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Abstract—We introduce a novel hybrid camera configuration
composed by a fisheye camera attached to an RGB-D system.
Current RGB-D sensors provide the 3D information and scale
of the scene, but they are limited by a small field of view. In
contrast, wide field of view cameras capture a larger portion
of the scene, but providing highly distorted images that require
specific algorithms. By coupling a fisheye camera to an RGB-D
system we take advantage of both types of cameras overcoming
their drawbacks. The system provides a portion of the fisheye
image with depth data and we use this seed information to
perform scaled operations in the complete image. We also present
a calibration procedure of the system to map depth information
to the wide angle image. With this purpose, we propose a
depth-fisheye calibration algorithm nurturing from state of the
art camera models and methods. Several experiments test the
accuracy of the system with real images.

I. INTRODUCTION

The development of cheap RGB-D cameras in the con-
sumer market has been a breath of fresh air in the fields
of robotics and computer vision. With them it is possible
to retrieve the 3D of the scene simultaneously with the
RGB image, with a single device and no extra computational
cost. But the color camera specifications can fall a bit short
depending on the application, which led some researchers to
enhance the system with an external camera in order to get
higher resolution images [1]. Here, we propose to substitute
the conventional RGB camera (Fig. 1a) with a fisheye camera
to increase the field of view (FoV) of the system (Fig. 1b).
In many robotic applications where the perception of the
environment is relevant, a wider FoV can be useful to reduce
the required number of images and the computational cost.
We have attached a fisheye camera to the RGB-D sensor
(Fig. 1c), and both devices have been calibrated in order to map
the depth information to the fisheye camera image (Fig. 1d).
Although there is a great difference in FoV between both
devices, the portion of the image with shared information can
be highly valuable for some applications such as [2]. Up to
our knowledge, this is the first work combining both types of
cameras. As a result, currently there is no available tool to
calibrate this hybrid camera system.

In this work, we present the procedure to perform the
calibration of this new device, including the intrinsic and
extrinsic calibration of both fisheye and depth cameras. Fish-
eye cameras require more complex models than conventional
camera models due to their extremely wide FoV and the
distortion of the images. This is the main reason why existing
approaches of extrinsic calibration between RGB and depth
cameras are not applicable to this problem. Using a explicitly
designed camera model to calibrate the fisheye camera alone
is required in this method. We propose using the Scaramuzza’s
omnidirectional calibration method to this end [3]. To calibrate
the whole system we propose and evaluate two alternative

(a) View from RGB-D camera (b) View from fisheye camera

(c) Our proposed hybrid system (d) Depth mapped to the fisheye image

Fig. 1: (a) Scene view from a conventional RGB-D camera.
(b) Same scene view from a fisheye camera. (c) Our proposal:
hybrid camera system with Depth and Fisheye. (d) After the
calibration we can map the depth to the whole scene image.

methods. The first consists in calibrating the intrinsics of both
cameras separately, compute the extrinsics and finally perform
the calibration of the depth measurements and distortion. In
the second only the fisheye is required to be calibrated on
its own, and the depth camera is jointly calibrated with the
relative pose of both devices with a non-linear minimization
of the reprojection error in both fisheye and depth images.

II. RELATED WORK

The interest in fusing visual information with range data
has been approached for more than ten years now [4]. The
most popular range sensors back then were the laser range
finder (LRF). Not much later, works concerning the extrinsic
calibration of cameras to LRF appeared. For instance, the work
of Zhang and Pless [5] presented a method of camera - 2D LRF
extrinsic calibration with some similarities with the algorithm
proposed in this paper, like the utilization of a checkerboard
as calibration pattern. Recent similar approaches such as [6],
[7] propose minimal solutions for the same problem with
outperforming results. Scaramuzza et al. [8] proposed another
method of extrinsic calibration of a 3D laser scanner (a 2D
LRF mounted on a rotating platform already calibrated) and
any central camera (perspective or omnidirectional). Though it
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does not require to use any calibration pattern, a set of point
correspondences between the two images must be selected
manually. Gomez-Ojeda et al. [9] use structural corners to
perform extrinsic calibration between a 2D LRF and a camera.

