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Abstract—In this paper, we propose a new camera model
for reconstructing 3D objects under light ray distortion caused
by refractive medias. The proposed method can reconstruct 3D
scene, even if light rays projected into the cameras are refracted
by the refractive media, such as glasses and raindrops. For this
objective, we represent light ray projection of multiple cameras
by using a pair of planes shared by the multiple cameras in
the scene. By using this model, intrinsic and extrinsic camera
parameters as well as the refractive properties of the refractive
media can be represented efficiently. By using the newly defined
camera model, we propose a method for recovering 3D points
and camera parameters with refractive properties simultaneously.
The experimental results show the efficiency of the proposed
camera model and reconstruction method.

I. INTRODUCTION

Recently, 3D measurement from stereo cameras is widely
used in various kinds of fields. Especially, in the field of ITS
(Intelligent Transportation Systems), vehicle cameras are used
for measuring the 3D distance toward objects and the danger
of collision on the road [1], [2], and almost all the vehicles
equip multiple cameras for various kinds of purpose in recent
years.

The vehicle cameras are in general equipped inside of the
vehicle for avoiding rains and dusts, and they observe road
scenes through windshield glasses. However, such setup causes
serious problems which do not occur under ordinary camera
setups. If cameras observe 3D scenes through glasses, light
rays projected into the cameras are refracted by the glasses,
and then, observed images are often distorted as shown in
Fig.1 (right). In addition, these refractions occur not only by
the glasses but also by raindrops on the glasses as shown in
Fig.1 (left). In such cases, the light rays expected from images
by using the ordinary camera model is extremely different
from the actual light rays in the 3D space as shown in Fig.2.
Thus, if we reconstruct 3D points from these distorted images,
the reconstructed points are far from the real 3D points as
shown in Fig.2.

Thus, in this paper, we propose a new method for recon-
structing 3D scenes from images observed under refractive
media such as windshields. In particular, we propose a new
camera model for representing the arbitrary refraction of light
fields, and propose a method for estimating the parameters of
this camera model and 3D points simultaneously by using a
bundle adjustment. Thus, the proposed method can recover not
just 3D position of objects, but also the refractive properties of

Fig. 1. Image distortion by refractive media. The left image is distorted
by windshield of a vehicle and right image is distorted by raindrops on the
windshield.

Fig. 2. Incorrect 3D reconstruction caused by a refractive media. In this case,
light rays are refracted by the media, and thus, a reconstructed 3D point is
very far from a real 3D point.

the refractive media. The proposed method can reconstruct 3D
scene accurately, even if the projected light rays to the cameras
are refracted by the media such as glasses and raindrops.

II. RELATED WORKS

For reconstructing 3D scene under light refractions, several
methods were proposed. In these methods, not the ordinary
projective cameras, but non-single focal cameras, such as
parametric focal camera model [3], [4], [5], [6], were used. In
these camera models, light rays projected into the cameras do
not need to be converged to a single optical center. Thus, the
paths of light rays can be arbitrary, and the model can represent
various kinds of image distortions caused by refractive medias.

In particular, the ray-pixel camera model [3] has extremely
high freedom for representing input light rays. In this model,
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paths of the light rays are recorded pixel by pixel. As a
result, it can represent arbitrary complicated light rays under
refraction. However, this camera model needs very accurate
camera calibration for using it practically. In addition, the
camera parameters of this camera model change drastically
under camera motions, even if the camera motions are small.
Furthermore, it consists of a large number of camera parame-
ters for representing light rays pixel by pixel, and thus, it often
becomes unstable if the calibration images are not sufficient.

To cope with this problem, parametric models for repre-
senting light rays were also studied[6], [5]. In these methods,
light rays were represented by two planes like 4D light field
representation, and non-linear parametric mapping from the
image plane to these two planes were estimated. By using the
parametric models, the number of camera parameters can be
reduced, and the stable calibration of cameras can be achieved.
However, the number of parameters of these models is still
much larger than the ordinary projective camera model, and
thus, we need large number of images for calibrating these
cameras accurately. Although a bundle adjustment based on
the parametric focal camera model has also been proposed [4],
it often becomes unstable since a large number of parameters
must be estimated.

