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Abstract ⎯⎯  Colour, texture, shape, and relative position de-

scriptors are fundamental visual descriptors. In particular, a rel-
ative position descriptor is a quantitative representation of the 
relative position of two spatial objects, and a basis from which 
models of spatial relationships (like inside, above, around, near) 
can be derived. The affine properties of visual descriptors have 
been the subject of much attention. Here, we focus on the PHI-
descriptor, introduced in recent work. We show that it is a rel-
ative position descriptor with remarkable affine properties, and 
we illustrate these properties with two experiments.  

Keywords ⎯  visual descriptor; relative position; spatial relation-
ship; affine transformation; invariance; computer vision 

I. INTRODUCTION 
Colour, texture, shape, and relative position descriptors are 

fundamental visual descriptors. While a texture descriptor car-
ries information about the spatial arrangement of colours, a 
relative position descriptor carries information about the spa-
tial arrangement of shapes. The affine properties of visual de-
scriptors have been the subject of much attention. For example, 
affine invariance is often seen as a desirable property. Indeed, 
the image formation process involves projective transforma-
tions, which are often approximated by affinities under the 
assumption of weak perspective; affine invariance makes the 
descriptor less sensitive to the position of the camera with 
respect to the photographed scene. 

There is an extensive literature on colour, texture, and shape 
descriptors. In particular, a very large number of shape descrip-
tors have been proposed, and many are affine invariant [12]. 
Comparatively, the literature on relative position descriptors is 
much smaller [6]. This is not surprising, as it is only natural to 
talk about shapes before talking about the spatial arrangement 
of shapes. Nonetheless, relative position descriptors have found 
a variety of applications (e.g., graphical symbol retrieval [9], 
human-robot interaction [11], geospatial information retrieval 
and indexing [10], map-to-image conflation [1]). Knowing the 
spatial arrangement of an object’s components often aids the 
recognition of the object—and of its components. Likewise, 
knowing the arrangement of objects in a scene aids the under-
standing of the scene—and the identification of the objects. 

The focus here is on relative position descriptors — or 
descriptors, for short. We say that the descriptor Δ is affine 
invariant if for any affinity aff (e.g., rotation, scaling, shear) 
and for any spatial objects A and B we have  Δaff(A)aff(B) = ΔAB, 
where ΔAB is a quantitative representation of the position of A 

relative to B. If Δ is not affine invariant, it may be possible, 
nonetheless, to find Δaff(A)aff(B) knowing aff and ΔAB; we then 
say that the descriptor solves the direct affine problem. It may 
also be possible to find aff (up to a translation) knowing ΔAB 
and Δaff(A)aff(B); we then say that the descriptor solves the inverse 
affine problem. According to a recent review [6], there is only 
one affine invariant descriptor, most descriptors do not solve 
the direct affine problem, and none solves the inverse problem. 

In [5], we introduced a new descriptor—the Φ-descriptor 
—which has many advantages over its competitors: it can han-
dle raster objects and vector objects, whatever their topology 
(e.g., connected or disconnected, without or with holes), and 
whether they are disjoint or not; it is much faster to compute 
than most descriptors; it can be used to develop qualitative and 
quantitative models of a large number of spatial relationships 
(like inside, above, around, near). For example, the well-known 
RCC8 topological relations are definable in terms of the de-
scriptor, and they can be fuzzified based on the descriptor [4]. 

In this paper, we show that the Φ-descriptor solves both 
the direct and inverse affine problems. Moreover, it can be 
normalized so as to become affine invariant. The descriptor is 
reviewed briefly in Section II. Its affine properties are investi-
gated in Section III. They are illustrated, tested and validated 
in Sections IV and V. Conclusions and future work are dis-
cussed in Section VI. 

II. Φ-DESCRIPTOR 
We give here an informal definition of the Φ-descriptor. It 

is very incomplete, but complete enough for the purpose of the 
paper. In the following, a direction is a unit vector; an object 
is a nonempty bounded regular closed set of the Euclidean 
plane; A and B denote two objects. 

Consider a direction θ and two points p and q. The segment 
[p, q] is an interaction segment of A and B in direction θ if p 
and q belong to A∪B and to a line L in direction θ that intersects 
A and B but does not intersect A∪B outside [p, q]. The union 
of all the interaction segments of A and B in direction θ is the 
region of interaction of A and B in direction θ (Fig. 1a). The 
area of that region is denoted by F0AB(θ)  and its average width 
—i.e., the average length of all the interaction segments—is 
denoted by G0

AB(θ) . 

