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Abstract—The ideal biometric template protection scheme
possesses the properties of irreversibility, revocability, unlinkabil-
ity, and good performance. These properties protect the security
of the biometrics system as well as users’ privacy. Practical
systems, however, fall short of this ideal. In this paper, we present
a novel protection scheme that achieves this ideal under the
circumstance that a subject’s token and his biometric template
are not concurrently exposed. Moreover, our scheme can add
template protection to any face verifier. We do this by rendering
virtual faces, rather than by devising new biometric features,
which is the more common approach. Experimental evaluations
using two public face recognition systems show that accuracy is
not adversely affected with our scheme.

I. INTRODUCTION

Like Personal Identification Numbers (PINs, by which we
also include passwords), biometrics has become a popular
method for identity authentication in order to control access
to a protected system or resource. Unlike PINs, however,
biometrics generally cannot be revoked, in the sense that
one cannot change one’s fingerprint when the fingerprint is
stolen, the way a PIN can. What can be revoked, however,
is the biometric template of the fingerprint that is stored in
a biometric authentication system. If the template is stolen, it
should be possible to invalidate the old template and replace
it with a new one so that security is not compromised: an
attacker cannot use the stolen template to gain access to the
protected resource, while the user should not be denied access
with the new template.

This research area, called Biometric Template Protection,
is seeing increased activity in recent years [1]. Note that
the biometric template typically does not store the actual
biometric sample (e.g. fingerprint image) of the user, but rather
the features extracted from the sample. These features are
subsequently used for matching against a database of features
from known individuals. Two recent papers [1,2] provide good
summaries of the key issues and open research questions. As
these authors have pointed out, the theoretical ideal template
protection scheme possesses these properties:

1) Irreversibility: the stolen template should not reveal
the identity, nor the biometric sample, of the user. This
protects the identity of the user.

2) Revocability: it should be relatively easy to invalidate a
stolen template and replace it with a new one. This pre-
vents the stolen template from being used to gain access
to the protected resource, while allowing the legitimate
user continued access.
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Fig. 1: Our template protection scheme adds a Face Renderer to
any black box Face Verifier to render a virtual face, guided by the
user’s token. This virtual face is easily revoked by changing the token
should the Verifier’s template become compromised.

3) Unlinkability: it should be computationally difficult to
determine whether two or more templates were derived
from the same user. This protects the privacy of the user,
who may be using the same biometric across different
applications.

4) Good performance: The accuracy of the authentication
system should not be decreased by the protection of
biometric templates.

Practically, achieving all the above properties simultane-
ously is difficult. Most existing systems that protect bio-
metric templates achieve irreversibility and revocability at
the expense of good performance. Moreover, these systems
typically devise new and sophisticated templates (and hence
features) to achieve the said goals. In other words, it is not
possible with these approaches to add template protection to an
authentication system without changing its features. And since
authentication accuracy is determined by the discriminability
of the features, these approaches invariably affect accuracy.
This trade-off between irreversibility, revocability, and good
performance thus appears insurmountable.

Note that one naive way to protect templates is to en-
crypt them. But this shifts the difficulties from biometrics
to crypto-key management, which may not be any easier to
solve. In this paper, we present a novel way to add template
protection to any authentication system by synthesizing virtual
biometric samples with the assistance of individual tokens.
Using virtual biometric enables our method to attempt to
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decouple performance from the other three properties. Our
method achieves irreversibility, revocability, unlinkability and
good performance, when a token and its corresponding virtual
biometric sample are never exposed at the same time. Since
most authentication system is performed offline, the pairwise
exposure of token and virtual biometric sample can be easily
prevented by timely removing any virtual data.

More concretely, we demonstrate our protection scheme by
adding a Face Renderer to a Face Verifier, which we treat as a
black box, and by adjusting the threshold for deciding between
Accept and Reject (Fig. 1). The Face Verifier never sees the
user’s real face, only the virtual face, which is rendered ac-
cording to some parameters stored in the user’s token. Should
the Verifier’s template be compromised, it is easy to revoke
the virtual face by changing the token. Also, by carefully
controlling how virtual faces are rendered, we can achieve all
the desired properties. As for the Face Verifier, we only require
it to output a similarity score, s ∈ [0, τ ], where τ , the maximum
possible score, means that the input face is “perfectly similar”,
and 0 means “completely dissimilar”, to the claimed identity.
For many practical systems, this requirement is easily satisfied.

