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Abstract—In this paper we propose an automatic urban 

building extraction method for oblique aerial images. Five steps 

are included in this method: point cloud generation, grid 

partition, feature extraction, building detection and building 

reconstruction. Taking advantages of recent progress in large-

scale Structure from Motion (SfM) and Multiple View Stereo 

(MVS), dense point cloud is generated first. Then, we project the 

point cloud into a regularly spaced grid in XY plan, and convert 

the building extraction problem into an image segmentation 

problem. By combining the strength of the geometric attribute 

and spectral attribute, three complementary features are 

extracted and a MRF based graph model along with an energy 

function is created. Points belonging to buildings are recognized 

by minimizing this function, and prismatic 3D building models 

are reconstructed accordingly. 

Keywords—building detection; building reconstruction; point 

cloud; oblique aerial images; MRF 

I. INTRODUCTION  

Building extraction in urban scene is an exciting research 
topic which essential for a variety of applications such as map 
updating, urban planning, virtual tourism, city modeling and 
automatic driving. Generally speaking, it can be subdivided 
into two interdependent tasks, detection and reconstruction, and 
both tasks are very difficult by their own right, especially in 
dense environments [1, 2]. Despite the high volume of previous 
work in the field, there are many unsolved problems, especially 
when it comes to the development of fully automatic methods 
[3, 4]. 

Based on the types of data sources employed, the existing 
approaches can be roughly categorized into single-image-based 
extraction, multiple-images-based extraction, point-cloud-
based extraction and data-fusion-based extraction. Single-
image-based extraction only makes use of the available optical 
[5] or Synthetic Aperture Radar (SAR) [6] image as the sole 
data source. For the reason that the information contained in 
this data source is limited, they are usually used in some simple 
or sparse urban scene for 2D building footprints extraction. To 
extract buildings from dense urban areas, Fradkin et al. [1] first 
reconstruct the scene surface,  then extract building facades 
from the 3D data accumulation in object space based on 
multiple-overlap aerial images. Xiao et al. [7] directly detect 
building facades in multiple-overlap oblique images using edge 

and height information, then verify and refine the building 
hypotheses by 3D points generated by dense image matching. 
For the point-cloud-based extraction, although a number of 
novel methods were proposed in recent years [8-10], the gap 
between the state of the art and the desired goal of automatic 
modeling from point cloud data still remains wide [9]. To 
utilize the complementary characteristics of multi-source data, 
numerous methods haven been proposed to perform the data 
fusion in the community of photogrammetry and remote 
sensing [11] and a comparative analysis of different data-
fusion-based automatic building extraction methods was done 
by Khoshelham et al. [12].  

In this paper we propose a novel oblique aerial images 
based automatic building extraction method. Large-scale 
Structure from Motion (SfM) and Multiple View Stereo (MVS) 
are first used to generate dense point cloud, then buildings are 
extracted from these 3D points automatically. Compared to 
LIDAR (light detection and ranging) point cloud, MVS point 
cloud has some adverse properties for building extraction, i.e. 
lower accuracy, higher but irregular density distribution and 
large area points missing in texture-poor regions [13, 14], 
which draw a higher demand to our extraction method. 
However, considering it’s low-cost in data acquisition relative 
to LIDAR and high-consistency relative to multi-source data 
by data-fusion. We think it is suitable for building extraction. 

The rest of this paper is organized as follows. Details of the 
proposed building extraction approach are presented in Section 
2. Experimental results and discussion are reported in Section 
3, followed by some concluding remarks and future work in 
Section 4. 

II. ALGORITHM DESCRIPTION 

The proposed method consists of five steps: point cloud 
generation, grid partition, feature extraction, building detection 
and building reconstruction. The framework of this method is 
illustrated in Fig. 1. First we use SfM+MVS algorithm to 
generate dense point cloud based on the oblique aerial images. 
Then, the generated 3D point cloud is partitioned by a regular 
spaced grid and three types of features are extracted. Finally, 
according to these features, buildings are distinguished from 
other objects in the scene, and 3D building models are 
reconstructed in prismatic style. 
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A. Point Cloud Generation and Grid Partition 

After a comparative analysis to the state-of-the-art SfM and 
MVS approaches,  a global SfM method that fuses auxiliary 
imaging information [15] and a PatchMatch Stereo based MVS 
method [16] are used in our pipeline due to the robustness and 
computational efficiency requirements for large-scale aerial 
images modeling. The output of this algorithm are 3D points 
with color and normal information. 
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Fig. 1. Flowchart for building extraction. 