For every θ, the region of interaction in direction θ is parti-
tioned into a finite number of subregions. Each subregion is 
delimited by the boundaries of the objects and lines in direction 
θ (Fig. 1b). The subregions fall into 10 categories. Two func-
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tions from the set of directions to the set of real numbers are 
attached to each category: one records the areas (or half the 
areas) of the corresponding subregions and the other records 
their average widths. We therefore have 10 area functions, 
F1
AB , F2AB , …, F10AB , and 10 length functions, G1AB , G2AB , …, 

G10
AB , in addition to the functions F0AB  and G0

AB . See [5] for 
details, and Table I for an example.  

The Φ-descriptor attached to the pair (A,B) can be defined as
ΦAB = (area(A), area(B), F0

AB, F1
AB,  ..., F10

AB, G0
AB, G1

AB,  ..., G10
AB ).

This 24-tuple represents the position of A relative to B, and 
encapsulates a great amount of qualitative and quantitative spa-
tial relationship information [4] [5]. The last piece of knowledge 
we need to share with the reader is the following: consider the 
function FsumAB = Σi=110 Fi

AB ; for any θ, we have F0AB(θ) = F0AB(−θ)
= FsumAB (θ)+ FsumAB (−θ) . Moreover, unless F0AB(θ)  is 0, the values 
FsumAB (θ)  and FsumAB (−θ)  are rarely equal.  

III. AFFINE PROPERTIES 
An affinity (or affine transformation) is a one-to-one mapping 

from the Euclidean plane to itself that preserves lines and 
proportions on lines (e.g., shear). A similitude is an affinity that 
preserves all proportions (e.g., uniform scaling). An isometry is 
a similitude that preserves distances (e.g., rotation). The set of 
all affinities is a group under the operation of composition of 
functions; it is the affine group. The set of all similitudes and 
the set of all isometries are two subgroups of the affine group.  

Consider an affinity aff and two objects A and B. The de-
scriptor Φaff (A) aff (B)  can be retrieved from ΦAB  and aff 
(Section III.A). Moreover, aff can be retrieved from ΦAB  and 
Φaff (A) aff (B)  (Section III.C). This second result follows from 
the fact that the Φ-descriptor can be normalized so as to become 
affine invariant (Section III.B). 

 

 
 

Fig. 1.  (a) Two intersecting U-shaped objects and their region of 
interaction in direction θ (diagonal line pattern). (b) Partition of the 
region of interaction. 

TABLE I.  AREAS RECORDED BY F1AB , F2AB , …, F10AB  
Correspondence between the subregions in Fig. 1b and the areas 
recorded by the Φ-descriptor. For instance, the area of the subregion 
1 is F4AB(−θ)  and the total area of the subregions 5 and 6 is 2F10AB(−θ) , 
which is equal to 2F10AB(−θ) . Note that any function value at θ or −θ is 
0 if not listed below (e.g., F2AB(θ) = F3AB(−θ) = 0 ). 

 1 F4AB(−θ)    3 F3AB(θ)  5∪6 2F10
AB(−θ)= 2F10AB(θ)  

 2 F2AB(−θ)    4 F1AB(θ)  7 F1
AB(−θ)  

   8 2F9
AB(−θ)= 2F9AB(θ)  

A. Retrieving Φ aff(A) aff(B)  from ΦAB  and  aff 
The affinity aff can be written as the composition of a 

translation with an invertible linear transformation affω (an 
affinity such that affω (ω)=ω, where ω is the origin, i.e., an 
arbitrary point of the plane). It is a common convention to see 
linear transformations as 2×2 matrices and vectors as 2×1 
column matrices. Consider the unit vector, i.e., the direction, 

θ' = affω−1 ⋅θ( ) / affω−1 ⋅θ = affω−1 ⋅θ   (1) 
where the dot denotes matrix multiplication, the vertical bars 
vector norm and the overbar vector normalization. For any 
integer i in 0..10, we have: 
area(aff(A)) = |det(affω)| area(A)  (2) 
area(aff(B)) = |det(affω)| area(B)  (3) 
Fi
aff (A) aff (B)(θ)= |det(affω)| FiAB(θ ')  (4) 

Gi
aff (A) aff (B)(θ) = |affω⋅θ'| GiAB(θ ')  (5) 

where |det(affω)| is the absolute value of affω’s determinant. 
These equalities are according to well-known results from linear 
algebra about how affinities transform directions, areas, lengths. 