Our template protection scheme makes two contributions:
(a) it possesses the properties of irreversibility, revocability,
unlinkability and good verification performance, in the case of
non-pairwise exposure of token and virtual biometric data; (b)
it may be added on to any Face Verifier, because it treats the
Verifier as a black box, requiring only that the Verifier outputs
a score between 0 and some maximum value τ .

II. RELATED WORK

According to the ISO/IEC Standard 24745 on biometric
information protection, a protected biometric template is typi-
cally divided into Pseudonymous Identifier (PI) and Auxiliary
Data (AD) [1]. Based on these components, existing template
protection schemes can be categorized into feature transforma-
tion approaches [3]–[5] and biometric cryptosystems [6]–[12].

For the feature transformation approaches, a given bio-
metric template, x, is first transformed using a non-invertible
function with known transformation parameters (i.e. AD), and
stored in the database as PI. During the authentication stage,
the query sample, x′, is transformed with the corresponding
AD to construct PI′, which is then compared with the claimed
PI. Example of such schemes include cancellable biomet-
ric [3,4] and Biohashing [5]. In [3], Bolle et al. introduced
the concept of cancellable biometrics, and demonstrated it
with signal domain distortion and feature domain distortion.
Savvides et al. [4] proposed a cancellable biometrics scheme
which encrypts facial images with correlation filters. They
show that convolution with any random kernel does not change
the correlation output peak-to-sidelobe ratios. Although this
approach preserves authentication performance [4], it can be
jeopardized if the convolution kernel is leaked. In BioHash-
ing [5], a template is protected via iterative inner products with
token-derived random sequences and multispace quantization.

In biometric cryptosystems, x is first registered to an
authentication system with a cryptographic key (i.e. PI) to
generate a user-specific helper data (i.e. AD). Given a query
sample x′, AD is used to reconstruct a new cryptographic
key, PI′, that is identical to PI if x′ is sufficiently similar

to x. Example of such schemes include the Fuzzy commit-
ment scheme [6], Helper Data System (HDS) [7,8], Fuzzy
vaults [9,11,13],and Secure sketches [12]. Juels and Watten-
berg [6] introduced the Fuzzy commitment schemes, where
an error-correction code is adapted to protect against fuzzy
variability or random noise present in x. The matching of PI
and PI′ was performed in the hashing domain for enhanced
template protection. In line with [6], Michiel et al. [7] proposed
HDS for face biometric, where six facial feature objects
were selected to construct a biometric template. Lu et al. [8]
extended HDS for a self-exclusion scenario. In the Fuzzy vault
scheme [9], the author introduced order invariance features
where key extraction can be achieved with unordered data
sets. Different from Fuzzy commitment scheme and HDS, the
Secure sketch method [12,14] produces a sketch (i.e. AD) of
a given x without an assigned key. The sketch allows reliable
reconstruction of the genuine biometric template if the query
belongs to the same individual. The key drawback for these
approaches is that the protected biometric template is restricted
to a particular authentication algorithm with a specified feature.

The method of Lee et al. [15] is closest to ours in that
it also uses virtual faces for recognition, achieved by altering
PCA and ICA coefficients. However, their virtual faces exhibit
low pixel resolution and obvious visual artifacts. Furthermore,
there is no mechanism to ensure all users are associated with
unique virtual faces. In contrast, our method protects facial
biometrics by generating a virtual distinguishable identity for
each individual, and which guarantees irreversibility, revoca-
bility, and unlinkability for any Face Verifier.

III. METHOD

Our protection scheme takes the approach of “feature
transformation”. More precisely, from the original input image
of a user’s face, x, we render (synthesize) a virtual face
image as PI, which is then input into the Face Verifier for
actual classification (Fig. 1). In effect, our Renderer creates a
virtual identity for each user, thereby protecting the user’s real
identity. This pairing of real and virtual identities is maintained
as AD in a user-specific token (until the next revocation), so
that every authentication attempt by one user always results
in the same virtual identity being rendered. When the virtual
identity needs to be revoked, it is first marked as invalid,
and then a new virtual identity is created, far away (in the
discriminative sense) from all other virtual identities in the
system. This guarantees that virtual identities never collide,
and verification accuracy remains high.