Usual range sensors are based on structured light or Time-
of-Flight. Some of them also include an RGB camera next to
the Depth camera, making them part of the so-called RGB-D
camera type. Though most drivers for these cameras include
precalibrated parameters to map the information between both
sensors, it is often recommended to calibrate the RGB-D cam-
era due to small differences in the manufacturing process [10].
To improve the quality of the color images, some researchers
use high resolution external cameras. In this vein Herrera et
al. [1] proposed a method to calibrate both the intrinsics and
extrinsics of an RGB-D plus external camera system. They
also noted the absence in other methods of the correction of
depth distortion not included in the default calibration and
they proposed a method using the observed disparity instead
of the metric coordinates as [11] did. In [12], a toolbox that
calibrates both laser range sensor or a Kinect to a color camera
in one single shot is presented. Mikhelson et al. [13] ease the
process of calibrating the extrinsics of a depth-color camera
pair by proposing an online method which removes the need
to recalibrate the intrinsics once they are known.

Recently, other researches focused on the extension of
the FoV of the depth sensor: [14] used two planar mirrors
as a catadioptric extension of the RGB-D device and [15]
a consumer set of wide angle lens. Fernandez-Moral et al.
[16] proposed a method of extrinsic calibration without pattern
to calibrate an RGB-D multi-camera rig. However, up our
knowledge there are not previous works combining fisheye
cameras and RGB-D devices.

III. SYSTEM DESCRIPTION

We have created a hybrid camera system by rigidly cou-
pling a high resolution camera with a fisheye lens to an Asus
Xtion Pro Live RGB-D sensor (Fig. 1c). The difference in field
of view is large, as Fig. 1 shows. On the one hand, the FoV of
the RGB-D camera may be too small for many applications,
specially in close distances. Several works have shown the
advantages of wide field of view (or omnidirectional) cameras
in robotics and computer vision applications [17], [18]. On the
other hand, the depth perception can help detecting obstacles,
providing scale or enhancing the recognition at least in one
portion of the scene. Next we describe the camera models
used in this work before moving to the calibration.

A. Fisheye camera model

We chose the parametric camera model described by
Scaramuzza et al. in [3], which considers the omnidirectional
image as a highly distorted image. The calibration consists
in retrieving the parameters of the polynomial that describes
this distortion. With this model it is not necessary to provide
a specific model of the sensor and works with all kind of
projective, catadioptric or dioptric cameras. Although in this
work we focus on fisheye cameras, the usage of this model
makes our approach valid for the other types of cameras.

Using that model, the world points X f = (X ,Y,Z) have the
origin of coordinates in the optical center of the camera O f ,
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Fig. 2: Coordinate systems, parameters of the cameras and its
interaction with the world. In red the parameters to calibrate.

where the coordinate system have the z f component following
the axis of the (cata) dioptric system (Fig. 2). Orthogonal to the
z f axis it is the Sensor Plane (xs,ys), a theoretical plane where
the coordinates are still metrical. The images are represented
in the Image Plane u = (u,v), where the position of the points
is expressed in pixels. It is assumed that there is misalignment
and deformation between the Image Plane and the Sensor
Plane, given by an affine transformation xs = Au+ t, where
t = (u0,v0) is the image center. The vector p pointing at the
world point X from O f follows the equation:

λ ·p = λg(Au+ t) = P ·X, λ > 0 (1)

where P is the perspective projection matrix and the function
g(xs,ys) is defined as follows:

g(xs,ys) = (xs,ys, f (xs,ys))
T = (xs,ys, f (ρs))

T (2a)

f (xs,ys) = a0 +a2ρ2
s + ...+aNρN

s (2b)

where the function f is modeled as a Taylor expansion defined
by the polynomial whose coefficients are a0,a2, ...,aN , and
where ρs =

√
x2

s + y2
s . These coefficients along with the matrix

A and vector t are the parameters needed to calibrate the
intrinsics.

B. Depth camera model

The proposed intrinsic model of the depth camera is based
in [1]. Basically, this is a standard projective camera model
(as the depth camera works with a conventional IR camera)
with radial and tangential distortion correction. The images
captured by the depth sensor have in every pixel a value of
disparity (in disparity units, du) which increases with depth.
Some drivers provide an automatic conversion of these values
to metric distances given an internal calibration of the camera
during the manufacturing process. However, to increase the
accuracy of the measurements, we do not only compute the
parameters mapping these pixels to the real world, but also
recover the metric distances per-pixel.