One of the reason of increasing of the number of parameters
in the existing methods is the separation of intrinsic and
extrinsic camera parameters. In the existing camera models,
there are two kinds of parameters. One is intrinsic camera
parameters, which represent mapping from an image plane to
calibration planes. The other one is extrinsic camera param-
eters, which represent the relationship among multiple cam-
eras. However, the parametric focal camera model has large
freedom in intrinsic parameters, and the intrinsic parameters
can describe not only internal parameters of the cameras but
also the relationship among multiple cameras. Thus, we can
decrease the number of parameters, if we integrate the extrinsic
parameters with the intrinsic parameters in the camera models.
Based on this observation, we in this paper propose a new
camera model, which can represent multiple non-single focal
cameras efficiently by using small number of parameters.

III. RAY-PIXEL CAMERA MODEL

A. Light Ray Representation using Calibration Planes

We first describe the existing ray-pixel camera model [3]. In
this model, light rays projected into images are not converged
to an optical center of a camera. Therefore, the model cannot
be represented by the ordinary linear camera model using a
3×4 projection matrix. Instead of the projection matrix based
on the optical center, these light rays are represented by two
planes set in the 3D scene as shown in Fig.3. The orientation
and the position of a light ray are described by two points
on these planes. For example, if a light ray from a point X
passes through a point Π1(m) on the plane Π1 and a point
Π2(m) on the plane Π2, then the light ray is represented by
these two points. Thus, the degree of freedom of a light ray
is 4, when the light ray goes straight in the 3D space. This
light ray description is also used for representing light fields

Fig. 3. Light ray representation using two calibration planes

in resent years. In this paper, we call these two planes a set
of calibration planes.

Let us consider a case where 3D point X is observed through
some refractive medias such as glasses, and is projected to
m = [mx,my]

⊤ in the image as shown in Fig.3. Although
a light ray from a 3D point X is refracted by the media, the
ray goes straight before and after the media. Therefore, the
light ray which goes through the 3D point X can be described
by using two points on the calibration planes, Π1 and Π2, in
the 3D space. Suppose Z1 and Z2 are the depth of these two
planes in the camera coordinates, and let x1 = [x1, y1]

⊤ and
x2 = [x2, y2]

⊤ be 2D coordinates of points on these planes.
Then, the 3D point X can be represented by using Π1(m) =
[x1, y1, Z1]

T and Π2(m) = [x2, y2, Z2]
T as follows:

λX̃ = aΠ̃1(m) + bΠ̃2(m) (1)

where ·̃ denotes a homogeneous coordinates, and a and b
denote coefficients which indicate the 3D point. λ is a scalar.

If we have complete map from m to Πi(m) pixel by pixel,
arbitrary light refraction by refractive media can be described
precisely. By using light ray tracing technique, we can obtain
the pixel-wise map from images to Πi(m). However, the
estimation of the pixel-wise map is not realistic in the real
scene, since the map will change drastically under camera
motions, even if the camera motions are small. In addition, the
calibration of the light ray needs many calibration images and
time. Thus, the pixel-wise light ray calibration is not practical.

To cope with this problem, non-linear parametric mapping
is used in general. In this case, a 2D image point m is
mapped to calibration planes Πi by using parametric functions
such as polynomial functions. Furthermore, the relationship
among multiple cameras is described by using the relative
positions and orientations among the calibration planes of
multiple cameras. The map from the image plane to the
calibration planes corresponds to the intrinsic parameters in
the ordinary projective camera and the relationship among
calibration planes of cameras corresponds to the extrinsic
parameters.

This description based on the intrinsic and extrinsic pa-
rameters is useful for generic scenes where the relationship
among cameras is not constraint. However, the description
is redundant, and is not efficient. For example, when cam-
eras are set on a grid, i.e. camera array, not only intrinsic
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Fig. 4. Parametric focal camera model for multiple cameras based on a single
pair of calibration planes

parameters but also extrinsic parameters, i.e relative position
and orientation of cameras, can be described by using the
parametric mapping functions. In this paper, we propose a new
parametric focal camera array model, in which the extrinsic
and intrinsic camera parameters are represented by a single
parametric mapping function. In the proposed method, only a
single pair of calibration planes are used for describing light
rays projected into multiple cameras. By using this description,
we achieve efficient and stable camera calibration and 3D
reconstruction.