B. Normalizing the Φ-descriptor  
Let A'=aff(A) and B'=aff(B). The Φ-descriptor is not affine 

invariant, i.e., we usually have ΦA 'B ' ≠ΦAB . In this section, 
we show that it can be normalized such that ΦA 'B ' = ΦAB , 
where the overbar here indicates descriptor normalization. 

Two directions, the major direction and the minor direc-
tion, are derived from the descriptor (Section III.B.1). They 
are used to define an invertible linear transformation: the 
normalizing transformation (Section III.B.2). Let θ0 and θ1 be 
the directions derived from ΦAB  and let θ0'  and θ1'  be those 
derived from ΦA 'B ' . We have: 

θ0' = affω ⋅θ0  and θ1' = affω ⋅θ1   (6) 

Put simply, the transformed major and minor directions of a 
descriptor are the major and minor directions of the trans-
formed descriptor. Moreover, let lin be the normalizing trans-
formation of ΦAB  and let lin' be that of ΦA 'B ' . We have:  

Φ lin '(A ') lin '(B ') = Φ lin(A) lin(B)  (7) 
The normalized descriptor ΦAB  is defined as Φ lin(A) lin(B)  
(Section III.B.3). Note that, in practice, descriptors should be 
compared through a similarity measure (Section III.B.4). 

1) Major and minor directions:  Let θmax be a global maxi-
mum direction for F0AB : 

∀θ, F0AB(θmax )  ≥ F0AB(θ)  (8) 

There is at least one other global maximum direction, −θmax, 
but in the general case we can expect that one and only one 
global maximum direction, θ0, will maximize FsumAB (θ) : 

F0
AB(θ0 ) = F0

AB(θmax ) (9)
∀θ, [ F0AB(θ0 ) = F0AB(θ)  → FsumAB (θ0 )  ≥ FsumAB (θ) ]  (10) 

Now, let θmin be a global minimum direction for F0AB : 

∀θ, F0AB(θmin )  ≤ F0AB(θ)  (11) 
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Assume F0AB(θmin ) ≠ 0, e.g., F0AB(θmin ) ≥ F0AB(θmax ) / 2. 
There is at least one other global minimum direction: −θmin. 
Again, we can expect that one and only one global minimum 
direction, θ1, will maximize FsumAB (θ) : 

F0
AB(θ1) = F0AB(θmin )   (12) 

∀θ, [ F0AB(θ1) = F0AB(θ)→ FsumAB (θ1)  ≥ FsumAB (θ) ]  (13) 
There is no guarantee, of course, that F0AB(θmin ) ≠ 0. In many 
cases (e.g., consider objects with nonintersecting minimum 
bounding rectangles), F0AB(θmin ) = FsumAB (θmin ) = 0, there is an 
infinite number of such global minimum directions, and we 
cannot single out any of them. A way to solve this issue is to 
replace (12) by (14):

F0
AB(θ1) = max { F0AB(θmin )  , F0AB(θmax ) / 2 }  (14) 

From now on, we will assume the directions θ0 and θ1 are 
unique and distinct, as expected in the general case. The pair 
(A, B) is then well-behaved, θ0 is its major direction, θ1 is its
minor direction, and (6) follows from (4). 

2) Normalizing transformation:  The normalizing transfor-
mation of ΦAB  is 

lin = lin6⋅lin5⋅lin4⋅lin3⋅lin2⋅lin1   (15) 
where lin1 to lin6 are as shown below. 
α, β and γ are in the real interval (−π,π].  

lin1 = cosα −sinα
sinα cosα

⎡

⎣
⎢

⎤

⎦
⎥ ,   (16) 

where α is the angle from θ0 to the basis vector [1  0]t ; 
lin2 =

1 0
0 1

⎡

⎣
⎢

⎤

⎦
⎥   if β>0  and  lin2 =

1 0
0 −1

⎡

⎣
⎢

⎤

⎦
⎥

 
 if β<0,  (17) 

where β is the angle from θ0 to θ1 ; 

lin3 = 
1 cot γ − cot β
0 1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

,   (18) 

where γ = F0AB(θmax )− F0AB(θ1)
F0AB(θmax )− F0AB(θmin )

π
2

;  (19) 

lin4 = 
1 (k −1)cot γ
0 k

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

,   (20) 

where k = sinγ / sin|β| ;  (21) 

lin5 = 
1 (k1 −1)cot γ
0 k1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

,   (22) 

where k1 =
F0AB(θ1)
F0AB(θ0 )

G0AB(θ0 )
G0AB(θ1)

; (23) 

lin6 =
k0 0

0 k0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

,   (24) 

where k0 =
1

k1k F0
AB(θ0 )

. (25) 

Roughly, lin’s purpose is to align θ0 and θ1 with the basis 
vectors [1  0]t and [0  1]t. However, aligning θ1 with [0  1]t 

only makes sense if F0AB(θ1) = F0AB(θmin ) . For example, if 
F0
AB(θmin ) = 0 and F0AB(θ1) = F0AB(θmax ) / 2, then a better 

option is to align θ1 with [cos(π/4)  sin(π/4)]t. For a smooth 
transition between the two cases, θ1 is aligned with the vector 
[cosγ  sinγ]t, using lin1 to lin4 (Fig. 2). The first transformation, 
lin1, is a rotation; lin2 is either the identity function or a 
reflection; lin3 is a shear; lin4 is a non-uniform scaling that 
preserves lengths in direction [1  0]t but multiplies them by k 
in direction [cosγ  sinγ]t. The vector θ13= lin3⋅lin2⋅lin1⋅θ1 is not 
a unit vector ⎯ its length is sin|β| / sinγ ⎯ and must therefore 
be normalized; hence lin4. 

Equation (15) is equivalent to lin⋅θ0 = k0 [1  0]t  and  lin⋅θ1 
= k0 k1 [cosγ sinγ]t. The number k1 controls relative scaling, 
i.e., it allows us to scale lin⋅θ1 relative to lin⋅θ0. For example, 
if lengths in direction [cosγ  sinγ]t are multiplied by some value, 
then the length of lin⋅θ1 must be divided by the same value to 
ensure that (7) holds⎯hence the presence of G0AB(θ1)  in (23). 
Because of (4) and (6), the ratio F0AB(θ1) / F0AB(θ0 )  remains 
unchanged when the objects are affine transformed. Its 
presence in (23) is not required. It simply forces k1 to be 1 
when F0AB(θ1) / F0AB(θ0 ) =G0AB(θ1) /G0AB(θ0 ) . As for k0, which 
controls absolute scaling, it forces |det(lin)| to be 1/ F0AB(θ0 ) . 
In other words, and according to (4) and (9), it forces the 
maximum value of the function F0

lin(A) lin(B)  to be 1. Normaliz-
ing transformations satisfy (7), and this is largely due to (6).

3) Normalized descriptor: Let lin be the normalizing trans-
formation of ΦAB . The elements of the tuple Φ lin(A) lin(B)  can 
be derived from lin and the elements of ΦAB  using (1) to (5). 
The descriptor Φ lin(A) lin(B)  is denoted by ΦAB . The pair 
(lin(A), lin(B)) is the normalized object pair and ΦAB  is the 
normalized descriptor. More precisely, ΦAB  is the result of 
ΦAB ’s normalization with respect to the affine group. For any 
affinity aff, we have:  

Φ aff (A) aff (B)
= ΦAB

 (26) 
This is according to (7). In other words, a relative position 
normalized with respect to the affine group does not change 
when the objects are transformed by a member of the group. 
Note that: 

 ΦAB
= ΦAB

  (27) 
 

 
Fig. 2.  Angles, directions, and linear transformations. lin1 transforms 
(a) into (b), lin2 transforms (b) into (c), and lin3 transforms (c) into (d). 
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Equations (6), (26) and (27) are illustrated by Fig. 3. The 
first object of each pair (the ‘I’) has two convex connected
components. The second object (the ‘A’) is connected and has 
a hole. The two objects overlap. 

The Φ-descriptor can also be normalized with respect to 
subgroups of the affine group. For example, replace lin3 with 
the identity transformation, and set k and k1 to 1: the normaliz-
ing transformation lin is then a similitude, and (26) holds for 
similitudes only. Or, replace lin3, lin4, lin5 and lin6 with the 
identity transformation: lin is then an isometry, and (26) holds 
for isometries only.  

4) Comparing relative positions:  In practice, relative posi-
tions are compared through a similarity measure, SIM, and 
(28) is used instead of (26):

SIM (ΦAB,Φ aff (A) aff (B) ) ≈1   (28) 
The greater the left-hand side of the equation, the more similar 
the relative positions: 1 indicates complete similarity and 0 
complete dissimilarity. See Fig. 4 and Table II. In that table, 
the similarity measure is the measure presented in Section V.A. 

C. Retrieving  aff  from ΦAB  and Φ aff(A) aff(B)  
Let (A0,B0) be a pair of objects. Solve for (A,B) the equa-

tion ΦAB = ΦA0B0 . Any pair (A,B) such that (A,B)≡(A0,B0), 
where ≡ means equality up to a translation, is a solution to this 
equation. Are there other solutions? We do not have an answer 
to this recovery problem yet. In practical situations, however, 
it is most reasonable to assume that the answer is negative.  

Now, consider normalization with respect to the affine 
group. Let (A,B) and (A',B') be two well-behaved object pairs. 
Assume there exists an affinity aff such that 

A' = aff(A)  and  B' = aff(B). (29) 
Is it possible to retrieve aff from ΦAB  and ΦA 'B ' ? The answer 
is positive. Indeed, the normalizing transformations lin and lin' 
of ΦAB  and ΦA 'B ' are such that Φ lin(A) lin(B) = Φ lin '(A ') lin '(B ')  
(Section III.B). Therefore, 

lin'(A') ≡ lin(A)  and  lin'(B') ≡ lin(B)  (30) 
 (subject to the assumption regarding the recovery problem). 
This implies that  

A' ≡ lin' −1(lin(A)) = (lin' −1 ° lin)(A)  and (31) 
B' ≡ lin' −1(lin(B)) = (lin' −1 ° lin)(B),  (32)  

where ° denotes function composition. In other words,  

aff ≡ lin' −1 ° lin. (33)

For example, consider the two object pairs in Fig. 4ad. 
Compute their Φ-descriptors, and from there the two nor-
malizing transformations. Then, apply (33). You find the 
transformation we used to get Fig. 4d from Fig. 4a: 

aff ≡ 
0.12 0.86
−1.10 0.64

⎡

⎣
⎢

⎤

⎦
⎥  

Now, instead of (29), assume there exists an invertible 
transformation t, not necessarily affine, such that: 
A' = t(A)  and  B' = t(B). (34) 

 
Fig. 3.  Normalization wrt the affine group. (a)(b)(c) Three object 
pairs with their major and minor directions. Since the pairs are related 
by affinities, they have the same normalized Φ-descriptor, and they 
yield the same normalized pair ⎯ which is actually the pair shown in 
(c). The normalizing transformation for that pair is the identity. 

 

 
Fig. 4.  The identity transformation, an isometry other than the iden-
tity, a similitude other than an isometry, and an affinity other than a 
similitude are applied to a pair of objects.  

TABLE II.  SIMILARITIES AND AFFINITIES. 
Consider the four object pairs in Fig. 4. Normalized relative positions 
are compared through a similarity measure, SIM (Section V.A). 

normalization 
with respect to  

similarity between (a) and 
(a) (b) (c) (d) 

isometries 
similitudes 
affinities 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

0.79 
1.00 
1.00 

0.83 
0.83 
1.00 

 
lin' −1 

° lin may be seen as the affinity that best approximates t, 
and the similarity SIM ΦAB,ΦA 'B '( )  between ΦAB  and ΦA 'B ' , 
where SIM denotes a similarity measure as discussed in Sec-
tion III.B.4, can be used to assess the quality of the approxima-
tion. This will be illustrated in Section V. Note that normaliza-
tion with respect to subgroups of the affine group leads to 
comparable results. For example, consider (34) again. Using 
normalization with respect to the group of all isometries, one 
can find the isometry that best approximates t and assess the 
quality of the approximation. 

IV. TEST ONE 
Let Δ be a relative position descriptor. Consider two views 

of a scene with five identical items (Fig. 5ab). Segment them 
automatically (Fig. 5cd). Can we match the objects in the two 
views correctly if the two sets of descriptors {ΔAiAj }1≤i< j≤5  
and {ΔBiBj }1≤i< j≤5  are the only information available? This 
experiment was proposed in [3] to illustrate, test and validate 
the affine properties of another relative position descriptor—
the force histogram. As shown in Section IV.A, the Φ-descriptor
passes the test. It is, therefore, fairly robust to departures from 
the assumptions on the transformations being handled. Indeed, 
the image formation process involves projective transformations 
instead of affinities; besides, the objects here are 2-D repre-
sentations of 3-D items and segmentation is seldom accurate. 
The affine properties of the Φ-descriptor and force histogram 
are compared in Section IV.B. 

