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Abstract—We propose a novel method for the recognition of
objects that match a given 3D model in large-scale scene point
clouds captured in indoor environments with a laser range finder.
Since large-scale indoor point clouds are greatly damaged by
noise such as clutter, occlusion, hole, and measurement errors,
it is difficult to exactly identify local correspondences between
points in a target model point cloud and points in a scene point
cloud, based on similarities between local descriptors computed
at keypoints on both point clouds. To avoid such a problem,
we suggest to utilize sliding window in order to match the
input model and pieces of scene point clouds, both of which are
represented with Bag-of-Features(BoF). A BoF representation of a
window is efficiently calculated by using the integral image, which
stores accumulated BoF vectors. Though BoF is robust to partial
noises, it does not preserve any spatial information. Then, we
propose a method to make a global descriptor of a window which
is almost invariant to horizontal rotations of an object inside the
divided window and roughly preserves spatial information by
dividing sliding window into several parts. Experiments on real
world data show that our approach offers better performance
than a baseline method in terms of precision and recall.

I. INTRODUCTION

Recent advances in laser range finders makes it easier
to capture 3D large-scale point clouds in extensive indoor
environments. Annotations to large-scale scene point clouds
captured in buildings about where and what kind of objects
there are would help robots move by themselves and conduct
tasks that involve search and interaction with objects. In this
work, in order to make such indoor environmental maps, we
propose a method that detects input models in large-scale scene
point clouds.

The task of 3D object recognition from unorganized point
clouds has been studied widely for a long time. Previous works
can be roughly divided into two types as follows. The first
estimates 6Degree-of-Freedom poses of given specific models
in environmental scenes( [1], [4], [8], [9], [14], [16], [26],
[27]). The other segments potential objects from scene and
classifies them into target categories( [6], [7], [18], [19]).

In works of the first type, models are usually not contami-
nated by noises so that it is easy to describe and exactly match
their local shapes around detected keypoints with local descrip-
tors. In this case, correspondence between models and scenes
is calculated based on similarities of local descriptors. Then,
translations and rotations of the input models are estimated
from point-to-point matchings by methods such as RANSAC
[16], Geometric Consistency [3] or Hough voting [27]. How-
ever, large-scale indoor point clouds, which we consider in
this work, contain much noise such as clutter, occlusions,
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Fig. 1. Outline of the proposed method. Our method takes a model point
cloud and a scene point cloud, and outputs positions of the input model in the
form of bounding boxes.

holes, and measurement error. Since this noise obscures the
details of object shape, it is hard to estimate accurate normals
at all points in the cloud. Furthermore, erroneous normals
degrade local descriptors and local reference frames, which
utilize normals to describe shape information and make it
difficult to obtain the exact point-to-point matches essential
for pose estimation. Therefore, recognition methods based on
local shape matching tends to fail in large-scale point clouds.

Methods of the second type cut out individual objects from
a scene point cloud at first and classify them with classifiers
obtained by supervised training with manually labeled data.
In order to segment objects from a background, a clustering
method like SuperVoxels [17] or plane removal by RANSAC
[22] is utilized. If the scene is simple like a table-top scene,
it is easy to segment those pieces of the point cloud that
represent objects from the scene. However, in general, 3D
object segmentation is itself a hard task in complex and noisy
scenes. Furthermore, unlike the case of 2D image data, it is
not easy to construct 3D training data even if it is small in
size. It is necessary to rotate the point cloud many times,
carefully divide the point cloud into individual objects, and
annotate these objects.In addition, if the input scene changes,
it is necessary to make training data and train new classifiers
for a new scene in order to avoid degradation in recognition
performance.

Then, we propose to represent the model and pieces of the
scene point cloud with BoF and calculate their similarities by
the sliding window technique. Since BoF is robust to partial
noises or lack of information and does not require exact match
of local descriptors, it is a suitable feature representation for
noisy point clouds. Though Spatial Pyramid Matching(SPM)
[10] is a popular method to incorporate spatial information into
BoF representation, inappropriate partitioning of the sliding
window deprive the global description of rotational invariance
to object inside the window. Then, we introduce a novel
partitioning method, which keeps the global description com-



putationally efficient and almost invariant to rotation of objects
included in the window. BoFs of pieces of the scene point
cloud can be computed efficiently with the integral image that
stores precomputed sum of BoF vectors. In order to avoid the
tedious task of making training data, our approach is requires
only a target model point cloud, which is cropped from a
scene point cloud, and recognize the target objects in the scene
based on the similarity of BoF. Although this strategy requires
target model segmentation from the scene, it is not necessary
to gather training data, to train classifiers, and to segment
individual objects from a scene point cloud.