Then, we convert the building extraction task into a 2D 
image segmentation problem. Specifically, the 3D point cloud 
is projected to the 2D XY plane first, then the plane is 
partitioned by a regularly spaced grid, as shown in Fig. 2. After 
that, the grid is considered as an image, and each grid cell is 
considered as an “image pixel”; the pixel value in the image is 
calculated from all the 3D points located in the corresponding 
grid cell or interpolated by its neighbors for empty cell. It 
should be noted that all our following steps in this paper are 
focus on this virtual image. 
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Fig. 2. Grid partition. 3D points are partitioned by a regularly spaced grid 
in XY plane.  

Cell size µ is an important parameter in this step which 
directly related to the final extraction accuracy. Theoretically, 
the smaller of this value is, the higher of extraction accuracy is. 
However, considering the fact that too small value will lead to 

a dramatically increasing in computation cost and empty cell 
number, which are also harmful to the extraction. In practice, 
we set this value according to the average point number in each 
grid cell, and we found 2~3 is a good choice for the average 
point number in all our cases. 

B. Feature Extraction 

Three features are computed for each cell
i

c of the grid 

generated in last subsection:   

1) The elevation feature 
e

f  measures the height of the cell 

i
c relative to the ground ( buildings, trees or poles in urban 

scene usually have a high response to this feature ) : 

( )
i ie i c g

f c z z  ,                              (1) 

where 
ig

z denotes the ground height of the cell 
i

c  and we 

computed it through the algorithm proposed in [17] and 
ic

z is 

defined as a function of the 3D points located in the cell, for a 

certain point ( , , )p x y z : 
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2) The greenness feature g
f  indicates the average ratio of 

the green spectrum relative to the red and blue spectrum around 

the cell
i

c ( vegetation usually have a high response to this 

feature, buildings and trees can be separated by this  ):   

1
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where 
ic

  is the neighborhood of 
i

c , 
ic

N is the number of 

points belonging to 
ic

 , and ( , , )
p p p

R G B  is the spectral 

intensities of the point p .  

3) The roughness feature 
r

f  denotes the roughness of the 

cell
i

c  and it is expressed by the normal vectors of 3D points 

(trees or other clutters in urban scene usually have a high 
response to this feature; ground, buildings or other man-made 
objects usually have a low response for  their local planarity):  
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where p
n  and q

n  are the normal vectors of points  p  and 

q respectively, 
ci

N


 is the number of normal pairs. 

It should be noted that, similar to Lafarge et al. [10], all the 

three type features are normalized to  0,1 before they are 

inputted to the next build detection step. 
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C. Build Detection 

From the features computed per cell, we can model the 
building detection problem as a binary classification one. More 
specifically, for integrating the contextual and spatial 
consistency prior to the classification, a Markov Random Field 
(MRF) based combinatorial optimization model is constructed. 

The quality of a label configuration l  is measured by energy E: 

 
 

,

,

( ) ( , )
i i i j i j

i G i j

E l D l V l l
 

   ,                 (5) 

where 
i

D  and ,i j
V  denote the data term and smoothness term 

respectively, balanced by parameter  . G  denotes the whole 

grid which containing all the cells, and N  denotes all the 

adjacent cell pairs.  

Based on the prior knowledge of the urban scene and the 
features described above, we can define a building as a tall 
object with a low greenness and a low roughness. Furthermore, 
we found that one of the most distinct attribute with respect to 
the MVS point cloud investigated in this paper is there are lots 
of points existing in building facades which significantly 
different with the aerial LIDAR point cloud used by the 
majority of other existing approaches. According to this 
observation, the building façade can be recognized by the 

accumulations (the number,
i

N , of points falling to each cell), 

of the projected 3D points. Then, the data term can be defined 
as: 
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where  is a thread for distinguish the building façade from 

others. In other word, if a cell contains more than  points, it 

is more likely to be a building cell with the label 1
i

l  , and 

we give a penalty   to label 0 and 0 to label 1; otherwise we 

penalize the label configuration according to the features we 
extracted above. 

The pairwise smoothness term ,i j
V  between two adjacent 

cells 
i

c  and j
c  is expressed by a piecewise smooth and 

discontinuity preserving model: 

cos ,

,
(1 )

i j

i j
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  
  

f f

,                          (7) 

where K  is some constant, 
i

f  and j
f are feature vectors for 

cells 
i

c  and j
c respectively. 

Finally, a graph cut algorithm [18] is used to solve this 

energy minimization problem and cells with the label 1
i

l  are 

considered as the detected buildings. 

