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Abstract—Geometric verification with epipolar geometry often
results in a high score for an incorrect image pair due to
ambiguity in its geometric constraints. The ambiguity is caused
by a high degree of freedom in the epipolar geometry and a
weak constraint from the fitting between a point and a line. In
order to mitigate the ambiguity, we propose to filter geometrically
inconsistent components, namely correspondences, a sample, a
model, and inliers in a RANSAC-based geometric verification.
For the filtering, we introduce novel semi-2D constraints whose
geometric constraint is weaker than full-2D constraint, but
stronger than pure-epipolar constraint. Additionally, an advan-
tage of the proposed approach is that it requires only an image
pair instead of neither additional information nor prior learning.
Experiments on the public dataset containing 3D object images
show that the proposed approach improves the true positive
rate when the false positive rate is low, and greatly reduces
computational time for the geometric verification of both a
correct image pair and an incorrect image pair.

I. INTRODUCTION

Large scale image retrieval and recognition [1] searches
a similar image containing a rigid object from uncalibrated
database images, given a query image containing that object.
Typical image retrieval and recognition pipeline represents an
image as a set of local features such as SIFT [2], encodes them
with something like bag-of-words indexing [3], and ranks the
similarity scores between the query image and the database
images. Then it performs geometric verification (GV) based on
RANdom SAmple Consensus (RANSAC) [4] on image pairs
with top N similarity scores, and re-ranks them according to
their GV scores.

In such pipelines, what is input to the GV is frequently an
incorrect image pair. Therefore, to achieve image recognition,
an additional GV score thresholding is performed to determine
whether it is the same object in the database or not.

RANSAC [4] is a typical solution, which estimates the
geometric model from correspondences containing outliers.
RANSAC computes a specified type of model (e.g., affine,
homography, and epipolar geometry (EG)) from a sample
drawn randomly from correspondences. Then it classifies
correspondences into inliers and outliers that satisfy the model
constraints. Eventually, it chooses the model that obtains the
greatest number of inliers. The GV score means the number
of inliers in that instance.

In general, the suitable type of model is different depending
on the shape of the target object. GV in many recherches
and applications assumes an affine or a homography type of

Fig. 1. Illustration of geometric verification with an epipolar geometry in an
incorrect image pair. Red circles and black lines represent inliers and epipolar
lines respectively.

model [1], [3], [5]. However, neither affine nor homography
is suitable for 3D objects since it is impossible to describe
the correspondences of two non-planar objects with them. In
contrast, the EG is suitable when the target is a 3D object since
it is able to describe the correspondences of two non-planar
objects.

However, as shown in Fig. 1, it has been observed that the
GV score using EG often returns a high number of inliers
even when the image pair is entirely incorrect. This is due
to both EG’s many degrees of freedom (DoF) (i.e., seven
DoF for the fundamental matrix and five DoF for the essential
matrix), and ambiguous constraints on EG based on the fitting
between a point and a line. This can happen when there are
many correspondences that happen to fit a certain (mostly
geometrically inconsistent) EG computed from an incorrect
sample. Such accidental fits may happen frequently, since
the epipolar constraint is satisfied when a point is located
somewhere on a corresponding epipolar line.1

Furthermore, if we verify the query image on the large scale
database, it is highly probable that an incorrect image pair with
a large number of inliers will be found. For an application
containing a recognition stage, it is ideal that no false positives

1In contrast, the number of inliers in an incorrect image pair always
becomes small when we assume an affine or a homography model. Such
accidental fits rarely happen with affine or homography constraints since they
are based on the fitting between a point and a point.
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(i.e., recognition of incorrect images) occur. A naive approach
is setting a high threshold. However, it reduces the true positive
rate.