II. RELATED WORKS

Many 3D object recognition approaches based on local
shape similarities have been proposed. These approaches
establish correspondence between interesting points on the
model and counterparts in the scene via similarities of local
descriptors. Geometric Consistency [3] makes clusters of geo-
metrically consistent point-to-point matches and estimates the
translation and rotation of the model based on the clustered
correspondences. 3D Hough voting [27] estimates positions
of a reference point defined in the model using relative
position between the reference point and interesting points
on the model. It has been shown that these methods work
well on small-scale and clean datasets [14]. However, large-
scale indoor point clouds differ from these datasets in that
the former are generally damaged by a lot of noise. Since
3D local descriptors are sensitive to subtle deformation of
point clouds, it is difficult to estimate correct point-to-point
correspondences between the model and the scene, making
pose estimation based on local shape matching fail. In this
work, in order to avoid such difficulties and recognize objects
precisely, we propose to utilize local shape information not in
the form of raw descriptor, but in the form of a global shape
feature such as BoF, which is known to be robust to loss of
partial information due to noise such as holes and occlusion.
Although we use BOF in this work, it is possible to use other
coding methods such as Locality-constrained Linear Coding
(LLC) [29]. In our experiments, we show that the proposed
global feature based method performs significantly better than
local similarity based methods.

BoF-based representations have been used to express sep-
arated 3D models in 3D object retrieval. Toldo et al. [25]
proposed a retrieval method that divides 3D models into several
parts by clustering and expresses each part with BoF. Bronstein
et al. [2] introduced (SS-BoF) to represent 3D models, which
incorporates relative positions of local descriptors to sophisti-
cate BoF and to improve retrieval performance. In 3D object
retrieval, 3D models are separated from a scene point cloud
so that BoF-based approaches can be applied straightforwardly.
However, in our case, it is not appropriate to express the whole
scene point cloud with a single BoF vector, which contains
many 3D objects. Therefore, we compute BoF from local
descriptors of a part of the scene and compare it with the
BoF of the model. In order to calculate BoF representations
and similarities, we combine the sliding window approach and
integral image. Integral image is utilized in face detection [28]
from images and enables the efficient calculation of feature
values. Utilizing integral image which stores accumulated BoF
vectors, this work efficiently computes BoF representations
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and similarities of BoF vectors between the input model and
a part of the large scene.

Pang and Neumann [15] proposed a method with sliding
window for object recognition in a large-scale point cloud.
They discretize the point cloud with regular grids and trans-
form the cloud into 3D images. After preprocessing, they
train weak classifiers via Adaboost training, which selects
characteristic shapes of target objects. With trained weak
classifiers and integral image calculated for the voxelized
scene, they succeeded in recognizing various instruments in a
large-scale point cloud captured in an industrial plant without
segmentation of them from a background point cloud. An
important difference between our method and their method
is that no training procedure other than codebook learning for
BoF is needed. While they utilize Haar-like features learned
from training data, we use existing local descriptors and BoF
to represent 3D objects. Accordingly, in our approach, it is
possible to choose and incorporate local descriptors off the
shelf into our approach according to characteristics of the
model and the scene.

In the RGBD image domain, Sliding Shape [24] has
been proposed for object detection. Song et al. showed how
to train Exemplar-SVMs [13] for each object and achieved
performance superior to other methods. In order to cope with
pose variances of target objects, their method requires training
of many Exemplar-SVMs, each of which accounts for the same
object in a different pose. However, our method represents
objects inside sliding window with rotationally invariant global
descriptor, it is sufficient to scan the scene with a single
window adjusted to suit the size of the model.

Many kinds of local descriptors for the description of 3D
shapes of point clouds have been proposed. For example, Spin
Image [8], SHOT [26], and Fast Point Feature Histograms
(FPFH) [20] are widely used. FPFH and SHOT use the
distribution of normals around a point of interest to describe
3D shape information. These are implemented in Point Cloud
Library (PCL) [21]. In this work, we use FPFH of PCL as a
local descriptor of BoF.