The IR camera model, based on [19], transforms coordi-
nates from the Image Plane to the Sensor Plane via the focal
distances f d

x and f d
y , the position of the center Cd

I = (ud
0 ,v

d
0)
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(a) (b)

Fig. 3: Example of images from the sets of fisheye intrinsic
calibration (a) and depth intrinsic/extrinsic calibration (b).

and some distortion coefficients kd = {k1,k2,k3,k4,k5} (Fig. 2).
If we have a metric value of depth per-pixel zd , the metric 3D
coordinates of the point Xd = (Xd ,Y d ,Zd) in the world with
respect to the optical center Od are:

Xd = (Xd ,Y d ,Zd) = (xszd ,yszd ,zd) (3)

However, we must transform the disparity values of the
images received from the camera to the metric values, which
is done in two phases. First, in [1] it is mentioned the existence
of a fixed error pattern that distorts the depth image with a per-
pixel offset which is obtained from the intrinsic calibration. In
the case of the sensor we use, it follows the function:

du = dd +Dδ (ud ,vd) · exp(α0−α1dd) (4)

where du is the resulting undistorted disparity and dd the
distorted disparity. Second, to convert the values of the pixels
given in disparity units (du) to metric units, it is necessary
to get the following coefficients c1 and c0 which forms the
following equation:

zd =
1

c1 ·du + c0
(5)

The set of parameters obtained from the intrinsic cali-
bration of the depth camera are: the focal lengths ( f d

x , f d
y ),

the image center (ud
0 , vd

0), the distortion coefficients kd , the
disparity-depth transformation coefficients (c1, c0), the matrix
Dδ (ud

d ,v
d
d) and the exponential decay parameters (α0, α1).

IV. DEPTH-FISHEYE CAMERA CALIBRATION

Our algorithm needs a checkerboard on a flat surface as the
main calibration pattern. The calibration requires the capture
of several images of the planar checkerboard from different
points of view, watching carefully that both the checkerboard
in the external camera and the planar surface supporting the
checkerboard in the depth image are observed at the same time.
That is not a trivial issue: to calibrate properly the intrinsic
parameters of the fisheye camera it is necessary to fill the
fisheye images with the checkerboard as much as possible

(e.g. Fig. 3a) but doing that requires to pose the camera
too close to the board and the depth sensor cannot retrieve
information. Placing the camera pair at a reasonable distance
makes the system prone to fail in the estimation of the intrinsic
parameters of the fisheye camera because the distortion cannot
be properly perceived (Fig. 3b).

To handle this situation, the intrinsic calibration of the fish-
eye is performed separately from the rest of the algorithm, with
their own set of close-range images (similar to Fig. 3a). The
fisheye camera can be easily calibrated by using the toolbox
released by [3]. For the rest of the process, an alternative set of
mid and long-range images has been collected. The dimensions
of the pattern must be large enough that the corners of the
checkerboard can be detected in the fisheye image taking into
account the resolution of the camera. In our case, we used a
DIN-A2 checkerboard. The dimensions are known and used
as input for the algorithm.

With this setup we have tackled this calibration problem
from two alternative approaches:

A) Calibrating the intrinsic parameters of the fisheye and then
performing a joint calibration of the rest of parameters
involved in the system all at once.

B) Separating the process in stages, performing first the in-
trinsic calibration of the cameras separately, then retrieve
the extrinsic parameters and finally compute the distortion
correction and conversion from disparity to metric units.

The two alternate methods to perform the calibration of
our system are described in the following sections.

A. Joint calibration of fisheye and depth cameras

The first calibration methods for structured light-based
RGB-D systems used images from the IR camera to perform
traditional extrinsic calibration [20]. However, as [1] pointed
out, the depth images are not perfectly aligned with the IR
images. The work [1] uses disparity images to calibrate the
intrinsics of the depth camera as well as the extrinsics of the
system. Our method is inspired by this approach, introducing
some modifications to make it suitable for our system.