D. Building Reconstruction 

After the building detection process, we can get a binary 
image with buildings as foreground. To remove some small 
objects and smooth the classification result, we perform a 
morphological open and a morphological close operation to 
this binary image successively. Then, the connected component 
analysis is used to mark cells to different building entities. Note 
that we assign each building entity, consisting of connected 
cells classified as building and 3D points inside them, a unique 
ID.  

For each building entity, we first extract its boundary by a 
contour finding algorithm proposed by Suzuki et al. [19], then 
the boundary is simplified by the Douglas-Peucker algorithm 
[20]. At the same time, we gather the heights information of 
building roof and building footprint from the ‘z’ coordinate of 
3D points belonging to this building entity. Specifically, the 
maximum and minimum are assigned to building roof and 
building footprint respectively. According to these information, 
the building entity can be reconstructed on a very generic level, 
comparable to the “block” model, defined as LOD1 (Level of 
Detail 1) in City-GML [21]. Finally, all building entities are 
processed through the same workflow and prismatic 3D 
building models are reconstructed automatically. 

III. EXPERIMENTAL RESULTS 

A. Testing Datasets 

We test our method on two oblique aerial image datasets, 
and we named them “area 1” and “area 2” for short in this 
section. They are all captured by a penta-view oblique digital 
photogrammetric equipment (TOPDC-5, Fig. 3). The nadir 
camera head is equipped with a 47mm lens and all the other 4 
camera heads are equipped with 80 mm lenses mounted with 
tilt angles of 45°. The image resolution of nadir view and 
oblique view are 9334x6000 (56 megapixel) and 7312x5474 
(40 megapixel) respectively. In each image dataset, there are 50 
images with the ground sample distance (GSD) around 10 cm. 
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Fig. 3. TOPDC-5 penta-view oblique digital photogrammetric equipment. 

B. Experiment Result 

The generated dense point cloud in area 1 is shown in Fig.4 
(b). Comparing it with the original aerial image in Fig.4 (a), we 
can see although there exist some obvious holes (inside the red 
ellipses) due to the existence of texture-poor regions, we did 
successfully obtain a high-quality, dense and gross-error-free 
point cloud. In Fig.4 (c), the 3D points belonging to buildings 
are separated from others. The top view for the whole area and 
some locally enlarged side views are both shown.  
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 (a)                                                                                          (b)                                                                                            (c) 

Fig. 4. (a) One of the original oblique aerial images in area 1. (b) Generated dense point cloud by SfM+MVS. (c) Detected 3D building points (pink) in area 1, 
the top view for the whole area and some locally enlarged side views are both shown.  

         
(a)                                                                                                               (b) 

Fig. 5. (a) Boundaries for detected buildings in area 1, different building entities are rendered in different colors. (b) Extracted 3D building models in area 1, 
all buildings are expressed in prismatic style. 

The boundaries for detected buildings in area 1 are shown 
in Fig.5 (a), different building entity with different color. 
According to these boundaries, along with the extracted 3D 
building points in Fig.4 (c), 3D prismatic building models are 
reconstructed one by one, as shown in Fig.5 (b). 

Based on the same procedure and the same parameters, we 
perform our method on area 2 (a small scenic spot). In Fig.6, 

one of the typical oblique aerial image, the generated point 
cloud with the same view, and the locally enlarged top view 
and side view for detected 3D building points (pink) inside the 
red rectangle in Fig.6(a) are all shown. In addition, the 
boundaries for detected buildings and the reconstructed 3D 
prismatic building models of this area are illustrated in Fig.7(a) 
and Fig.7(b) respectively. 

   
(a)                                                                        (b)                                                                                 (c) 

Fig. 6. (a) One of the original oblique aerial images in area 2. (b) Generated dense point cloud by SfM+MVS. (c) Top view and side view for detected 3D 
building points (pink) inside the red rectangle in (a). 
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(a)                                                        (b)                                                                                                        

Fig. 7. (a) Boundaries for detected buildings in area 2, different building 
entities are rendered in different colors. (b) Extracted 3D building models. 

C. Accuracy Assessment 

The experiment results illustrated in Fig.4-Fig.7 indicate 
that our proposed automatic building extraction scheme is 
reasonable and desirable. In addition to this qualitative analysis 
resort to human inspection, a quantitative analysis also 
performed  by us. 

Since there are not existing ground truth data in our test 
areas. For assessing the extraction accuracy, we first manually 
label the buildings in our test areas in the  original oblique 
aerial images, then the extracted 3D building points are 
projected back to the labeled images to verify whether the 
extraction is correct. Considering the actual requirement for the 
evaluation and the labor of manually labeling many high 
resolution images, five images (three for area 1 and two for 
area 2) were labeled finally. For convenience, we named them 
“ground truth images” and two of them are shown in Fig.8. 

