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‡Robotics and Nonlinear Control Research Group, Technical University of Cluj-Napoca, Cluj-Napoca 400019, Romania.
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Abstract—A workflow is proposed for Cultural Heritage appli-
cations in which the fusion of 3D and 2D visual data is required.
Using data acquired by cheap, standard devices, like a 3D scanner
having a low quality 2D camera in it, and a high resolution DSLR
camera, one can produce high quality color calibrated 3D model
for documenting purpose. The proposed processing workflow
combines a novel region based calibration method with an ICP
alignment used for refining the results. It works on 3D data, that
do not necessarily contain intensity information in them, and
2D images of a calibrated camera. These can be acquired with
commercial 3D scanners and color cameras without any special
constraint. In contrast with the typical solutions, the proposed
method is not using any calibration patterns or markers. The
efficiency and robustness of the proposed calibration method has
been confirmed on both synthetic and real data.

I. INTRODUCTION

Recently, as more and more devices are available for arche-
ologists to document important cultural heritage (CH) objects,
the need for effective software solutions is also increasing.
Capturing an object with different modalities giving different
levels of detail, the fusion of these data is inevitable at a given
point. Reviewing recent CH publications we can observe, that
a large variety of devices are used, starting from low cost,
entry level devices, till expensive, high end solutions that
require laboratory conditions for the best possible results. As
these conditions can rarely be ensured on the field, some
compromises have to be made. Most of the works rely on
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either laser or structured light based 3D scanners, or pho-
togrammetry to obtain the 3D model of an object. Though
the latter is widely used, it has some clear disadvantages: a
large number of images has to be captured and the processing
part is time consuming. Thus the results cannot be seen
on the field, it cannot be verified if the necessary level of
details has been captured. In order to overcome this issue,
the authors of [1] have experimented with a mathematical
positioning procedure to reduce the required number of images
captured. Others usually use various software solutions to do
the 3D reconstruction using more images taken from arbitrary
positions [2]. Since most commercial softwares rely on key-
points, problems can occur with objects having little or no
texture at all. In these cases, the best practice is placing
external markers near or on the object, visible on the captured
images. A good example is presented in [3], where geotagged
marker points were used for both photogrammetric and laser
scanning techniques.

Most of the 3D scanners include a built-in RGB camera
capable of recording color information together with the
coordinates for every point, but in most cases, these are poor
quality, low resolution sensors intended primarily to facilitate
registering the scans into a complete 3D color model. As
a result, textured models based on such RGB data are not
satisfactory for most CH documentation applications.

In archaeological CH study 3D modelling has become
a very useful process to obtain indispensable data for
3D documentation and visualization. The purpose of this
work was to provide archeologists belonging to laborato-
ries Archéométrie et Archéeologie (www.arar.mom.fr) and
Archéorient (www.archeorient.mom.fr) with a solution for 3D
reconstruction of ceramics from the eastern Mediterranean
from 3D textured model. For archeologists 3D models of
ceramics or fragments of potteries, including textural details,
represent another way of documenting ceramics next to the
traditional 2-D representations through technical drawings.
Beyond the accuracy of the 3D features such as structural
surfaces and shapes, archeologists are also concerned by the
accuracy of color features, especially color patterns and color
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inclusions. Indeed spatial and color features are important
factors for specialists in ceramics to analyze fragments, make
hypothesis about 3D objects/shapes from sets of fragments,
and in general as educational and research tools.

A possible solution is to fuse high resolution color calibrated
RGB images with the 3D data. The main challenge of such
a fusion is the estimation of the camera’s relative pose to
the reference 3D coordinate system. In the computer vision
community many solutions are available solving this problem
based on: finding point or line correspondences between the
two domains [4], using mutual information [5], and large
number of solutions relying on specific artificial landmarks or
markers [6]. There are also expensive software solutions (e.g.
[7] used Innov Metric Polyworks, [8] used Photomodeler) that
solve this problem. However, these also require good quality
RGB information in the 3D data, hence a pure geometric data
with no RGB information is not enough to solve the fusion.

In contrast, our method works without color information in
the 3D data and uses regions instead of matching key-points,
which can be easier to detect in case of CH objects with
homogeneous surface paintings. One region visible on both
the 2D images and the 3D point cloud is already enough to
solve the pose estimation, but with more regions the method
becomes more robust [9]. In 2D, these regions can be easily
segmented using standard segmentation methods, while in 3D,
they can usually be segmented based on the 3D model’s
surface parameters or based on color information, if it is
available. We show on synthetic benchmarks the performance
of our method, including the robustness against segmentation
errors that can occur in real world situations. We also validate
the method on real data test cases which confirms that with
good quality input data we can achieve high quality results,
as well as moderate errors in the 3D model are well tolerated.

II. FUSION WORKFLOW

Fig. 1. Workflow diagram of the proposed method.

The diagram of the proposed workflow is shown in Fig. 1.
The input consists of a 3D triangulated mesh and a set
of 2D spectral images of the CH object. These images go
through a 4-step processing pipeline in order to obtain a
precise textured 3D model. We assume that the 2D cameras
are color calibrated and their internal projection parameters
are known, furthermore the acquired 3D point cloud has been
preprocessed into a triangulated mesh (this is typically done
by the 3D device’s own software). In the following, we will
present each processing step.

A. Segmentation(2D-3D)

As our method works with regions, we have to segment
a corresponding set of regions both in the 2D images and
3D data. Since every test case is unique, we have to choose
the segmentation method according to the surface properties.
On the 2D images, any standard segmentation method (e.g.
[10]) could be used (in our experiments, we used the Fuzzy
selection tool of the free Gimp software). For the 3D data as
well, we can choose based on the type of data that we have.
When RGB information is available, we can simply use color
based segmentation methods as in 2D. If it is not available,
we can use 3D region growing, like the Minimum Covariance
Determinant based algorithm [11] or interactive graph cut
like [12]. Manual selection can also be used, for example
in our experiments the Z-painting tool of Meshlab has been
used for interactive selection of regions, which works well
regardless of the availability of RGB data. Let us emphasize,
that no matter how many regions we extract from the data, they
only have to correspond as a whole, a pairwise correspondence
is not needed (even the number of regions can be different)!
Hence, given a corresponding set of 2D regions {Di}Ni=i and
3D regions {Fj}Mj=i, they only have to satisfy the following
constraint:

D = PF , with D = ∪N
i=1Di and F = ∪M

j=1Fi (1)

where P is the camera projection matrix (see next Section).

B. Pose estimation

Given a corresponding set of segmented 2D-3D regions D
and F , we propose an extension of our plane-based Lidar-
perspective camera pose estimation algorithm [9] to the data
fusion problem. While the method in [9] was used strictly
on planar regions, we show that the method can be extended
to curved (but smooth) surfaces. This way it can be used
in Cultural Heritage applications, since most of the objects,
ceramics have smooth regions.

Assuming that each of the segmented 3D regions {Fj}Mj=i

are smooth enough (i.e. they satisfy (1)), let us express a
3D point X with its homogeneous world coordinates X =
(X1, X2, X3, 1)

T . The perspective camera sees the same world
point X as a homogeneous point x = (x1, x2, 1)

T in the image
plain obtained by the perspective projection

x = KR[I|t]X (2)

where I is the identity matrix, K is the 3 × 3 upper tri-
angular calibration matrix containing the camera’s intrinsic
parameters, while R and t are the rotation and translation,
respectively, aligning the camera coordinate system with the
world coordinate frame (i.e. the coordinate system of the 3D
points). Since we are using calibrated cameras, K is known,
thus the only unknown parameters are the 6 pose parameters
(3 angles of rotation in R, 3 components of the translation in
t). Therefor the effect of K can be inverted in order to obtain
a camera-independent normalized image

K−1x = R[I|t]X = PX (3)
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Classical solutions would now establish a set of 2D-3D point
matches (e.g. using special calibration targets or markers), and
then solve for R and t via a system of equation based on (3).