In order to address this problem, we aimed to reduce the
number of inliers in an incorrect image pair. Many studies of
two-view geometry aim to maximize the number of inliers
in an correct image pair in order to derive a high quality
EG [5], [6], [18]. However, it is necessary to increase the
number of inliers in a correct image pair as well as reducing
the number of inliers in an incorrect one during image retrieval
and recognition. Nevertheless, the latter requirement has not
been sufficiently investigated.

In this paper, we propose a novel approach that reduces
accidental inliers in the RANSAC. This approach filters the
four components of RANSAC, namely correspondences, a
sample, a model, and inliers, all considered individually.
This not only directly reduces the accidental inliers but also
indirectly reduces them by filtering the other components in
the early stages. Thus it significantly reduces inliers resulting
from an incorrect image pair.

We show experimentally that the proposed approach signif-
icantly improves the accuracy of image retrieval and recogni-
tion. Furthermore, we show that our filtering of geometrically
inconsistent components greatly reduces computational time
for the GV of both a correct image pair and an incorrect image
pair.

II. RELATED WORK

Here we summarize RANSAC’s estimation of EG [8], [9],
and also briefly describe recent extensions of RANSAC.

A. RANSAC

RANSAC estimates a model T from data Q based on
iteration. It also classifies the data Q as a set of inliers I
or set of outliers O simultaneously.

In each iteration, it randomly selects a sample, namely s sets
of correspondences from Q, then it computes an EG T from
the sample. When model T is assumed to be a fundamental
matrix, a 7-point algorithm [10] (s = 7) or 8-point algorithm
[11], [12] (s = 8) is typically employed. When model T is
assumed to be an essential matrix, a 5-point algorithm [13]
(s = 5) is typically employed.

For a correspondence m, m′ in a homogeneous coordinate
system on data Q, it computes the square of the distance
between a point and an epipolar line d = m′⊤Tm. When d
is lower than a specified threshold value, the correspondence
is classified as an inlier; otherwise an outlier. When a set of
inliers with the maximum sizes so far is obtained, the number
of inliers |I| and the T of that time are stored.

In the standard approach, such processes are repeated until
the number of iterations reaches the following:

M = log(1− p)/log[1− (1− k)s] (1)

where p is the confidence, and k = |I|/|Q| is the inlier ratio.
In order to guarantee a termination, it also terminates when the
number of iterations reaches a specified maximum number.

B. RANSAC Extensions

DEGENSAC [6] produces a more robust fundamental ma-
trix estimation by detecting homography-degenerate samples.
QDEGSAC [7] yields more robust model estimations on
(quasi-)degenerate data without requiring explicit knowledge
about degeneracies. PROSAC [18] achieves a significantly
fast fundamental matrix estimation by exploiting the linear
ordering structure of the set of correspondences. However,
while these approaches improve the estimation quality of a
correct image pair, they do not reduce the number of inliers
in an incorrect one.

SCRAMSAC [14] forms a reduced set of correspondences
with more reliability by checking the spatial consistency of
each correspondence. Then it produces a fundamental matrix
estimation that is fast and more robust against degeneration
by using RANSAC on the reduced set of correspondences.

Johns et al. [15] arrive at a more accurate fundamental
matrix estimation than SCRAMSAC in terms of both image
retrieval and place recognition by learning generative place
models from a significant number of training images per place.
However, this approach requires many training images with
various changes of view point per target, and it is not easy to
collect the training images in actual large scale image retrieval
and recognition applications.

The closest approach to our goal is SCRAMSAC [14].
However, it is limited to improving the correspondences,
therefore the problem of accidental inliers in an incorrect
image pair still remains unsolved. In contrast, we propose to
explicitly filter the accidental inliers without any additional
information and prior learning.

III. PROPOSED APPROACH

The proposed approach introduces novel constraints for
RANSAC-based GV using the components of local features
(i.e., orientation, scale, and coordinates). Fig. 2 shows an
overview of the proposed approach. In Fig. 2, blocks in
single lines and blocks in double lines represent the standard
RANSAC process and our original process respectively. Note
that the four processes of the proposed approach (A, B, C,
and D in Fig. 2) are applicable independently. The notations
for the unique parameters required across our approach are
summarized in Table I.

The proposed approach first filters an initial set of corre-
spondences Q based on weak geometric consistency (WGC)
[16] (A in Fig. 2). Throughout the subsequent process, it
operates on the resulting set of correspondences Q′. In the
RANSAC iteration, it detects a geometrically inconsistent
sample, then terminates the iteration at an early stage if
necessary (B in Fig. 2). It detects an EG that is not spatially
consistent with the sample, then terminates the iteration at an
early stage if necessary (C in Fig. 2). After the model fitting
to Q′, it checks the spatial consistency of the resulting set of
inliers I against the sample and EG (D in Fig. 2). It filters the
I through this check, then determines the final set of inliers
I ′.
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Fig. 2. Overview of the proposed approach

Filters B, C, and D in Fig. 2 are based on semi-2D
constraints that can always be satisfied if the target is a 2D
object. They impose weak 2D constraints to correspondences
on the 3D object surface. That is to say, these constraints
are weaker than a full-2D constraint, but stronger than a
pure-epipolar constraint. Although these constraints involve
the risk of rejecting correct assumptions (i.e., a sample, an
EG, and inliers) ascribable to parallax, most of the cases can
find an adequate solution from the partial regions that satisfy
these constraints of the 3D object surface using the RANSAC
iterations. In contrast, assumptions on the incorrect image pair
are almost certainly rejected. In the following, we describe the
four elements of the proposed approach.

A. Correspondence Selection based on WGC

WGC [16] was originally proposed to improve a scoring
algorithm in the pipeline of a large-scale image retrieval.
Specifically, WGC votes the matching descriptors to the bins
of orientation difference and scale ratio. Then it improves the
accuracy of image retrieval by filtering the bins, except for
the bin with the maximum voting score. It is based on the
assumption that correct correspondences are consistent with
regard to orientation difference and scale ratio.

We apply this assumption to our method named correspon-
dence selection based on WGC (CSW). That is to say, we vote
the Q to the two-dimensional bins consisting of orientation
difference and scale ratio. Then we filter the correspondences
except for those belonging to the bin with the maximum

TABLE I
NOTATIONS

Notation Definition

Ores The resolution of orientation difference
Sres The resolution of scale ratio
THtri The threshold value of the number of inside-outs

 

 

 

 

 

 

 

 

 

 

Fig. 3. An example of sample configuration in the case of s = 5. Colored
circles represent the 5 sets of correspondences mi, m′

i (i = 1, 2, ..., 5). The
5C3 = 10 corresponding triangles are formed from them. The dotted lines
of the cubes represent the target 3D object.

voting score. For softer voting, we establish the bins with 50%
overlapping resolution with regard to orientation difference
Ores and scale ratio Sres. Thus when we set the resolution of
orientation difference Ores to 30 degrees, 24 bins that overlap
every 15 degrees are established.

By using CSW, it is expected that the voting score of
each bin becomes random, and the size of Q′ is consequently
significantly reduced in an incorrect image pair. Reducing the
size of Q′ reduces the probability of accidental inliers. On the
other hand, potential inliers concentrate in a specific bin for a
correct image pair, maintaining the final number of inliers. The
improved inlier ratio reduces the expected number of iterations
required to find the correct solution.

B. Sample Relative Configuration Check

The filter named the sample relative configuration check
(SRCC) is based on the assumption that the relative configu-
ration of a correct sample (i.e., s sets of correspondences) is
consistent within a correct image pair. Geometrically inconsis-
tent samples are rejected by this filter, so the potential inliers
from the sample are rejected.

As shown in Fig. 3, sC3 corresponding triangles can be
formed from a sample. For each corresponding triangle, SRCC
detects the inside-out. Specifically, it examines the direction
of rotation (i.e., clockwise or anti-clockwise) from the three
vertices of the triangle. It determines that the corresponding
triangles do not have the inside-out problem if their direction
matches. For example, corresponding triangles △m2m4m5

and △m′
2m

′
4m

′
5 have the inside-out problem in Fig. 3.

For a 3D object, corresponding triangles from a correct
sample can generate an inside-out ascribable to parallax.
However, it is expected that the number of inside-outs will
be significantly smaller than that from an incorrect sample.
Therefore, SRCC counts the number of inside-outs among the
sC3 corresponding triangles, then returns true if the count
is smaller than the threshold value THtri; and otherwise it
returns false.
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Fig. 4. Illustration of the relative configuration of components. White quadrangles, colored circles, black straight lines, and dotted lines respectively represent
epipoles projected onto the image, sample correspondences, epipolar lines, and equidistant curves from the epipole respectively. Red stars and blue stars
represent a correct inlier correspondence and an incorrect inlier correspondence respectively.

This filter is likely to return the wrong result if the sample
points are dense in an extremely narrow range or if they lie on
almost the same straight line, as in the character string image.
To avoid such cases, SRCC rejects insufficiently scattered
samples in x-y space. Specifically, it returns false if the area
of the convex hull of the sample is extremely small on each
image.

C. Epipolar Geometry Check
The epipolar geometry check filter （EGC） is based on

the assumption that the relative configuration of epipoles from
a correct EG and the sample are consistent within a correct
image pair. Geometrically inconsistent EGs are rejected by this
filter, so the potential inliers from the EG are rejected.

As shown in Fig. 4, s sets of epipolar lines are computed
from the EG and the sample in each image. It is known that
epipole e in the image can be calculated from the fundamental
matrix [10]. Let mi denote sample points (i = 1, 2, ..., s).
Let oi and di denote orientations and distances from e to mi

respectively.
In Fig. 4, the corresponding orientations oi and o′i

are arranged in the same order from end to end (i.e.,
o1, o2, o4, o3, o5) in the image pair. The corresponding dis-
tances di and d′i are also the same (i.e., d3, d2, d1, d5, d4).
In this way, EGC generates permutations of the ID with
respect to orientations and distances in the image pair. If
the permutations with regard to both orientation and distance
match, it returns true.

In Fig. 4, both epipoles are located on the same side of the
object, but they can be located on the opposite sides. In such
a case, EGC returns true if the permutations with respect to
both orientation and distance match in reverse order.

If the epipole is located inside the convex hull of the sample
correspondences, it means that the camera is not moving only
back and forth, and then epipolar lines become radial. In that

case, EGC returns true if the circular permutations match with
respect to orientation, since it does not find both ends.

D. Inlier Relative Configuration Check

The inlier relative configuration check filter (IRCC) is based
on the assumption that the relative configuration of correct
inliers, the epipoles, and the sample is consistent within
a correct image pair. Geometrically inconsistent inliers are
rejected by this filter.

As shown in Fig. 4, an image can be divided into disjoint
regions by using both epipolar lines and curves equidistant
from the epipole. We propose to accept an inlier only if
both inlier points are located in corresponding regions in each
image.

Specifically, IRCC first computes the orientation and dis-
tance from the epipole to the inlier points on each image.
Then it finds the IDs on both sides of a point on an inlier
with respect to both orientation and distance on each image. If
these IDs match in both image of a pair, the inlier is accepted;
otherwise the inlier is re-classified as an outlier.

For example, an inlier represented by red stars in Fig. 4
is accepted since they are located in corresponding regions
of each image. However, an inlier represented by blue stars
is re-classified as an outlier, since they are not located in
corresponding regions in each image.

IV. EXPERIMENTS

We evaluated the proposed approach (Prop) experimentally,
then compared it with SCRAMSAC [14]. In order to draw a
correct sample with fewer iterations, we employed PROSAC
[18] strategy in the Prop.

