Real-time 3d face
identification from a depth camera,” in Pattern Recognition (ICPR), 2012
21st International Conference on. 1EEE, 2012, pp. 1739-1742.

Available:



