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Abstract—Online 3D reconstruction has been an active re-
search area for a long time. Since the release of the Microsoft
Kinect Camera and publication of KinectFusion [11] attention
has been drawn how to acquire dense models in real-time. In this
paper we present a method to make online 3D reconstruction
which increases robustness for scenes with little structure infor-
mation and little texture information. It is shown empirically
that our proposed method also increases robustness when the
distance between the camera positions becomes larger than
what is commonly assumed. Quantitative and qualitative results
suggest that this approach can handle situations where other well-
known methods fail. This is important in, for example, robotics
applications like when the camera position and the 3D model
must be created online in real-time.1

I. INTRODUCTION

The ability to create 3D models from image streams has
been an active research area for decades. This is known
as Structure from Motion, (SfM), in the computer vision
community and as Simultaneous Localization and Mapping,
(SLAM) in the robotic community. The typical pipeline in
SfM is to find a number of key points in a set of images.
Thereafter one tries to optimize the position of the 3D points
and the configuration of the cameras. Often Structure from
Motion only gives a sparse point cloud. With stereo methods
it is possible to create a depth map and a dense 3D model
instead of a sparse point cloud.

However, since 2010, depth sensors like the Microsoft
Kinect and the Asus Pro Live Sensor has grown more and
more popular. The ability to create a depth map for each
frame greatly simplifies the problem of creating dense 3D
models. Consequently, a lot of research have been done on how
to generate dense and accurate models using the information
from these sensors.

The applications for these techniques are many. For exam-
ple one can create a dense 3D model of a room to make
measurements. Potentially one would also be able to refurbish
the model with different furniture and other items. Robot
navigation is another application where both the pose of the
camera and the model itself are useful. The robot can use the
current position of the camera for localization and the model
for path planning.

1This work has been funded by the Swedish Research Council (grant no.
2012-4213), the Crafoord Foundation and Scientific Research Council, project
no. 2012-4215.

The most prominent paper regarding 3D reconstruction with
depth sensors is probably KinectFusion [11]. The authors
showed that it is possible to create dense models of medium
sized rooms in real-time using GPU computations. To achieve
this they use a Truncated Signed Distance Function, (TSDF),
to represent the model as in [7]. To find the camera pose they
perform ICP [3] on a global point cloud obtained from the
TSDF and the new point cloud obtained from the new depth
image.

Since then, a lot of papers have been published about
creating 3D models using depth sensors. In [13] the camera
pose is found by maximizing photo consistency between
two consecutive images. This was later improved in [8],
however, no 3D model is created. Other methods build on
KinectFusion such as [17] which is capable of creating larger
scale reconstructions using a rolling volume. Also [5] and [6]
are an extension of KinectFusion which improve the track-
ing compared to KinectFusion. The difference between the
latter two and KinectFusion is that no ICP is performed.
Instead the distance and texture information in the TSDF is
used to directly optimize the camera position. Evaluation on
benchmarks [16] shows that this improves the pose estimation
significantly. In [5] geometry alone was used, while [6] also
takes color information into account as well, which improves
accuracy and robustness for planar scenes.

In [14], which is [8] and [15] put together, they obtain a
dense 3D model using the tracking from [8]. The evaluation
on [16] shows impressive results, but it should be noted that
it is really an offline method. The 3D model is not created
until all images are captured and the camera pose optimized
by using loop-closure and other techniques. Even though the
tracking itself might be real-time and the creation of the 3D
model equally fast, it is still an offline method. Offline methods
have the advantage that they acquire all images before the
model is created. This makes it easier to reduce drift of the
estimated camera movement using loop-closure and bundle-
adjustment for example. In contrast, KinectFusion [11], [5]
and [6] for example, solve the online problem. That is,
the model is created as new images are obtained which is
significantly harder. This is because to reduce drift over larger
sequences one must be able to detect it and correct the model
and estimated pose as images are captured. This is still an
open problem and to our knowledge, [18] is so far the only
paper with an approach to handle loop-closure in an online
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method.
The papers mentioned above perform tracking either by

using some form of photo consistency or by using the 3D
model itself. Some use only geometry [11], [5], others use
only color [13] and some use both color and texture [6], [8]
and [18]. The advantage of using both color and geometry is
that it can increase accuracy and robustness. For example in a
planar scene with plenty of texture, the camera pose can still be
estimated if color information is used, but not if only geometry
is used. Conversely, in a scene with plenty of structure but
hardly any texture, the tracking must be geometry based to
work.

In this paper we go a step further and extend [6] by invoking
additional information in the form of sparse feature points
to improve robustness even more. The approach is to find
correspondences between the new image and recently taken
images to create an error which is independent of the 3D
model. The advantage with this is that in some scenes the
3D model does not provide enough information to recover the
pose, but typically you can find feature points under many
circumstances. Then this new error term helps to find the
correct camera position.

We show experimentally that we can handle planar scenes
with little texture where [6] fails. Moreover, it is common to
assume that the distance between two consecutive images is
small. In this paper we will see that we are less reliant to this
assumption, making the algorithm more robust.

II. CREATING THE 3D MODEL

In this part we describe briefly our approach for creating the
3D model, assuming that the global rotation and translation of
the camera is known. We rely on the method proposed by [7].
The main idea is to represent the model implicitly by the zero-
level in a TSDF. To represent the TSDF one can either use
a uniform grid such that all voxels are equidistant to each
other, or one can use an octree like representation as in [6].
The former is easy to implement but requires a lot of memory,
while the latter is more memory efficient and allows for larger
reconstructions. In this paper we choose a uniform grid for
simplicity.

Each voxel V contains information about the distance to the
surface, D, a weight of the distance measurement, W , color
information for texture, (R,G,B), and a weight of the color
measurements, Wc.

The voxels can be thought of as lying in a 3-dimensional
matrix with indices (i, j, k). Hence, we denote a voxel V at
position (i, j, k) as Vijk. The data in each voxel will also be
denoted with subscript, for example with Dijk we mean the
distance at voxel (i, j, k).

A. Estimating the TSDF

Given a new depth image Id and a color image Ic, we
must integrate this information into our voxel grid in order to
update each voxel about the distance between the voxel and
the surface.

Fig. 1: By computing the difference between xL and yL along
the optical axis we get an approximation of the projected point-
to-point distance.

For each voxel Vijk we can compute the 3D-coordinates
in the global frame since the voxels are fixed in space. With
the known rotation R and translation t of the camera we can
compute the local 3D coordinates for the voxel in the camera’s
frame of reference

xL = (xL, yL, zL) = RTxG −RT t. (1)

Now the voxel can be projected onto the image plane by

px =
fxxL
zL

+ cx

py =
fyyL
zL

+ cy, (2)

where fx, fy , cx and cy are intrinsic camera parameters. Using
these pixel coordinates and the depth image Id, it is possible
to read the depth for the surface point by

z = Id(px, py). (3)

We can now estimate the distance as the difference

d = zL − z, (4)

which is the distance between the points along the optical
axis. This metric is known as the projective point-to-point
distance [4], and the method is illustrated in Figure 1.

This simple metric can sometimes give bad estimates. To
handle this we truncate the measured distance at a threshold
δ by

dtrunc = max(−δ,min(d, δ)) (5)

and apply a weight w(d), for the measurement as in [5].
With this we get an estimated weighted and truncated

distance

w(d)dtrunc. (6)

By doing this for all voxels we get a measurement for each
voxel. However, we get information about the distances from
all acquired depth images and therefore we need to integrate
them into the voxel grid. In [7], this is handled by computing
the weighted average of all measurements for each voxel:

D =

∑N
k=1 w(dk)d

trunc
k∑N

k=1 w(dk)
. (7)
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This makes it easy to integrate a new depth image into the
TSDF since we can compute the weighted running average
for each voxel.

Similarly, we can compute the color for each voxel. This
is done by extracting the RGB-vector from the corresponding
color image

(r, g, b) = Ic(px, py). (8)

As a weight for the color measurement we take

wc = w(d) cos(θ), (9)

where θ is the angle between the optical axis and the surface
point. Similarly as in (7) we can compute the weighted average
of the color for each voxel. This is how we integrate a depth
and color image into our TSDF, assuming the global rotation
and translation of the camera is known.

III. ESTIMATING THE CAMERA POSE

In this part we describe in detail how the pose of the camera
is estimated. Our paper builds on [6] and we give a brief
description of the entire pipeline of [6] to simplify for the
reader.

The main idea in [6] is to directly use the distance informa-
tion in the TSDF together with the color information in order
to recover the camera position.

Assume that after N images we have a representation of the
3D model through the TSDF. Now we get a new image pair
(IN+1

d , IN+1
c ). With the depth image IN+1

d we can reconstruct
all 3D points in the camera’s frame of reference by calculating
for each pixel (i, j)

xL =


(i−cx)z

fx
(j−cy)z

fy

z

 . (10)

With a guess of the global rotation R and translation t of the
camera, we can obtain a guess of the global coordinates of xL

by

xG = RxL + t. (11)

Thus we can reconstruct the point cloud into the TSDF as
shown in Figure 2. Most likely the guess of the camera con-
figuration is incorrect so the points will not be reconstructed
on the surface. Moreover, we can extract color information in
the model at xG. This color information can be compared to
the corresponding rgb-vector in Ic(i, j).

Using this we get a geometric error

g(Rxij + t) (12)

where xij is the local 3D point at pixel (i, j) and g is a
function that performs trilinear interpolation of the distance
value in the TSDF at Rxij + t, as depicted in Figure 2. We
also get the color error

h(Rxij + t) = ‖C(Rxij + t)− Ic(i, j)‖, (13)

Fig. 2: Given an estimated model we can reconstruct the point
cloud from the new depth image into the TSDF, using a guess
of the rotation and translation of the camera.

Fig. 3: The reconstructed texture should ideally be aligned to
the texture on the model.

where C(Rxij+t) is the interpolated color vector in the model
at Rxij + t and Ic(i, j) is the color vector at pixel (i, j). The
error is shown in Figure 3. Using this we can minimize

E(R, t) =
∑
ij

g(Rxij + t)2 + αh(Rxij + t)2 (14)

to find the correct pose.
The combination of distance and texture information signif-

icantly improves the robustness of the tracking compared to
just using geometry, which was shown in [6]. However, one
can easily imagine scenes like corridors or walls where there
is little and diffuse texture. In those cases, [6] is unlikely to
work since it requires sharp texture on the model.

Therefore, in this paper we add one additional error term,
which shall improve robustness for these situations. The idea
is to find corresponding key points between the image pair
(IN+1

c , INc ). This is illustrated in Figure 4.
The advantage of invoking these sparse feature points is

that they are not dependent on the model and often feature
points are easy to find. Under circumstances where there is
not enough information in the model to recover the pose, the
sparse feature points can still provide enough constraints to
recover the rotation and translation. Another advantage is that
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Fig. 4: Finding corresponding points between the newly cap-
tured image and previous images with known camera position
we can compute an error to minimize.

there exists robust algorithms to find feature points and reject
outliers in the matching of the key points in different images.

There exist several methods to find these feature points in
an image, for example SIFT [9] and SURF [2]. We choose
to work with SURF since it is faster than SIFT and to reject
outliers we use RANSAC, which we have found empirically
to work reliably.

It is also beneficial to use these feature points when finding
R and t because the distance between the camera positions
does not matter when only using corresponding point pairs. In
contrast, it is often assumed that the camera motion is small
in works like KinectFusion [11], [12] and [6]. By using these
feature points, the algorithm should become more robust in
situations where the distance between two camera positions
are longer than commonly assumed.

Given a new image IN+1
c , we can find feature points

in IN+1
c and INc . A 3D point pN+1

i in IN+1
c then has a

corresponding 3D point qN
i in INc . Since we know the camera

configuration for frame INc , qN
i is represented in the global

frame of reference. The 3D coordinates pN+1
i are in the local

frame. What we want to minimize is then

EN+1,N (R, t) =
∑
i

‖RpN+1
i + t− qN

i ‖2. (15)

Doing the same for the image pair (IN+1
c , IN−k

c ), k = 1 . . .K,
we get a set of corresponding 3D points for each image pair.
With these points alone we can define the error function

E(R, t) =
∑
k

EN+1,N−k(R, t). (16)

Here we sum over all found corresponding 3D points. qk

is a 3D point found in any of the images INc , . . . , I
N−K
c

By combining (14) and (16) we get an error function which
combines the information from the TSDF with the error from
the corresponding feature points that is independent of the
current model. Our new error function thus becomes

E(R, t) =
∑
ij

g(Rxij + t)2 + αh(Rxij + t)2+

µ

K∑
k=0

Lk∑
l=0

‖Rxk
l + t− yk

l ‖2. (17)

Here α and µ are the weighting of the different error terms.

(a) Reconstruction of a
corridor using [6]. In
this scene one goes out
of a room into a corri-
dor and goes straight in
the corridor for about
5-6 m. In this recon-
struction the corridor is
not straight which in-
dicates an incosistent
tracking.

(b) Reconstruction of
the same scene as in
(a) using our proposed
method. As can be
seen the reconstruction
is longer and more
straight and looks more
like a scene from a cor-
ridor.

Fig. 5: Comparison between [6] (left) and our proposed
method (right).

By using the Lie-Algebra representation [10] of the rotation
we can minimize (17) using the Gauss-Newton method.

IV. QUALITATIVE RESULTS

To test our proposed algorithm, we start with recording
different datasets and test our method on them. In the first
experiment we make a recording where the camera is facing
the floor. The sequence contains almost no texture and the
scene is completely planar. This makes it very challenging,
but for example in robot navigation it is important to be able
to handle such situations. The sequence recording starts in a
room and then it goes into the corridor with a left turn and
then it continues in the corridor 5-6 meters. The result for this
experiment is shown in Figure 5. As can be seen in Figure 5a,
the reconstruction is smaller and looking at the blue squares in
the lower left corner the squares are badly reconstructed. This
is because when the camera only faces the floor and there is
no sharp texture, the algorithm has problem finding the motion
between the frames. In contrast, the reconstruction in Figure 5b
is larger because it manages to recover the trajectory even
when there is no sharp texture. The left turn is also visible
and the squares in the blue pattern are better reconstructed.
Also one sees in Figure 5b that the floor could lie in a corridor,
whereas in Figure 5a the reconstruction is not straight enough.

It could be questioned, why should texture information
in the model be used at all? Feature points give constraints
for obtaining the pose when the scene is mostly planar. We
tested our algorithm on a sequence where we recorded a
poster with plenty of texture. Figure 6a shows the result
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(a) Reconstructed poster using sparse feature points
alone. One sees that drift has occured on the letters
on the title for example.

(b) Here both information from the model is used
together with feature points. The resulting recon-
struction is much sharper.

Fig. 6: Comparison between using only feature points and using both feature points and model information. For this sequence
just using feature points is not enough.

(a) Without using feature points
there is not enough texture to re-
cover the trajectory, one sees clearly
that drift is present.

(b) Including feature points as well
gives a more accurate result for this
sequence.

Fig. 7: In this sequence one can see drift in the left figure, for
example the yellow box in the lower left corner is duplicated.
In contrast the right reconstruction is sharper, indicating that
the pose is better estimated.

using only feature points and Figure 6b shows when one
combines both model information and sparse feature points. It
is clear that drift occurs when only feature points are used. In
contrast, when using information from the model as well, the
resulting reconstruction is very sharp which is an indication
that the estimated pose of the camera is very accurate. This
shows that the information from the 3D model in the TSDF
clearly decreases drift. However, as seen in Figure 5a, there is
not always enough information in the 3D model to recover
the pose. For these experiments the weights α = 0.4 and
µ = 0.75 were used. In a third experiment we made a
recording of a blackboard with not so much texture. As seen

in Figure 7a, the texture information is not enough to recover
the pose. Instead one sees that the yellow box in the lower
left corner is duplicated. In contrast, invoking sparse feature
points gives a satisfactory result as shown in Figure 7b. Here
the reconstruction is more detailed, which indicates that the
found pose is accurately estimated. To get this, µ was set 3.0
and α = 0.4.

These experiments show that just using the texture and
distance information in the model is not always enough to
estimate the pose correctly. However, there are also scenarios
where the information in the TSDF is crucial to reduce drift,
as in Figure 6b. For applications where robustness is crucial
and one might face scenes with little texture and geometry
information, one should include as much data as possible.

V. QUANTITATIVE RESULTS

In this part we evaluate our algorithm on some benchmarks
from [16]. In particular, we will compare our new method
to [6] where we simulate faster camera motion. We do this
by taking every k:th image in the datasets, starting with
k = 1. This will test how well we perform when the camera
has moved longer between each frame. As can be seen in
Table I, our proposed method does not drift away as quickly
as [6] does when k is increasing. For example in the dataset
Teddy, invoking SURF points makes it much more robust and
gives decent results when only using every 4-th frame. In
contrast, [6] fails already when using every 2nd frame. This
shows that the robustness increases when the camera motion
is faster if sparse feature points are included. The weights
used in this experiment was α = 0.4 and µ = 0.75 and the
number of voxels was 5123. On the benchmarks, the frame rate
was about 4-5 Hz using a resolution of 5123 voxels and the
images of size 640 × 480 pixels. For the recorded sequences
the frame rate was about 16-17 Hz with the same number of
voxels but with images of resolution 320 × 240 pixels. The
computer used was a Intel i7, 3.4 GHz and 16 GB of RAM.
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aaaaaaaaa
Dataset

Step Size k

1 2 3 4 5 6

Teddy [6] 0.059 0.473 0.656 1.142 1.098 0.990
Teddy Our 0.060 0.059 0.067 0.065 0.274 0.268
Desk2 [6] 0.117 0.302 0.442 0.820 0.715 0.991
Desk2 Our 0.058 0.083 0.526 0.317 0.289 0.507
360 [6] 0.131 0.288 0.773 1.419 1.774 1.939
360 Our 0.102 0.010 0.206 0.581 1.493 1.254
Plant [6] 0.045 0.069 0.290 0.351 0.448 0.531
Plant Our 0.047 0.046 0.215 0.348 0.111 0.548
Desk [6] 0.032 0.051 0.094 0.244 0.422 0.603
Desk Our 0.032 0.033 0.037 0.045 0.100 0.320

TABLE I: Results on the benchmarks from [16]. We use every k-th image and compute the RMSE (m) to test the robustness
for bigger distances between two consecutive frames.

The graphics card used was an NVidia Geforce GTX 770.
The methods from [6] were run on the GPU. Our extension
with finding corresponding feature points is not run in parallel.
The speed can potentially be improved by using parallelization
and maybe using GPU implementations of SURF or SIFT.
In [5] it was shown that our original method outperformed
KinFu [1]. For a more detailed evaluation for other methods,
please see [5] and [6] .

VI. CONCLUSION

In this paper we have shown that including an additional
error term using sparse feature points to [6] significantly
can increase the robustness in situations where there is little
geometric scene structure and texture information. Experi-
ments also suggest that additionally using sparse feature points
increases accuracy when the distance between two consecutive
images becomes larger. A clear drawback is that the weights α
and µ must be set manually. For practical applications, it would
be beneficial if the weights could be tuned automatically.
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