In Section IV-B, we evaluated each element of the
Prop, namely CSW, SRCC, EGC, and IRCC (see Sec-
tion III). We employed PROSAC with an EG as a base-
line method. Let ”Base(EG)” denote this method. Let
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Fig. 5. An example of true positive and false positive when the threshold
value is 40. Green lines represent resulting inliers from geometric verification
with an epipolar geometry. Top: A correct image pair with 49 inliers (true
positive). Bottom: An incorrect image pair with 41 inliers (false positive).

”Base(EG)+CSW”, ”Base(EG)+SRCC”, ”Base(EG)+EGC”,
and ”Base(EG)+IRCC” denote the method added to each
element in the Base(EG) respectively. Prop is an accumulation
of the Base(EG) and all elements.

In Section IV-C, we compared Prop with SCRAMSAC.
With reference to the full-2D constraint, we also measured
the PROSAC with a homography. Let ”Base(H)” denote
this method. That is to say, we also compared both Prop
and SCRAMSAC with Base(H) for comparison of epipolar
constraint and full-2D constraint.

A. Dataset and Experimental Setup

In our experiments, we used the University of Kentucky
Benchmark2 (UKB), which is a standard object retrieval and
recognition benchmark. UKB consists of 10,200 images of
2,550 objects taken from four different viewpoints. We gen-
erated 4C2 = 6 correct image pairs per object from the four
images of the same object. For the incorrect image pairs, we
generated 2, 550 × 6 sets of random image pairs from UKB,
so there were no correct image pairs. Thus we conducted GV
on 2, 550× 6× 2 sets of image pairs.

When the GV score exceeds a certain threshold value it
is considered a "positive". Fig. 5 shows an example of true
positive and false positive when the threshold value is 40. We
define the "recognition rate" as the maximum true positive
rate under the constraint that the false positive rate is zero,
and "THrec" as the threshold value for that time. In other
words, THrec becomes identical to maximum number of
inliers among the all incorrect image pairs.

For local features, we adopted ORB [17], which is efficient
and suitable for mobile devices. On average, 900 features are
extracted from 8 scales. In order to give the initial set of
correspondences to each image pair, we performed nearest-
neighbor matching with the cross-check method.

2http://vis.uky.edu/~stewe/ukbench/

TABLE II
COMPARISON OF GEOMETRIC VERIFICATION PERFORMANCES

Recognition
THrec

Computation time [ms]

rate correct pair incorrect pair

Base(EG) 0.669 76 170.5 294.6

Base(EG)+CSW 0.672 65 37.3 137.8

Base(EG)+SRCC 0.750 43 13.6 13.1

Base(EG)+EGC 0.734 27 245.9 400.2

Base(EG)+IRCC 0.748 24 404.8 644.2

Prop 0.819 16 11.6 9.8

SCRAMSAC [14] 0.704 50 15.5 20.2

Base(H) 0.751 19 183.5 343.1

We used the fundamental matrix as the model in RANSAC.
In order to compute it, we employed the 7-point algorithm
[10]. The threshold value of the distance between a point
and an epipolar line was set to three. When we used the
homography matrix as the model in RANSAC, the threshold
value of the re-projection error was set to three. The maximum
number of iterations of RANSAC was set to 10,000.

For parameters specific to SCRAMSAC, we employed the
same values found in experiments in the literature (i.e., smin =
0.5, smax = 2, θ = 0.55, r = 7).

For our CSW, the resolution of orientation differences Ores

and scale ratios Sres were respectively set to 60 degrees
and four-fold. These are fairly coarse resolution, to avoid
filtering correct correspondences. For our SRCC, the threshold
value THtri of the number of inside-outs was set to three.
These parameters provided excellent results in our preliminary
experiments.

All experiments were performed on a 3.6 GHz Intel Core
i7 with 4 GB of RAM. Computation time included only the
process shown in Fig. 2, and not the time for local feature
extraction and initial correspondences generation.