III. PROPOSED METHOD

In this section, we detail the proposed approach. Our
method is mainly composed of two parts. One is preprocessing
of the scene point cloud, which includes unsupervised training
of a codebook and computation of a 3D integral image. We
compute 3D interal image over the 3D space discritized as
voxels for fast computation of global description of the sliding
window. The other is recognition of a target model by using
the sliding window approach to match the model to parts of
the scene point cloud. Precomputed 3D integral image enables
efficient comparison of the model and pieces of the scene point
cloud.

A. 3D Integral Image with BoF

Fig.1 shows an overview of our recognition pipeline. Our
approach takes a target model point cloud and a scene point
cloud, which contains the target model. We assume that these
point clouds are upright. At first, we construct a codebook
in order to represent the model with BoF. Local descriptors
are computed at interesting points sampled from the scene
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Fig. 2. Screen shots of point clouds of the lecture hall(a,b) and the entrance hall(c,d).

point cloud. The codebook consists of centroids of clusters
of local descriptors. We utilize the k-means algorithm to make
clusters from local descriptors. After training the codebook,
we assign each local descriptor to the nearest codeword and
quantize them. Similarly, we detect keypoints on the model,
compute local descriptors associated with them, and get BoF
representation of the model by quantizing and aggregating
these descriptors.

Next, as a preprocessing step for scanning the scene with
a sliding window, we divide the scene point cloud into voxels
defined by regular grids, which are cubes with side length L.
For each voxel we compute a BoF vector from the quantized
local descriptors inside it. We define N, as follows,

N, = ceil (—xm‘” — x””") : 1)
L

where ceil() is the ceiling function, and 4, and Z,,;,, are the
maximum and minimum z coordinates of points in the scene.
N, and N are defined for y and z coordinates similarly. Then,
we make integral image I on the voxels. Let V (4, j, k) be a set
of coded local descriptors included in a voxel corresponding
to a cube defined as,

{(z,y,2) € R3 | (i—1)L <2 — Zpmin <iL,
(k—1)L < z— zpmin < kL}.
Then, I is calculated as follows,

IG5, k)= )

i<, §'<g, K<k

V(' k) 2

Integral image I makes it possible to efficiently compute BoF
vector F'(S), which represents a feature vector for that piece
of the point cloud contained in rectangular S defined by two
points (uy,v1,w;) and (ug, vy, we) as follows,

F(Ul,vl,U)hUQ,UQ,’LUQ) - I(UQ,’UQ,U}Q) - I(UQ,UQ,U)l)
- I(u27v13w2) - I(u17v23w2)
+ I(ul,vl,wg) + I(Ul,’l)g,wl)

+ I(ug,v1,wy) — I(ug,vi,wr).

B. Matching Model and Scene with Sliding Window

The size of sliding window is decided according to the
extent of the model. Given each voxel has side length of L,
we define M, M, and M, for the model in the same way
as N, N, and N, for the scene. In addition, let M be the
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larger one of M, and M,. Then, we scan integral image [
with sliding window of size of M x M x M, and compute the
similarity between the model and the piece of the scene point
cloud contained in the sliding window. Since we assume both
the model and the scene are upright, rotations of each object
are assumed to be horizontal ones. Therefore, it is sufficient for
description of the sliding window to be invariant to horizontal
rotations.

Then, inspired by success of SPM, we propose to incor-
porate rough spatial information about distribution of local
descriptors within sliding window by partitioning the window
into several subwindows. If we divide the window in an
inappropriate way, a global descriptor constructed from BoFs
computed from subwindows loses invariance to horizontal
rotations of an object inside the window. For example, if we
divide the window depicted in Fig.3c and an object centered
in the window rotates, parts of the object contained in each
subwindow change. As a result, both BoFs computed from
subwindows and a global descriptor of the window change.
Therefore, it is important to partition the window in the way
which keeps a global description of the window invariant
to rotations. Then, we proposed to divide the window by
horizontal planes orthogonal to z-axis and upright rectangular
tubes placed at the center of the window(see, Fig.3b). We call
division by plane horizontal division(HD) and division by rect-
angular tubes vertical division(VD) below. By partitioning the
window in such a way, even if an object centered in the window
rotates, parts of the object contained in each subwindow almost
unchange. As a result, the global description of the window
also almost unchanges. In addition, BoFs of all subwindows
can be computed efficiently with the precomputed integral
image because volume of each subwindow can be calculated
via subtraction of rectangles(Fig.4). Although this is a simple
method, we show that it improves recognition performance
significantly in our experiments.