IV. PARAMETRIC FOCAL CAMERA ARRAY MODEL

A. Camera Array Model Using Shared Planes

We next propose a new parametric focal camera array
model, in which the light rays go into multiple cameras
are described by using a single pair of parallel calibration
planes as shown in Fig.4. In the existing parametric focal
camera models, a set of light rays projected into N cameras
is described by N pairs of calibration planes defined at
each camera. In contrast, all light rays projected into all the
cameras are described by a single pair of common planes
in the proposed method. Therefore, not only intrinsic camera
parameters but also extrinsic camera parameters are described
by mapping from image planes to a pair of calibration planes.
The proposed camera model can be calibrated efficiently and
stably, since the number of camera parameters is much less
than the existing parametric focal camera models.

In the following sections, we describe a method for recon-
structing 3D scene based on the proposed camera model.

B. Nonlinear image mapping

We first consider nonlinear mapping from an image plane
to a pair of calibration planes in the 3D space. This non-
linear mapping enables us to represent a correspondence
between an image point and a light ray in the 3D space
under the existence of light refractions. In our method, we
use polynomial functions for mapping points.

Let us consider a point m = [m1,m2]
T in the image and

2D points xi = [xi
1, x

i
2]

T on a pair of calibration planes
Πi(i = 1, 2). Then, the point mapping from the image to

the 2D points on a pair of calibration planes can be described
by using polynomial functions as follows:

xi
j =

K∑
k=0

K−k∑
l=0

aijklm
k
1m

k−l
2 (i = 1, 2; j = 1, 2) (2)

where K is the order of the polynomial function. The coeffi-
cients aijkl are camera parameters in this model. Therefore, the
camera calibration of this model is equivalent to the estimation
of these coefficients. Note, the polynomial function can rep-
resent more complicated mapping when K is large. However,
the estimation (calibration) of the coefficients becomes more
unstable if K is large, since the number of parameters becomes
large. Thus, K may be three or less than three in practice.

By using the nonlinear mapping, flexibility of the camera
model become higher than the ordinary single focal camera
models. However, this mapping is not enough for representing
both intrinsic and extrinsic camera parameters.

To clarify the problem, let us consider the case where K =
1. In this case, the mapping function based on the polynomial
function is equivalent to the 2D affine transformation. In the
ordinary projective camera model, the affine transformation is
not sufficient to represent rotation of the cameras, and we need
the projective transformation to represent image distortions
caused by the camera rotation.

Thus, we in this paper consider a new image mapping
function by combining polynomial mapping functions and
projective image transformation as follows:

λxi
j =

K∑
k=0

K−k∑
l=0

aijklm
k
1m

k−l
2 (i = 1, 2; j = 1, 2) (3)

λ =

1∑
k=0

K−k∑
l=0

ai3klm
k
1m

k−l
2 (i = 1, 2) (4)

In this mapping, K-th order polynomial functions and a 2D
projective transformation are combined together, so that the
new mapping function can represent 2D projective transfor-
mation as well as K-th order polynomial transformation.
For example, if K = 1, the combined mapping function
becomes a standard 2D projective transformation. Since the
camera rotation and planar translation can be represented by
a 2D projective transformation, the mapping function shown
in Eq.(3) can represent not only the intrinsic parameters but
also the extrinsic parameters of the camera efficiently.

C. 3D Reconstruction by Proposed Camera Model

We next consider 3D reconstruction from the newly defined
parametric focal camera array model. Let us consider the case
where there are N cameras in the scene and they are described
by our new camera model. Suppose a light ray which goes
through a 3D point X is projected to mn in the image of the
n-th camera as shown in Fig. 5. Then, the 3D point X can be
described as follows:

X = αBn +X1
n (5)
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Fig. 5. 3D reconstruction from a set of estimated light rays.

where, Xi
n = [xi

1n, x
i
2n, Zi]

T is a 3D point on a plane Πi

mapped from mn, and Bn is a 3-vector which represents the
orientation of the light ray as follows:

Bn =
X2

n −X1
n

∥X2
n −X1

n∥
(6)

Then, a 3D point X̂ can be reconstructed from a set of N
light rays by the least means square method as follows:

X̂ = argmin
X

N∑
n=1

(∥X−X1
n∥2 − (BT

n (X−X1
n))

2) (7)

In this equation, distances from the reconstructed point to each
light rays are minimized.