To achieve the desired rendering, we make use of
an orthogonal subspace decomposition technique called
MMDA [16], assisted by parameters stored in a user-specific
token (which maintains the said real-virtual pairing), see Fig. 2.
The advantage of using MMDA is its ability to separate
identity and non-identity variations, such as illumination, into
orthogonal subspaces. In turn, this permits independent manip-
ulation of subspace coefficients, from which a new face may
be rendered by doing MMDA back-projection.

A. Multimodal Discriminant Analysis (MMDA)

MMDA is a method that decomposes a dataset of face
images containing multiple appearance variations, also called
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Fig. 2: The key steps in our face transformation.

modes, (such as identity, illumination) into orthogonal sub-
spaces, and comprises these steps:

1) The dataset is firstly centered by their mean vector: X =
[x0 − µ, x1 − µ, . . . ,xn − µ], µ = 1

n

∑n
i=0 xi;

2) The data is whitened so that its scatter matrix S equals the
identity matrix I: X̂X̂T = I. The whitening procedure is:
X̂ = P TX, where XXT = UDUT and P = UD−

1
2 ;

3) Linear Discriminative Analysis (LDA) is then applied
onto each mode;

4) Then a matrix is formed as V = [V1, V2, . . . Vn], where
Vi are the eigenvectors (with unity eigenvalues) for
mode i, by LDA;

5) To decompose a vector, we use:

y = V TP Tx (1)

The vector y contains the coefficients of each mode.
6) To render (back-project), we use:

x = PrV y (2)

where Pr = UD1/2 undoes the whitening of P .

MMDA has the beneficial property that bases of different
modes are orthogonal to each other, that is, V T

i Vj = 0
(see [16] for more details and a proof). This property enables
us to edit features in one mode without affecting other modes.
In our proposed scheme, which works on frontal face images
exhibiting neutral facial expression, we use only two modes:
identity and illumination. Using Eqn. (1), we decompose any
face image x into its identity and illumination subspaces. The
coefficient vector y looks like: yT = [ yid , yillum , r ], which
are vectors controlling the identity, illumination, and residual
coefficients, respectively (see [16] for more details). In turn,
these coefficients may be altered to create virtual identities or
illuminations. The altered y is then synthesized into a face by
the back-projecting Eqn. (2).

B. Virtual identity for authentication

1) Virtual identities: To better understand how virtual
identities may be synthesized, we analyze yid for a subset
of 1928 face images from the Multi-PIE dataset. We discover
that changing the magnitude of the identity vector does not
change its perceived identity, but rotating the vector does, as
exemplified in Fig. 3.

Inspired by the analysis, we generate a series of orthogonal
cluster centers for different users as shown in Fig. 4. Each
cluster center corresponds to one virtual identity. In the identity
subspace where 2-norm is equal to α (0.4 in our experiments),
cluster centers are generated one at a time by selecting a
random vector from the left nullspace of existing cluster

0.50.40.3

Fig. 3: Examples of virtual faces: All the faces lie in the same 2D
plane in d-dimensional identity space. Faces A0, A1, A2 differ only
in their 2-norm (i.e. 0.5,0.4,0.3, respectively). Faces A0, B, C, D
lie on a hypersphere of radius 0.5, separated by an angle of π

4
.

C1

C2

C3

Fig. 4: Example of cluster centers in identity space: C1, C2, C3 are
three cluster centers that are orthogonal to each other. Their 2-norms
are equal to 0.4.

centers. This guarantees that cluster centers (and hence virtual
identities) are 90◦ apart, making them maximally discrim-
inable, which is the ideal case.

In a d-dimensional identity subspace, there are at most d
orthogonal directions, and hence at most d cluster centers that
are maximally discriminable. Since each cluster center corre-
sponds to a virtual identity, our scheme can only create d vir-
tual identities in the ideal case. When this limit is reached, we
may still continue to generate new cluster centers as follows:
(i) Randomly select two existing orthogonal cluster centers ci
and cj ; (ii) Generate a new cluster center: c = − 1√

2
(ci + cj).

This increases the number of possible cluster centers from d
to d(d+1)

2
. But now the angle between any two clusters may

only be 60◦, possibly reducing discriminability.

2) Real-virtual pairing: We had said that every real user
is paired with a virtual identity. This is achieved by means
of a user-specific rotation matrix R, which is stored in the
user’s token, when enrolling or revoking that user. To enroll
or revoke a user, do:

1) Decompose the user’s gallery images using Eqn. (1).
2) Normalize all identity vectors, ‖yid‖ = α.
3) Compute the mean identity vector, ȳ, over all normalized

identity vectors.
4) Determine a new cluster center c by the method described

in the Section III-B1. Assign this cluster center to the user
by marking it as “Used”.

5) Compute the rotation matrix R such that c = Rȳ.
6) Store R in the user’s token.

Our Face Renderer remembers all the assigned cluster centers.
Note that cluster centers are not stored in the user’s token, but
only in the Face Renderer.
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C. Discussion

In the following, we visit the properties of the theoretical
idea template protection scheme.

1) Irreversibility: In our proposed scheme, it is clear that
the token information, i.e. the rotation matrix, does not reveal
the original identity; it is merely a d × d matrix, and not a
face image. And as will be shown in Section IV, the virtual
face does not resemble the original face from which it was
derived. It is also clear that knowing one cluster center reveals
only the virtual face, and not the original face. Furthermore,
knowledge of one cluster center c does not reveal the other
cluster centers, since there are many directions orthogonal to
c. Thus, our scheme is irreversible.

2) Revocability: Revocation in our proposed scheme is
also straightforward. When a user wishes to revoke his virtual
identity, we first mark as invalid his current cluster center.
Then we generate a new cluster by the method described in
Section III-B1, compute the new rotation matrix, and update
the user’s token. It is clear that revocation time is dominated
by the generation of a new cluster center, i.e. calculating the
left nullspace of a d× d matrix. This takes O(d3) time.

Suppose Nuser users have been enrolled. Then our Face
Renderer can only handle at most d(d+1)

2
− Nuser revocations.

This constraint is reasonable, because it is expected that
verification accuracy will decrease with increasing enrollment.
One simple way to postpone hitting the revocation limit is
to recycle invalid cluster centers, simply by marking them as
valid. This is clearly feasible, but at the cost of some overhead
to keep track of the status of cluster centers.

3) Unlinkability: Unlinkability means that the virtual iden-
tities for an individual across different applications should
be different. This property can be easily achieved by using
different cluster centers in different applications. Since the
pairing of a cluster center to each user depends on the order
of enrollment, and on how a vector from the left nullspace
is chosen, the probability of having the same cluster center
for the same user is very low. Moreover, if we train a different
MMDA model with an identity space of dimension d′ 6= d, then
cluster centers across different applications are guaranteed to
be different.

4) Performance: Our protection scheme strives to maintain
verification accuracy by keeping cluster centers as far apart as
possible from one another. This is done by keeping the angle
between two cluster centers to 90◦ ideally, or at least 60◦ if
more virtual identities are required. The experiments in the
next section corroborate this point.

IV. EXPERIMENTS

We evaluate our template protection scheme on two pub-
licly available face recognition systems, OpenBR [17] and
OpenFace [18], using images from the Multi-PIE dataset [19].
We select 249 individuals, each having several frontal face
images under different illuminations. Out of these, 161 individ-
uals with 6 different illuminations are used to train an MMDA
model with identity and illumination modes. For the remaining
88 individuals, 5 images are used as galleries and 6 are used as
probes. In order to increase the number of genuine probes, we
augment 45 more probe images for each individual by taking

TABLE I: Equal Error Rates of OpenBR and OpenFace in Normal
and Stolen-token scenarios.

OpenBR OpenFace

Normal Scenario
Original Faces 0.024 0.020
Virtual Faces 0.016 0.028
Virt. vs. Orig. Faces 0.035 0.044

Normal Scenario
(color background)

Original Faces 0.021
Virtual Faces 0.023
Virt. vs. Orig. Faces 0.047

Stolen-token Scenario 0.018 0.031

a weighted sum of the MMDA feature vectors from any two
existing probes, v′ = βv1 + (1 − β)v2 (β ∈ {0.25, 0.5, 0.75}),
and then by back-projecting these new features into images.