However, in many CH applications, it is not always possible
to attach markers to the object’s delicate surface. Furthermore,
the 3D scans and camera images might be acquired at dif-
ferent times, using different lighting conditions for optimal
results. Our pose estimation method, based on the 2D shape
registration approach presented in [9], proposes a solution in
these challenging situations. Since point correspondences are
not available, we cannot use (3) directly. However, individual
point matches can be integrated out [9] yielding the following
integral equation: ∫

D
xdx =

∫
PF

zdz, (4)

where D corresponds to the regions visible in the camera
image and PF is the virtual image of the 3D regions projected
by P. We can clearly see that the above integral equation stays
valid for curved, smooth surfaces as well, as long as D and F
are satisfying (1) (i.e. no self-occlusion of points takes place).
There are 2 issues with the above equation:

1) it corresponds to a system of 2 equations only, which is
clearly not sufficient to solve for all 6 parameters of the
camera pose;

2) the evaluation of the right hand side requires the ex-
plicit projection of the 3D regions F , which might be
computationally expensive.

To resolve 1), observe, that (3) remains valid when a function
ω : R2 → R is acting on both sides of the equation [9]

ω(x) = ω(PX), (5)

and the integral equation of (4) becomes∫
D
ω(x)dx =

∫
PF

ω(z)dz. (6)

Thus adopting a set of nonlinear functions {ωi}ℓi=1, each ωi

generates a new equation yielding a system of ℓ independent
equations. Hence we are able to generate sufficiently many
equations. The R and t parameters of the camera pose are
then simply obtained as the solution of the nonlinear system
of equations (6). In practice, an overdetermined system is
constructed, which is then solved by minimizing the algebraic
error in the least squares sense via a standard Levenberg-
Marquardt algorithm.

To resolve 2), let us choose power functions for ωi

ωi(x) = xni
1 xmi

2 , ni ≤ 3 and mi ≤ 3, (7)

which yields the 2D geometric moments of the projected 3D
region PF , that can be computed efficiently. Since F consists
of triangulated surface patches, their projections is a set F△ of

triangulated planar patches, thus the final form of the equations
becomes∫

D
xni
1 xmi

2 dx =∫
PF

zni
1 zmi

2 dz =
∑

∀△∈F△

∫
△
zni
1 zmi

2 dz. (8)

The integrals over the triangles are various geometric mo-
ments, which can be computed for order (p + q) using the
closed form formula [9], [13]

2

p∑
k=0

q∑
l=0

(−1)k+l
(
p
k

)(
q
l

)
νkl

k + l + 2
z1

p−k
0 z2

q−l
0 (9)

where

νkl =

k∑
i=0

l∑
j=0

(
k
i

)(
l
j

)
k − i+ l − j + 1

(z10 − z11)
i
(z11 − z12)

k−i
(z20 − z21)

j
(z21 − z22)

l−j

(10)

with the notation z1i and z2i, i = 0 . . . 2 being the vertices of
the triangle.

C. ICP refinement

In the previous step, we have obtained a camera pose by
minimizing the algebraic error of the system in (8). Although
this is already a good quality estimate, we can further refine
it by minimizing a relevant geometric error. In the following,
we will show how a standard Iterative Closest Point (ICP) [14]
algorithm can be used, if color information, even if it is of poor
quality, is also available at each 3D point. In our workflow,
ICP is used to align the 3D edge lines’ projection with the
2D edge map (denoted by xe) of the camera image. There are
different approaches to detect edges in a 3D pointcloud based
on geometric properties, but for our purpose, we have to rely
solely on the color information to be able to detect the same
edges as in the 2D image. We have tackled this by simply
projecting the 3D data onto an image with the initial camera
pose using (2), then running Matlab’s edge detection function
on that image, resulting the edge points. The corresponding 3D
points Xe will be the detected 3D edge points. The algorithm
then iteratively projects the 3D Xe edge points using the
current KRn[I|tn] camera matrix, that has only the camera
pose parameters (Rn, tn) changing between iterations, giving
the reprojected edge points ze

n at iteration n:

ze
n = KRn[I|tn]Xe (11)

The ICP algorithm will align this ze
n projection to xe, the

edge map of the 2D image. We can clearly see that ICP will
actually minimize the backprojection error this way.