We assume that the checkerboard is on a planar surface to
relate in each image pair the pose of the fisheye camera from
the checkerboard to its plane equation. As the checkerboard is
not observed by the depth camera, we manually select the
vertices of the polygon which contains the disparity pixel
values of the board in each image. To relate the pose of
the checkerboard as seen by the fisheye camera to the depth
measurements, we need a rough estimation of the depth camera
parameters. When the board has known shape, e.g. rectangular,
an initial estimate can be obtained selecting the corners from
the board and using homographies as explained in [5]. The cal-
ibration of the final values of the depth intrinsics will be done
jointly with the extrinsics solving the minimization problem,
so the values set at this point facilitate the convergence. In the
following sections the main parts of the method are detailed:

1) Retrieving camera pose from fisheye images: This sec-
tion describes how, for each calibration image Ii, we obtain
the pose of the fisheye camera with respect to the pattern
IiT f ∈ R3×4 (Fig. 2). It is formed by the rotation matrix
IiR f ∈R3×3 = [r1,r2,r3] and the translation vector Ii t f ∈R3×1.
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Calling Xi j = [Xi j,Yi j,Zi j] the 3D coordinate of every of the
j points from the pattern in the pattern coordinate system
and ui j = [ui j,vi j]

T the correspondent pixel coordinates in the
Image Plane, from (1) we get the following equation:

λi j ·ui j = λi j ·

 ui j
vi j

a0 + ...+aNρN
i j

= [ri
1,r

i
2,r

i
3, t

i] ·

 Xi j
Yi j
Zi j
1

 (6)

We can assume without loss of generality that Zi j = 0 for
all points in the pattern, as they all belong to a planar surface
in Xi j−Yi j. If we multiply both sides vectorially by ui j:

λi j ·ui j ∧ui j =

 ui j
vi j

a0 + ...+aNρN
i j

∧ [ri
1,r

i
2, t

i] ·

 Xi j
Yi j
1

= 0 (7)

Which gives the following system for every image Ii:

v j · (r31X j + r32Y j + t3)− f (ρ j) · (r21X j + r22Y j + t2) = 0 (8a)

f (ρ j) · (r11X j + r12Y j + t1)−u j · (r31X j + r32Y j + t3) = 0 (8b)

u j · (r21X j + r22Y j + t2)− v j · (r11X j + r12Y j + t1) = 0 (8c)

In these equations we know the position of the points in
both the world and the image (X j,Yj,u j,v j) and the function
f (ρ) from the previous calibration of the fisheye camera.
Having these three equations for each of the n points u j in the
pattern we need at least n = 3 points to solve the system. The
checkerboards always contain more than three points, which
generates an overdetermined system. To solve this system we
reformulate it as follows:

M ·H =


M1
..

M j
..

ML

 ·H = 0 (9)

where
H = [r11,r12,r21,r22,r31,r32, t1, t2, t3]T (10a)

M j =



0 f (ρ j)X j −v jX j
0 f (ρ j)Y j −v jY j

− f (ρ j)X j 0 u jX j
− f (ρ j)Y j 0 u jY j

v jX j −u jX j 0
v jY j −u jY j 0

0 f (ρ j) −v j
− f (ρ j) 0 u j

v j −u j 0



T

(10b)

whose solution can be computed using SVD. The rest of the
elements of the matrix Ri, i.e. r3 = [r13,r23,r33] are obtained
with the cross product of r1 and r2. This is repeated for each
image Ii, computing all the transformations IiT f .

2) Non-linear minimization: The optimization is a mini-
mization of the weighted sum of squares of the reprojection
errors over all parameters, which we perform using a cost
function similar to the one from [1]. The cost function has two
terms, one for each camera. The costs of the fisheye camera
are the sum of the Reprojection Error RE f , defined as the
Euclidean distance between the pixel position of the corner pi j,
and the position of its reprojection p̂i j given the pose of the

checkerboard in every image IiT f and the intrinsic parameters
of the fisheye:

RE f
i j = ‖p̂i j−pi j‖2 (11)

which is measured in pixels. Although the intrinsic parameters
of the camera are pre-computed, it is necessary to include this
error because of the optimization of the poses IiT f . The costs
of the depth camera are the sum of the depth Reprojection
Error REd , defined as the L2-norm of the difference between
the measured disparity from the image dd and its predicted
disparity d̂d for every board pixel k in image i:

REd
ik = ‖d̂ik−dik‖2 (12)

which is measured in disparity units (du). To compute the
predicted disparity, we know from Section IV-A1 the pose
of the camera with respect to a group of points lying on
a plane for every fisheye image Ii. Introducing the extrinsic
transformation f Td , we get the poses of the points with respect
to the depth camera, IiTd =Ii T f · f Td , and therefore the plane
the checkerboard is on. The normal ni and the distance to the
origin Di are:

ni = ri
3, Di = ri

3
T ti (13)

where ri
3 and ti are the third column of the rotation matrix IiRd

and the translation vector Ii td respectively. The plane equation
from the fisheye camera frame is then:

ni
T X−Di = 0 (14)

for each image. With the rough initial estimate of the parame-
ters we can compute the predicted disparity and therefore the
depth cost. To avoid including the whole matrix Dδ (ud ,vd)
which adds many parameters to the optimization (in our case
640× 480), it is optimized independently as done in [1].
Because of that, the depth cost is computed with the disparity
values from the Undistorted Image Plane.

The main cost function is the following, weighted by the
inverse of the measurement variance due to the difference in
the units of the terms:

J = β
∑RE f

i j

σ2
f

+
∑REd

ik
σ2

d
(15)

where β is an additional weighting factor to give equal
importance to both terms regardless of the number of points
in each of them. The optimization has two phases: First, the
main minimization, with the cost function from (15), where
the parameters to minimize are IiT f , f Td , c1, c0, f d

x , f d
y , Cd

I
and kd . Second, minimization of the distortion offset given by
[1], where the parameters to minimize are α0, α1 and Dδ (u,v).
We have used an iterative non-linear minimization using the
Levenberg−Marquardt algorithm for both processes.

B. Stepwise calibration of fisheye and depth cameras

The idea behind this approach is to separate the calibra-
tion of the whole system in stages instead of performing a
single global optimization of the parameters. Herrera et al.
[1] mention the improvement of the results in the calibration
when both the intrinsic and extrinsic parameters are optimized
simultaneously. However, the optimization may get stuck in
a local minimum if the estimation of the seed values of
some parameters is not good enough. We propose to perform
following stages instead:
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• Intrinsic calibration of the fisheye ( f (ρ), A and t).
• Intrinsic calibration of the IR camera (fd , Cd

I and kd),
which can be solved using standard methods [20].

• Obtain the poses of the checkerboard with respect to
the cameras (Ii T f , Ii Td) and with them, the extrinsic
calibration ( f Td).

• Global optimization to compute disparity-depth cor-
rection parameters (c1, c0, Dδ (ud

d ,v
d
d), α0 and α1) and

refine the previously computed parameters.

The stages not included in the description of the first approach
are detailed as follows:

1) Computation of the extrinsics of the system: Having
computed the relative poses of the checkerboard from both
cameras (IiT f from Section IV-A1 and IiTd from [20]), for
each image pair we have:

dR(Ii)
f =Ii R f ·d RIi (16a)

dt(Ii)
f =Ii t f −d R f ·Ii td (16b)

Averaging the rotations (turned into rotation vectors) and
the translations provides a good estimate of the extrinsics of
the system. To refine the extrinsic parameters (6 DOF), we can
minimize the reprojection error of the corner points from one
reference frame to the other backprojected to the image (p̂i j)
with respect to the measured point (pi j), respectively:

argmin‖p̂ f
i j −p f

i j‖+‖p̂d
i j −pd

i j‖ (17)

where p̂ca
i j = pro j

(
cbTca ·X

cb
i j

)
, pro j the projection function

(which changes depending on the type of camera) and ca,cb
note two different camera frames (in this case, f and d).

2) Global optimization: The global optimization proposed
in this approach has the same formulation (Section IV-A2). In
this case, we do not need to perform the calibration of the
intrinsics of the IR camera and the extrinsics of the system.
These parameters can be fixed and ignored in the optimization
process, and only estimate the values of c1, c0, Dδ (ud

d ,v
d
d),

α0 and α1. However, if we include all the parameters as
in Section IV-A2 we can use this optimization as a global
refinement of the already estimated parameters, taking into
account the depth image instead of the IR image.

V. EXPERIMENTS

In the experiments, we use the proposed hybrid camera
system shown in Fig. 1b: The RGB-D sensor is the Asus Xtion
Live Pro, which provides a depth image resolution of 640×
480 pixels at 30Hz. The fisheye camera is a uEye UI-3580CP
of 2560× 1920 pixels at 15Hz with a fisheye lens Lensagon
CF5M1414, with a field of view of 182◦. The images have been
captured synchronized using Robot Operating System (ROS).
The calibration pattern is a 9× 7 checkerboard printed in a
DIN-A2 sized paper attached to a rectangular piece of wood.
A set of fisheye images without depth information has been
used to calibrate the intrinsics of the fisheye, resulting in a
mean reprojection error of less than 0.2 pixels, which can be
considered an accurate calibration for such high resolution.

For the depth intrinsics and camera pair extrinsic calibra-
tion we used two sets of images for comparison purposes.
Set A has 25 image pairs and set B has 28. Both datasets

TABLE I: MRE in the fisheye and depth image for both sets
of images A and B with four calibration results.

Evaluated Set A Evaluated Set B
Fisheye (px) Depth (du) Fisheye (px) Depth (du)

1) Joint calib. A 0.185 0.839 0.187 1.477
2) Step calib. A 0.185 0.806 0.187 1.514
3) Joint calib. B 0.165 1.322 0.183 0.856
4) Step calib. B 0.165 1.321 0.182 0.835

(a) (b)

Fig. 4: (a) 3D pattern consisting of three orthogonal planes.
(b) Point cloud obtained using the calibration.

are similar in terms of variability of poses. We use the
Mean Reprojection Error (MRE) as quantifiable parameter to
evaluate the results, defined by the arithmetic mean of (11) and
(12). In Table I it is shown the MRE for both sets of images
using the results from four calibration procedures:

1) Joint Calibration of Set A (Section IV-A).
2) Stepwise Calibration of Set A (Section IV-B).
3) Joint Calibration of Set B (Section IV-A).
4) Stepwise Calibration of Set B (Section IV-B).

The MRE for each set with its own calibration results
is, in the fisheye camera, less than 0.2 pixels, whereas in
the depth camera it is less than 1du. Using the calibration
values of extrinsics and depth intrinsics from the other set, the
MRE of the depth increases to 1.5du. These values can be
considered highly satisfactory considering the complexity of
calibrating two cameras of such different kind. We can see how
the difference among the methods is marginal, making both
approaches equally valid for the task. The stepwise calibration
would be preferable if the IR images are accessible as it is less
prone to fall in local minimum. However, the joint calibration
procedure has less steps requiring human supervision.

To measure the quality of the calibration we have also
used a 3D pattern. It consists of three metal plates screwed
and secured at 90◦ with calibration patterns attached to them
(Fig. 4a). We have accurate ground truth of the 3D position
of the points of these patterns from a photogrammetric re-
construction by bundle adjustment. Obtaining the pose of the
camera from the fisheye image and computing the planes from
the depth image we can compare the angles between the metal
plates to see how good the calibration is. Table II shows the
results of the experiment, with an error of ≈ 1◦ in the fisheye
image and ≈ 0.6◦ in the depth image. The quality of the
mapping of the depth information can also be qualitatively
analyzed superposing the depth maps in the fisheye image
(Fig. 5). It can be observed how the borders in the depth
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TABLE II: Angular difference between planes with respect to
the ground truth in the fisheye and depth image.

Fisheye Image Depth Image
α12 (deg) -0.3559 1.3715
α23 (deg) 1.7045 -0.3339
α31 (deg) 1.2229 0.1908

Mean (deg) 1.0944 0.6321

Fig. 5: Semi-transparent depthmap superimposed over the
fisheye image to illustrate the quality of the calibration.

coincide with the borders in the image, even at large distances.
It is also possible to reconstruct the point cloud with this data,
where the high accuracy can also be appreciated (Fig. 4b).

An application of the calibrated system is shown in [2],
where the depth information is extended to the whole fisheye
image via layout estimation.

VI. CONCLUSION

In this work, we presented a new hybrid camera system
composed of a depth sensor and a fisheye camera. Many
applications could benefit from such configuration, including
navigation, SLAM or object detection. The fisheye provides
wide field of view while depth provides certainty and scale.
However, as a consequence of its novelty, none of the existing
methods of calibration can be directly applied to this system.
We have proposed a method which combines state of the art
works for this purpose. The generality of the camera models
used makes it also useful to other camera/range sensor con-
figurations. The method was tested with real images showing
promising results in terms of accuracy.
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