V. SIMULTANEOUS CAMERA CALIBRATION AND 3D
RECONSTRUCTION USING BUNDLE ADJUSTMENT

We next consider simultaneous camera calibration and 3D
reconstruction using a framework of bundle adjustment. The
recovered camera parameters include not just the intrinsic
parameters of usual cameras, but also the refractive properties
of the refractive media. Hence, the proposed method can
reconstruct 3D scene, even if the refractive properties and
cameras are unknown.

In the ordinary camera model, i.e. projective camera model,
the bundle adjustment can be achieved by minimizing repro-
jection errors in input images. However, the definition and
estimation of the reprojection error in the parametric focal
camera model is not so simple because of the non-linear
mapping. In this model, the estimation of reprojection error
on the image planes needs non-linear computation, and thus,
the estimation of reprojection error on the image plane is
complicated. Thus, we in this research define reprojection
errors on a pair of calibration planes Π1 and Π2. The new
reprojection errors do not require non-linear estimation, and
thus, we can minimize the reprojection errors efficiently.

Let us consider the case where a 3D point X̂ is reconstructed
from N cameras in our proposed framework. Let xj

n(j = 1, 2 :
n = 1, · · · , N) be a 2D point on Πj mapped from the n-th
camera. L represents a light ray defined by a pair of points on
the calibration planes, and L′ represents a ray which is parallel
to L and goes through the 3D point X̂ as shown in Fig.6. The

Fig. 6. Reprojection error on calibration planes. In the proposed parametric
focal camera model, the reprojection error is defined not on the image plane
but on the calibration planes.

intersection of L′ with a plane Πj is denoted by x′j
n(j = 1, 2 :

n = 1, · · · , N). Then, we define the reprojection error E on
the calibration planes Π1 and Π2 as follows:

E =
N∑

n=1

2∑
j=1

∥xj
n − x′j

n∥2 (8)

If there are Q 3D points in the scene and Eq(q = 1, · · · , Q)
is the reprojection error of the q-th 3D point Xq , then the
optimal camera parameters {âijnkl } and a set of reconstructed
points {X̂q} can be estimated as follows:

{{âijnkl }, {X̂q}} = argmin
aijn
kl

,Xq

Q∑
q=1

Eq (9)

The initial values of {Xq} are given by 3D reconstruction
from the standard single focal camera model, and the initial
values of {aijnkl } are computed from the initial values of {Xq}.

We next consider reconstruction ambiguity of the bundle
adjustment in our proposed model. In general, reconstructed
results by uncalibrated camera include ambiguity such as
projective ambiguity from projective cameras. This ambiguity
can be eliminate using some kinds of prior knowledge such as
camera parameters or basis points in the input scene. In our
method, we use known 3D points in the scene as basis points
to eliminate the ambiguity.

Let us consider the case when there are R 3D points
XB

r (r = 1, · · · , R) and their 3D position is known. When
reprojection error of these points is EB

r , 3D points except
these basis points and camera parameters can be estimated as
follows:

{{âijnkl }, {X̂q}} = argmin
aijn
kl

,Xq

(

Q∑
q=1

Eq + w
R∑

r=1

EB
r ) (10)

where w is a weight of the basis points. By using the basis
points, ambiguity of the camera parameters and reconstructed
3D points can be eliminated.

VI. EXPERIMENTAL RESULTS

We next show experimental results from the proposed
method. In our first experiments, wine glasses were put in
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(a) wine glass (b) windshield

Fig. 7. Experimental environment

(a) images under refractive media 1

(b) images under refractive media 2

Fig. 8. Examples of input images with distortion

front of two cameras as refractive medias as shown in Fig.7
(a), and the position and the orientation of the glasses were
changed randomly, so that we can obtain images under differ-
ent unknown refractive medias. In our experiments, a display
system was set in the scene to generate artificial 3D points
with very accurate ground truth data. The display system was
put on a moving stage, and its depth was changed by the
stage. We showed a set of phase shift patterns on the display
system, and their images were taken by a set of stereo cameras.
The observed images were used for generating 2D image
points in the stereo images. These image points were used
for reconstructing 3D points represented by the phase shift
patterns at each depth.