We summarize the recognition rate, THrec, and computa-
tion time for each of the correct and incorrect image pairs
obtained from all methods in Table II.

B. Impact of Each Element of the Proposed Approach

As shown in Table II, all elements result in a higher recog-
nition rate and smaller THrec than those of the Base(EG).
Base(EG)+CSW reduces the probability of accidental in-
liers by reducing the size of the Q. Base(EG)+SRCC and
Base(EG)+EGC indirectly reduce accidental inliers by reject-
ing geometrically inconsistent samples and EGs respectively.
Base(EG)+IRCC directly reduces accidental inliers. The EGC
and IRCC especially effective to reduce THrec. Furthermore,
the accumulation of Base(EG) and all elements (i.e., Prop)
achieves the highest recognition rate and smallest THrec.

Regarding the computation time, it is shown that
Base(EG)+CSW and Base(EG)+SRCC achieve greater speed
than Base(EG), while Base(EG)+EGC and Base(EG)+IRCC
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Fig. 6. ROC curves

are computationally expensive. However, the latter two have
only a negligible impact on the computation time of the
Prop, since most iterations are terminated at an early stage
by combining with the other elements. The accumulation of
CSW and SRCC greatly reduces computational time of Prop.

In general, the processing of a correct pair is faster than
that of an incorrect pair, since the former terminates at an
early stage when it obtains a high inlier ratio k in Equation 1.
In contrast, note that only methods including SRCC achieve
comparable computation time on an incorrect pair. This is
because the frequency with which the iteration is terminated
at an early stage by SRCC is higher for the incorrect pair.

C. Comparing the Proposed Method with SCRAMSAC

As an indicator of GV performance, we plotted the ROC
(Receiver Operating Characteristic) curve. Its vertical axis
shows the true positive rate and the horizontal shows the
false positive rate. For reference, we also plotted the results
of Base(EG). Fig. 6 shows all results.

As shown in Fig. 6, Prop has the highest true positive
rate when the false positive rate is low. This is because Prop
can reduce the accidental inliers in an incorrect image pair.
In contrast, SCRAMSAC has the highest true positive rate
when the false positive rate is high. This characteristic of Prop
provides more reliable results in practical use with large-scale
image retrieval and recognition applications.

As shown in Table II, SCRAMSAC has a lower true positive
rate under the constraint that the false positive rate is zero (i.e.,
recognition rate) than does Base(H). In contrast, Prop always
has higher true positive rate than Base(H). This is because
Prop imposes a geometric constraint that is weaker than a
full-2D constraint, but stronger than a pure-epipolar constraint
for a database containing 3D objects. That is to say, the full-
2D constraint often does not fit the 3D object of a correct
image pair, and the pure-epipolar constraint often explodes
the accidental inliers in an incorrect one. In contrast, Prop can

find the EG to fit the 3D object in the correct image pair while
reducing the accidental inliers in the incorrect one.

Regarding the computation time, as shown in Table II, Prop
is faster than SCRAMSAC on both correct and incorrect image
pairs. The main reason is shown by the early rejection of
samples by our SRCC. For an incorrect image pair, Prop
rejects almost all samples, requiring no subsequent processing.
On the other hand, Prop often performs subsequent processing
that is computationally expensive on the correct image pair,
but it often terminates early by obtaining a high inlier ratio
k in Equation 1. As a result, Prop is fast even with a correct
image pair.

Therefore, Prop is superior as a GV method in the context
of large scale image retrieval and recognition, both in terms
of accuracy and efficiency.

V. CONCLUSION

In this paper, we proposed a novel geometric verification
using the semi-2D constraints for 3D objects. The proposed
approach reduces the accidental inliers on an incorrect image
pair. Experimental results show that the proposed approach
is superior to recent geometric verification approaches in the
context of image retrieval and recognition.
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