‘We normalize each BoF vector computed from subwindows
by their L2 norms and use cosine similarity as a similarity
function between global descriptors. Since we expand the
sliding window, outer tube-like regions created by VD tend
to contain local descriptors irrelevant to the centered object.
Therefore, we halve similarity scores calculated from vectors
of outer regions. Let f;; and f;5 be BoF vectors computed from
two inner boxes of the window, and f,; and f,, be BoF vectors
from two outer tube-like regions of the window. Similarly,
let m;;,m;s,m,;,and m,o be BoFs from subwindows defined
over the input target model. Then, a similarity score sim
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Fig. 3. (a)A sliding window expanded according to the size of the target
model. (b)An expanded sliding window with horizontal division(HD) and
vertical division(VD). We propose to compute four BoF representations, two
from inner boxes and two from outer tube-like regions. (c)An example of
partitioning of a sliding window that is not invariant to rotation of an object
inside the window.
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Fig. 4. An example of computation of BoFs for each subwindow. BoF
of the inner box is calculated as F'(ui,vi), which is computed with the
integral image straightforward. BoF of the outer tube-like region is computed
as F'(uz,ve2) — F(ug, vy).

between the model and the sliding window is defined as
follows,

1
stim(f, m) = il'mi1+fi2'mi2+§(fol'mol+fo2'm02)~ 3)

After applying the sliding window, we takes as object
candidates the windows whose similarity score with the model
exceeds a threshold and its score is a local maximum relative
to scores of neighboring windows. Since it is often the case
that candidate detections overlap each other, we eliminate these
overlapping boxes by Non Maximal Suppression (NMS) [5].
If the overlap ratio of bounding boxes B1 and B2 exceeds r
and similarity score S1 of Bl is greater than S2 of B2, B2
is discarded. We set the value of r to 0.5 in our experiments.
Our method regards the remaining object candidates as the
final results and outputs them in the form of bounding boxes.

IV. EXPERIMENTS

In order to evaluate our proposed approach, we conduct
experiments on real data captured in two indoor environments.
In this section, we describe the data and experimental settings
at first. Then, we show the results of object recognition.

A. Datasets

In our evaluation experiments, we utilized two point clouds:
One is obtained in an entrance hall, the other in a lecture
hall. We call the former entrance and the latter lecture hall
below. Fig.2 shows screenshots of these point clouds. Since
these point clouds are upright, the z axes in those point clouds
are orthogonal to the ground. We use these two point clouds
as input scenes in our experiments.
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Fig. 5. Input models used in our experiments(left: chair, right: gate). It can
be seen that both of the models are damaged by heavy noises.

Both the entrance hall and the lecture hall are made of
stitched point clouds captured from different positions with a
laser range finder. After composition from several shots, both
point clouds are downsampled for postprocessing. We extract
the chair and the gate shown in Fig.5 and use them as input
models in our experiment.

The size of the lecture hall is 24.1 m x 16.7 m x 1.6
m and the number of points is about 71.6 million. This point
cloud includes 270 chairs such as shown in the left of Fig.5.
We selected one chair from this cloud as the input model in
experiments with this cloud. The lecture contains only one
room so that its structure is simpler than that of the entrance.

The size of the entrance is 52.4 m x 43.8 m x 3.5 m and
the number of points is about 50.5 million. This point cloud
includes 7 gates as shown in the right of Fig.5. We selected one
gate from this cloud as the input model in experiments with
this cloud. Although there are fewer points than the lecture
hall, the entrance contains several spaces and heavy noise on
surfaces so object recognition is harder in the entrance.

B. Experimental Setup

We conducted our experiments in two situations. One takes
the chair in Fig.2 as the model and the entrance as the scene.
The other takes the gate in Fig.2 as the model and the lecture
hall as the scene.

We estimate normal vectors of all points of each input
cloud with Moving Least Squares (MLS) [11] and adopt FPFH
for local shape description. FPFH expresses a local shape as
a 33-dimensional vector based on a distribution of directions
of normal vector around a keypoint. To compute FPFH, we
use normals within a sphere with a radius of 2 cm centered
at a keypoint. We densely sample interesting points at regular
intervals of 2 cm on the input cloud instead of using keypoint
detectors. We set the regular grid spacing for voxelization at
10 cm for the entrance and 5 cm for the lecture hall.

To investigate the effect of codebook size on recognition
performance, we set the number of codewords to 32, 64, 128,
and 256. We use implementations of MLS, FPFH, nearest
neighbor search via kd-tree in PCL.