D. Data fusion

The final step of the workflow is the data fusion itself. Using
the estimated relative pose and the calibration matrix of the
camera, we can project (with (2)) the 3D points onto the 2D
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image. Since these do not necessarily project to exact pixel
coordinates, we can interpolate the neighbouring pixels’ color
to find the best RGB value for every projected point. If we had
multiple 2D input images, then we can fuse all images with the
3D data. For those 3D points, that are visible in more camera
images, we have to decide which camera has the best view of
it. For this purpose, let us calculate the normal vector ni for
each 3D point Xi. In our experiments, we have used Meshlab’s
Compute normals for point sets function, which fits a local
plane to every point’s small neighborhood (10 neighbours).
Then for every point Xi we compute the angle of its normal
ni with the orientation vector cj of each camera’s optical axis
as

cos θ =
cj · ni

∥cj∥∥ni∥
, (12)

and the camera image j with maximal cos θ value is used to
colorize the 3D point Xi. As a result, we get a good quality
textured 3D model of the object. Since the 2D images are
color calibrated, no color shift will appear, no transitions will
be visible between regions that get RGB information from
different images, if we assume a good uniform lighting was
used when capturing the images. For easier examination of the
results, we only used a single camera image for fusion in the
test cases shown in Fig. 6.

III. EVALUATION ON SYNTHETIC DATA

For a quantitative and qualitative evaluation of the proposed
pose estimation algorithm in Section II-B, we have generated
a benchmark set using 16 different shapes (such as in Fig. 2a).
The 3D data was generated by projecting a 2D shape on
a virtual spherical surface (having a Gaussian curvature of
K = 1/r2 = 1/10000). The 2D image of such an object was
captured with a virtual camera having the intrinsic parameters
of a standard 1Mpx camera and a random pose by rotating
it with (−25◦ · · · 25◦) along all three axis and translating it
randomly along all three axis with the maximum possible
translation being equal to the size of the object. A data set
consists of 100 such images.

The results are presented in Fig. 2b - Fig. 2f. To evaluate
the precision of the pose parameters, we backprojected the 3D
points on the image plane, and calculated the percentage of the
non-overlapping area (δ error) between the projection and the
original observation. Ideally these should overlap perfectly, but
experimentally we have found that 5% δ error or lower can be
considered a correct result. We have also calculated the errors
of the 3 rotation angles, and the translation error (see Fig. 2c)
as the distance between reference and estimated position.

Since in real cases both the 2D and 3D regions are affected
by segmentation errors, we have also evaluated the robustness
of our pose estimation method against such errors. For this
purpose we have generated two different data sets: one with
synthetically generated segmentation errors on 3D regions and
another one with the 2D images being corrupted by it. An
example synthetic data pair is shown in Fig. 2a, on top the
3D curved surface is shown, while below two images of the
region, one with 10% simulated segmentation error. As we

can see from the error plots in Fig. 2b - Fig. 2f, the method
is more robust for 2D segmentation errors. The same median
δ error is achieved with 10% 2D segmentation error as with
5% error in the 3D segmentation, but with the 3D case we
see more bad results. This also reflects on the rotation and
translation error plots, while the median values are similar for
the two cases, the number of incorrect results is higher in the
3D case. Nevertheless a median delta error of below 2% in
using only a single curved region, is considered satisfactory.

IV. REAL DATA TEST CASES

We have verified our workflow on different real data test
cases, of which 2 are presented in detail here: one using high
precision data inputs, while the other using more affordable
acquisition solutions.