OpenBR [17] is an open source framework that supports
face recognition, age estimation and gender estimation. It
implements the 4SF [20] algorithm, and computes a similarity
score when given two input images. In our experiments, the
score, s, of a probe against an enrolled user is the average
of the scores when the probe is compared with all 5 galleries
of the user. This limits the score to the range 0 ≤ s ≤ 24.
OpenFace [18] is an implementation of face recognition using
deep neural networks. In our experiments, we use its pre-
trained model to extract a 128-dimensional feature vector for
each face image. During enrollment, the template for each user
is formed by averaging the feature vectors of its 5 galleries.
Since the feature vectors by OpenFace are normalized, we
evaluate the similarity of a probe v and an averaged template
t by: s(v, t) = 2− ‖v− t‖. This means 0 ≤ s ≤ 2.

We emphasize again that our protection scheme treats
OpenBR and OpenFace as black boxes, i.e. we do not require
knowledge of the Verifiers’ internal descriptors or algorithms,
nor do we modify any code therein. But if we do know the
Verifiers’ inner workings, we may exploit such knowledge to
further reduce their Equal Error Rate (EER).

A. Evaluations

We evaluate our protection scheme under three scenarios:

1) Normal Scenario: In this scenario, each user is allocated
a personal token during enrollment, in which is stored the user-
specific rotation matrix R. This matrix is used to transform
both gallery and probe images of the user (see Section III).

During verification, each original image is used both as
genuine and imposter probes, while each augmented image
serves only as genuine probes. This results in 4488 genuine
and 45936 imposter comparisons for our experiments, from
which we determine the pdfs of the similarity scores for both
genuine and imposter probes. In addition, we also calculate
the EER, as follows: (1) A series of thresholds θ are set
to determine corresponding False Accept Rates (FAR) and
False Reject Rates (FRR). The FAR and FRR are obtained
by: FAR(θ) =

Nimp(s≥θ)
Nimp

and FRR(θ) =
Ngen(s<θ)

Ngen
, where Nimp

and Ngen are the number of imposter comparisons and genuine
comparisons respectively; (2) EER is the value of FAR when
it equals to FRR for the same θ.

As a baseline, we seek to know the performance of both
Face Verifiers on original (i.e. not virtual) faces. The base-
line EERs are 0.024 and 0.020 for OpenBR and OpenFace
(Table I), respectively, and the corresponding score pdfs are
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(c) OpenFace - color background
Fig. 5: The pdfs of similarity scores for (a) OpenBR, and (b) OpenFace, in Normal and Stolen-token scenarios. The blue dotted lines show
the pdfs for the scores on genuine probes using original face images, while the green dotted lines show the score pdfs for original imposter
probes. The blue and green solid lines show the corresponding pdfs using virtual faces as probes. The red lines show the comparison between
virtual faces and their corresponding original faces. The black lines show the scores for imposter probes in the Stolen-token scenarios.

Fig. 6: Top row: Original faces of Fig. 8 with colored background;
Bottom row: Corresponding virtual face with colored background.

plotted in dotted lines (blue for genuine probes, green for
imposter probes) in Fig. 5(a) and (b). When we apply our
template protection to OpenBR and OpenFace, all galleries
and probes are transformed into virtual faces, and this shifts
the pdfs, as may be seen in the solid blue and green lines
in Fig. 5(a) and (b). The EERs also change to 0.016 and
0.028 (Table I). This is a 33% performance improvement for
OpenBR, but a 40% degradation for OpenFace. Although this
seems large, the absolute value of EER is still under 0.03,
i.e. 3%, which is still considered low.

Thus far we are treating both Verifiers as black boxes, not
knowing their internal workings. This ignorance is sufficient
to improve the EER of OpenBR, but alas, not for OpenFace.
Might we do better with more knowledge? Indeed. To pursue
this idea, we exploit the fact that the OpenFace algorithm
is well known. In particular, we observe that OpenFace’s
cropping of face image is not sufficiently tight: some non-face
background may be seen in the cropped image. We exploit
this fact by tweaking our Face Renderer to render user-specific
colored backgrounds. Examples are shown in Fig. 6.

We re-ran our experiments using colored backgrounds. This
time, OpenFace’s EER only increased from 0.021 to 0.023,
a mere 10% degradation (see Fig. 5(c) and middle section
of Table I). Moreover, when comparing such colored virtual
faces against their originals, the EER increased (as it should)
to 0.047, confirming that virtual faces do not resemble their
originals.