We measure performance by precision and recall. We
consider bounding boxes that overlap the target object by more
50% as correct bounding boxes. As a baseline method, we
used 3D Hough voting with SHOT descriptor implemented
in PCL. SHOT descriptors are computed at densely sampled
keypoints at the same interval as that in the proposed method.



The number of keypoints extracted from the chair is about
two thousand, and from the gate about 30 thousand. We
used the method proposed by Lowe [12] in order to get
local correspondences, which associates keypoints based on
the distance ratio of the two local descriptors nearest to the

query.

C. Results

At first, we examined the effect of codebook size when
partitioning of sliding window was fixed. Fig.7a and Fig.7b
show the precision-recall curves of the detection results for
each point cloud with the sliding window with HD and VD.
These results indicate that codebook size used for coding
pieces of point clouds into BoF does not have significant
influence on recognition performance. For object recognition
in images, it is known that codebook size and quantization
error of local descriptors significantly influences recognition
performance [10]. However, in 3D data, most local shapes are
planar patches or slightly curved surfaces so the variation in
local patches in 3D point clouds is less than that in 2D images.
Then, in 3D domain, it is not necessary to use large codebooks.

Next, we examined effectiveness of division of sliding
window. In this experiment, we set the size of codebook 128
according to the result of the first experiment and compare
performances of a ordinary sliding window without any parti-
tioning(Fig.3a), window only with HD, window only with VD,
and window with HD and VD(Fig.3b). Fig.8a and Fig.8b show
the experimental results. From these figures, our proposed
partitioning method improves recognition performance in both
scene point clouds. Especially from the result in the lecture
hall, it can be seen that recognition performance is boosted by
combining HD and VD.

Table I and II compare our method with the baseline
method based on the best F1-measures. This comparison shows
that the proposed method works better than the baseline. In
addition, the difference between the methods is especially
significant in the lecture hall, in which the number of target
objects is large and these objects touch each other. Although
our method takes into account only horitonzal rotations unlike
3D Hough voting, it does not seem to be problematic in out
experiments. In addition, since our method utilizes BoF, which
does not depend on exact matches required in Hough voting,
we succeeded to recognize objects in large-scale noisy point
clouds.

Fig.6 shows examples of true positive detections and false
positive detections. From Fig.6b, it can be seen that our method
failed detection in the case where target objects spatially
concentrated. It is because our global descriptor does not
incorporate spatial information of relative positions of object
parts in a subwindow. The false positive detection in Fig.6d is
considered to be due to planar parts of point clouds. Since most
objects contain planar pieces as their parts, planar pieces exist
everywhere in scene point clouds. Then if a part of scene point
clouds include many planar patches, it yields higher similarity
scores rather than the other parts because the chair and the gate
also have many planar patches as their parts. To avoid such a
case of false detections, it seems to be effective to utilize finer
spatial context information such as relative positions of local
patches or cooccurence of visual words.
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TABLE 1L PERFORMANCE INDICES IN LECTURE HALL

Lecture Hall

Precision Recall Fl-measure
Hough [27] 0.232 0.048 0.080
Proposed 0.806 0.844 0.825

TABLE II. PERFORMANCE INDICES IN ENTRANCE
Entrance

Precision Recall Fl-measure
Hough [27] 0.182 0.285 0.222
Proposed 1.0 0.857 0.923

V. CONCLUSION

In this work, we proposed a novel approach for 3D object
recognition from large-scale indoor point clouds. Our approach
utilizes a sliding window with BoF representation of the
model, which consists of aggregated local information and
is robust to partial noises. We tackled two problems: one is
the repetitive appearance of unhelpful primitive shapes (planar
patches and curved surfaces), the other is the loss of detailed
shape information due to noise such as clutter, occlusions,
holes, and measurement error.

Experiments on large-scale indoor point clouds obtained
in a lecture hall and an entrance hall showed that object
recognition with BoF representation and the sliding window
approach performed better than Hough voting method. In ad-
dition, it has been shown that our sliding window partitioning
method of vertical division and horizon division improves
recognition performance significantly. On the other hand, false
detections indicate that it is necessary to incorporate finer
spatial information such as connectivity of patches or relative
positions of parts of objects.

Although we used the same partitioning method in all
experiment, optimal division of window may differ in many
kinds of object. In future work, we will refine the division of
sliding window.
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