A. The Chineese warrior test case

The object used for this test case is a small (18 cm
tall) figurine. The 2D images were taken with a calibrated
Nikon D800 DSLR camera having a full frame 36Mpx sensor,
while the 3D data has been produced with a high precision
marker based Structure-from-Motion software solution in strict
laboratory conditions, giving us a perfect reference data in
this case. While usual software solutions use markers or key-
points to produce such fused data, our method uses only the
color images and a raw pointcloud (it doesn’t even has to
include RGB information!). In the first step of our workflow,
we have to segment a few regions in 2D and 3D. Since the
test object has a more complex, rugged surface, we have to
concentrate on the smooth, well defined regions, where self-
occlusion doesn’t occur. Best choice in this case is segmenting
the straps and bands on the clothes, since these are smooth
regions, raised from their neighbors, with clearly visible ends.
In 2D, a region growing segmentation tool was used, while in
3D an interactive selection method in Meshlab was adopted.
Using the segmented data pairs, the second step estimates the
pose of the camera relative to the 3D pointcloud with good
precision. This is illustrated in Fig. 3 by backprojecting a few
hand-picked 3D key-points with the estimated camera pose to
the 2D image (red dots) - which are close to their reference
location (green dots). The measured average error was around
20− 30px, which translates to approx. 1mm real world error.
In case we don’t have access to intensity information in the
3D data, or if the object itself does not have a rich texture on
its surface, then this is the final result. Note that if there is no
intensity information, using a commercial software solution to
align such data would also be challenging.

As in this test case we have color information too in the 3D
input data, we can apply the ICP refinement step proposed in
our workflow. The algorithm refines the relative pose based
on the edge-map of the 2D image, and the projection of
the 3D edge points. At this step, edges detected on smooth,
mostly planar surfaces are desirable. To measure the benefits
of using the ICP refinement step, we backprojected the same
3D key-points and calculated the backprojection error. In
Fig. 3, we can see that landmark points are projected closer
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(a) Sample synthetic data (b) Percentage of non-overlapping area (c) Distance between reference and esti-
mated camera position

(d) Rotation error along x axis (e) Rotation error along y axis (f) Rotation error along z axis

Fig. 2. (a) Sample synthetic data, (b-f) error plots of the results on synthetic data (2D se stands for 2D segmentation error, 3D se for segmentation error on
the 3D data and m stands for median value).

to their correct location, reducing the average distance to 8px,
equivalent to 0.2mm projection error. This can be considered
good precision for most CH applications. Final fused result
from only a single camera image can be seen in Fig. 6.

Fig. 3. Precision of the region based pose estimation’s results in first row,
and results of ICP refinement in second row. Green dots are the reference
locations while red dots are the back-projections of the 3D landmarks.

B. Ceramic fragments test cases
The objects used in this test case are small fragments

of ceramic bowls and vases. The 2D images were captured

with a standard Canon 1000D DSLR camera, having 2.5Mpx
resolution. The 3D data was produced by a handheld Artec
Spider scanner and its bundled software. In this case, using a
relatively cheap and easy to use scanner solution, we cannot
expect perfect 3D data. The software uses a key-point based
algorithm to align partial scans and build the complete 3D
model. Since the scanner only has a low resolution RGB
camera built in, this process can get cumbersome in some
situations. As we have found, even if the software produces a
visually pleasing, watertight 3D model, it may lack precision.
Of course a perfect alignment was not possible with these
incorrect 3D data, but we have shown, that in spite of the
imperfect 3D model, our algorithm is robust enough to produce
a good fused result. The segmented regions used for the pose
estimation are shown in Fig. 4. The backprojection error of
the two test cases can be seen in Fig. 5. The average error
was 33px and 28px respectively.

Fig. 4. 2D segmentation example.

V. CONCLUSION

A workflow has been proposed for the 2D-3D visual data
fusion. While most of the current solutions struggle in situa-
tions when RGB information is missing, or the surface color of
the object is too homogeneous, or the surface is too reflective,
our method has a clear advantage by not relying on 3D color
information to solve the problem. It is only necessary to detect
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Fig. 5. Final precision achieved using the ICP refinement step. Green dots
are the selected specific landmarks, red dots are the back-projection of the
same landmarks in 3D.

at least a single smooth region visible in both 3D and 2D
domains, and a good pose estimation is obtained. When RGB
information is also available with the 3D data, it can be used at
the segmentation step and also for the refinement of the final
parameters. Of course, the precision depends on the quality of
the input data, but we have shown experimentally that using
cheap devices we can produce relatively good quality outputs,
in terms of texture resolution and color precision. Furthermore,
since we are not directly using the RGB color values, the
method potentially works with infrared images, or even with
hyperspectral images.
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