One obvious question is: does our virtual face resemble
its original face? Perceptually, there is no resemblance, as the
examples in Fig. 8 show. This is also reflected in the red pdfs
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Fig. 7: Error rates vs. revocations

in Fig. 5(a), and (b). These pdfs show that virtual faces appear
as imposters when compared against the original galleries.
The EERs are also higher: 0.035 for OpenBR, and 0.044 for
OpenFace, demonstrating that our virtual faces do not look
like the original faces from which they were derived.

2) Stolen-token Scenario: This scenario is designed to
evaluate the security of a user’s virtual identity when his token
is lost. A secure token should not leak any identity information,
whether (i) the original face, or (ii) the virtual face. Since our
tokens store only the user-specific rotation matrix and not the
original face image, there is no leakage of (i). To evaluate (ii),
we proceed as follows:

First, all users are enrolled and allocated with user-specific
tokens, as in the Normal scenario. Then one user’s token is
exposed, and all other users attempt to use the exposed token to
impersonate the victim. Every user takes turn at being victim.
We record the similarity scores for all these impersonation
tests, and plot the pdfs in black in Fig. 5(a) and (c). It is
clear that both black curves approximate the solid green curves,
i.e. stealing a token is the same as regular impersonation. This
is also corroborated by the EERs: 0.018 for OpenBR, and
0.031 for OpenFace, which are comparable to the EERs for
virtual-face impersonation (last row of Table I).

3) Revocation Scenario: Revocation happens when a user
wishes to change his token, whether or not his token is
compromised. A secure revocation should not only replace an
old token with a new one, it must also ensure that the old token
can no longer be used (whether by the same user, or by others).
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Fig. 8: Face examples. The first two columns show the original and
corresponding virtual faces, respectively. Subsequent columns show
virtual faces in different revocation sessions.

To achieve this, we mark as invalid the cluster center pointed
to by the old token (using the rotation matrix), generate a
new cluster center, and then update or replace the token with
the new rotation matrix. If the user attempts to use his old
token, his input face will be projected to the invalid cluster
center, and our system can flag this anomaly. If someone else
tries to use the old token, this will show up as a Stolen-token
impersonation attempt, which will not succeed, as discussed
in the previous section.

To evaluate this scenario, we do the following. (1) Enroll
all users as in the Normal scenario; (2) Randomly choose one
user and revoke his token; (3) Test the system with genuine
and imposter probes to determine the FAR and FRR. Steps
(2) and (3) are repeated up to 200 times, after which we plot
the FAR and FRR vs. the number of revocations (Fig. 7). The
purpose is to assess how multiple revocations affect error rates.
A user may be multiply revoked because of Step (2).

In the figure, the red lines show the FAR (solid) and FRR
(dotted) for OpenFace. Both lines start at the EER (because
we set the decision threshold θ to achieve this), and then
fluctuate within a narrow range (about 0.01) as the number
of revocations is increased. In fact, FRR decreases slightly.
This indicates that the error rates for OpenFace are relatively
stable and unaffected by revocations. Not so for OpenBR.
In the same figure, the green lines show the FAR and FRR
for OpenBR. Here, it is clear that FAR increases but FRR
decreases with more revocations. We observe the same trend
in the blue lines, which are the FAR (solid) and FRR (dotted)
for OpenBR when we start at FAR=0.008 (by adjusting θ).
We surmise that this behavior is because OpenBR is sensitive
to cluster centers becoming closer to one another. The latter
phenomena is due to the fact that our system has a capacity of
72 revocations, after which cluster centers are generated only
60◦ apart, down from 90◦ (see Section III-C).

V. CONCLUSION

To the best of our knowledge, our template protection
scheme is the first of its kind. This ability to guarantee irre-
versibility, revocability, and unlinkability for any Face Verifier,
while maintaining good verification performance, has not been
reported in the literature. We achieve this by rendering user-
specific virtual faces, which are carefully placed far apart from
one another in MMDA’s identity subspace. While our experi-
mental results on OpenBR and OpenFace are encouraging, it
would be nice to provably guarantee that performance will not

worsen for all Face Verifiers. We intend to pursue this in future
work. Another area of improvement is to remove the capacity
limit (see Section III-C) in our scheme, so that infinitely
many revocations are permitted. Still another improvement is
to guarantee irreversibility when both the token and virtual
face are stolen.
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