Fig. 8 (a) and (b) show example images taken under two
different refractive medias, i.e. two different settings of wine
glasses. As shown in these images, the display patterns were
strongly distorted according to the refractive medias. We chose
300 corresponding points in stereo images randomly, and
reconstructed them. In order to evaluate the effect of high order
terms in the polynomial function, the order of the polynomial
equation was changed from the 1st to the 3rd, and the accuracy
of 3D reconstruction was compared. Also, the camera model
with projective transformation in Eq.(3) is compared with that
without projective transformation in Eq.(2).

Fig. 9 (a) and (b) show 3D points reconstructed from the
proposed method with 3rd order polynomial function under
two different refractive medias. The red points show ground
truth, the blue points show reconstructed points from the

(a) refractive media 1

(b) refractive media 2
Fig. 9. Reconstructed 3D points from the proposed method under two different
refractive media. In this reconstruction Eq.(3) with 3rd order and projective
transformation was used.

TABLE I
RMS ERRORS OF 3D RECONSTRUCTION [MM]

proposed model single focal model
1st order 6.26
2nd order 4.88 6.51
3rd order 3.39

proposed method and the green points show results from the
standard single focal camera model. As we can see in these
figures, the 3D points recovered from the standard camera
model change drastically according to the refractive medias,
and the results are very different from the ground truth. On
the contrary, the results from the proposed method are almost
identical with the ground truth data, even if the properties
of refractive media change drastically. Table I shows the
comparison of RMS errors of each reconstruction method in
different orders of polynomial equation. These results show
that the proposed camera model can reconstruct 3D points
much more accurately than the ordinary single focal camera
model by increasing the order of polynomial function. From
these results, we find that the proposed method can recover
3D points accurately under arbitrary refractive medias, even if
their refractive properties are unknown.

We next show the results by using an windshield glass as
a refractive media as shown in Fig. 7 (b). The 3D points
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(a) 1st order polynomial

(b) 3rd order polynomial
Fig. 10. Reconstructed results from the proposed method. In this reconstruc-
tion, Eq.(3) with projective transformation was used.

TABLE II
RMS ERRORS OF 3D RECONSTRUCTION [MM]

with projective without projective
transformation transformation

Single focal 4.29
1st order 2.22 4.15
2nd order 2.56 2.85
3rd order 2.28 2.21

reconstructed from the proposed camera model are shown in
Fig. 10, and the 3D points reconstructed from the camera
model without projective transformation in Eq.(2) are shown
in Fig. 11. Their RMS errors are also shown in table II.
Although the image distortion is not so large in this case, the
result from the standard camera model has large errors, while
the proposed method provides us accurate 3D reconstruction.
Also, we find that the accuracy of the proposed method with
projective transformation is much better than that of Eq.(2),
even if we use low order polynomial function, i.e. 1st order,
as shown in table II. This means that the proposed camera
model with projective transformation can represent extrinsic
parameters as well as intrinsic parameters and light distor-
tions more efficiently than the polynomial function without
projective transformation. Thus, we can decrease the degree-
of-freedom of camera model without degrading the accuracy
of 3D reconstruction in the proposed method.

VII. CONCLUSION

In this paper, we proposed a new method for reconstructing
3D objects under the existence of refractive medias in the

(a) 1st order polynomial

(b) 3rd order polynomial
Fig. 11. Reconstructed results from Eq.(2) without projective transformation.

scene. The proposed method can reconstruct 3D scene accu-
rately, even if light rays projected into cameras are refracted
by the refractive media such as glasses. For this objective,
we proposed a new camera models by using a pair of planes
shared by multiple cameras. By using this model, not only
intrinsic camera parameters but also extrinsic camera param-
eters and refraction of lights can be represented efficiently.
In addition, we presented a method for estimating camera
parameters and 3D points simultaneously by using the bundle
adjustment. The experimental results showed that the proposed
method provides us accurate 3D reconstruction, even if we
have unknown varying refractive medias.
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