      

(a)                                                        (b) 

Fig. 8. (a) One of the manually labeled ground truth images in area 1. (b) 
One of the manually labeled ground truth images in area 2. 

In the evaluation process, for each labeled ground truth 
image, all the visible 3D points are projected back to it by the 
aid of the camera projection matrix calculated by the SfM 
algorithm and the visible information outputted by the MVS 
algorithm. Then each point’s label is compared to the ground 
truth image and one of the following result is assigned to this 
point: 

 TP (True Positive): the point is correctly recognized as 
building. 

 TN (True Negative): the point is correctly recognized 
as other objects (not building). 

 FN (False Negative): the point is incorrectly 
recognized as other objects. 

 FP (False Positive): the point is incorrectly recognized 
as building. 

Deriving from the above quantities, three metrics are 
adopted to assess the extraction accuracy: 

 RR (Recall Rate):  the probability that a building point 
is recognized, defined as TP/(TP+FN). 

 R (Reliability): the probability that a point recognized 
as building is actually a building, defined as 
TP/(TP+FP). 

 OA (Overall Accuracy): the overall accuracy of the 
extraction, defined as (TP+ TN)/(TP+FP+TN+FN). 

By marking the incorrectly recognized points in the ground 
truth images, four error maps for building extraction are 
rendered, FP in green and FN in blue,  in Fig.9.  

      

(a)                                                            (b) 

 

(c)                                                             (d) 

Fig. 9. Error maps for building extraction. False positive samples are 
rendered in green; false negative samples are rendered in blue. (a) and (c) 
are both for area 1 (different views); (b) and (d) are both for area 2.  

From the experiment results above, we could see that most 
of buildings in our test areas are extracted successfully, 
including the buildings with matching holes in Fig.4(b), except 
for some extremely small ones surrounded by clutters, e.g. the 
one inside the red ellipse in Fig.6(a). This demonstrates the 
effectiveness of the proposed method. Error maps in Fig.9 also 
reveal that the majority of extraction errors are located around 
the building borders. This is because: one the one hand, the 
MVS algorithm cannot reconstruct sufficient 3D points near 
building borders; on the other hand, building extraction is an 
inherently uncertain problem in some extent, and the border of 
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a building is sometimes hard to be defined accurately in a 
cluttered urban scene even by human. 

The three metrics (RR, R and OA) of our results measured 
on five manually labeled ground truth images are shown in 
TABLE I. We could see that all the metrics in different ground 
truth images and different areas are close and consistent. The 
overall accuracy in area 1 is 95.0%-95. 6%, and  96.2%-97.2 
for area 2, which is comparable with the data-fusion-based 
method reported in [12]. However, because of the lacking of 
accurate ground truth data for high resolution aerial image 
based building extraction and source code of other methods, we 
cannot find a suitable public dataset and  perform a full 
comparison with other state-of-the-art methods currently.  

TABLE I.  ACCURACY ASSESSMENT RESULTS 

Ground 

truth image 

ID 

Metrics (%) 

Recall Rate (RR) Reliability (R) 
Overall 

Accuracy (OA) 

Area 

1 

1 97.4 95.4 95.0 

2 98.5 95.2 95.6 

3 98.8 93.0 95.2 

Area 
2 

1 98.5 89.7 97.2 

2 97.2 91.3 96.2 

IV. CONCLUSIONS 

In this paper we propose an automatic urban building 
extraction method for oblique aerial images. Five steps are 
included in this method: point cloud generation, grid partition, 
feature extraction, building detection and building 
reconstruction. Taking advantages of recent progress in SfM 
and MVS, dense point cloud is generated first. Then we project 
the point cloud into a regularly spaced grid in XY plan, the 
building extraction problem is converted to an image 
segmentation one. By combining the strength of the geometric 
attribute and spectral (color) attribute, three features are 
extracted and a MRF based graph model along with an engine 
function is created. Points belonging to buildings are 
recognized by minimizing the function, and prismatic 3D 
building models are reconstructed accordingly. 

Although we attained a high extraction accuracy in this 
work, there did exist some extraction errors, especially near 
building borders and some small buildings surrounded by 
clutters. In addition, the reconstructed 3D building models are 
relative simple, and we would consider more complex and 
accurate building models in the future. Another issue is the 
testing of our method on a larger area, and comparing it with 
the other state-of-the-art methods systematically if possible. 
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