γ

(a) (b) (c)

(a) identity (b) isometry (c) similitude (d) affinity

1945



A. Which Can Is Which? 
Consider the 10 descriptors ΦAiAj  and the 10 descriptors 

ΦBiBj , with 1≤i<j≤5. There exist 10! one-to-one mappings 
from the first set to the second set of descriptors, i.e., 3,628,800 
ways to match the two views. Of course, the search space could 
be drastically reduced since the descriptors in each set are not 
totally independent (they describe object pairs that share the 
same five objects). As in [3], this is a fact we choose to ignore. 
Let m be one of the 10! mappings. Consider some descriptor 
ΦAiAj . Assume m(ΦAiAj ) = ΦBkBl . The affinity that best 
transforms (Ai,Aj) into (Bk,Bl) can be derived from the two 
descriptors⎯see (33), where normalization is with respect to 
the direct affine group (the group of affinities that preserve 
orientation). Ten affinities, 
ai bi
ci di

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 with 1 ≤ i ≤ 10, can therefore be attached to m. 

Compute the sum a+b+c+d, where a is the mean deviation of 
a1, a2, …, a10, where b is the mean deviation of b1, b2, …, b10, 
etc. The one true mapping defined by m(ΦAiAj ) = ΦBiBj  
should give the lowest of the 3,628,800 sums⎯and it does.  

B. Φ-Descriptor vs. Force Histogram 
The force histogram offers a solution to the problem exam-

ined in Section III.A, but only normalization with respect to 
the group of similitudes can be achieved, and there is no solu-
tion to the problem addressed in Section III.C [7]. A compu-
tationally expensive optimization algorithm was therefore 
used in [3] to compute each affinity. Moreover, the one true 
mapping could not be found when using only the retrieved 
affinities: similarities between force histograms had to be 
computed as well and used together with the affinities.  

V. TEST TWO 
Assume we are looking—within a database of objects— 

for objects that are arranged in space in a given way. For exam-
ple, find five buildings in Fig. 6 that are arranged as specified 
by Fig. 7a. In this section, we present a solution based on the 
Φ-descriptor, with the aim of illustrating its affine properties. 
At the core of the search algorithm is a measure of similarity  

 

 
 

 
 

Fig. 5.  (a)(b) Two views of the same scene. Which can is which? 
Use only relative position information. (c)(d) After segmentation. 
Note that A1 corresponds to B1, that A2 corresponds to B2, etc. 

between two configurations, i.e., tuples of objects. This meas- 
ure is introduced in Section V.B. It relies on SIM, which was 
mentioned in Section III, and an example of which is given 
in Section V.A. Experimental results are in Section V.C. 

A. Comparing Relative Positions 
In this paper, the similarity SIM (ΦAB, ΦA 'B ' )  between two 

descriptors Φ 
AB and Φ 

A’B’ is set to a weighted average of the 
similarities sim(FiAB, FiA 'B ' )  between corresponding area func-
tions, where the integer i belongs to 1..10. The weight attached 
to sim(FiAB, FiA 'B ' )  is Σk FiAB(θk )+ FiA 'B ' (θk ) . Moreover, 

sim(Fi
AB, Fi

A 'B ' ) = 1−
Σk FiAB(θk )− FiA 'B ' (θk )
Σk FiAB(θk )+ FiA 'B ' (θk )

. (35) 

θ1, θ2, etc., are the directions that are actually considered, and 
(35) comes from [8]. We assume 0/0=0. See Fig. 4 and Table II. 

B. Comparing Configurations 
Here, relative positions are understood as being invariant 

under direct similitudes. The similarity between two configura-
tions  (A1, A2, …, An)  and  (B1, B2, …, Bn)  may be set to the 
average of the similarities between corresponding normalized 
Φ-descriptors, where normalization is with respect to the 
group of all direct similitudes:

   S((A1,A2,...,An ),(B1,B2,...,Bn ))  
=

2

n(n −1)
SIM (ΦAiAj ,ΦBiBj )

j=i+1
n∑i=1

n−1∑   (36) 

Equation (36), however, is not satisfactory. For example, we 
may have SIM (ΦAiAj ,ΦBiBj )= SIM (ΦAkAl ,ΦBkBl ) =1 while the 
angles δij and δkl or the scale factors σij and σkl of the simili-
tudes that transform (Ai, Aj) into (Bi, Bj) and (Ak, Al) into (Bk, 
Bl) are completely different. (These similitudes are derived from
the normalizing transformations, as explained in Section III.C.) 
Consider the multiset {δij}i<j. Its median δ can be defined as the 
value δuv that gives the smallest mean deviation:  
δ = argminu,v drot (δuv ) , where (37)

drot (δuv ) =
2

n(n −1)
δij − δuvj=i+1

n∑i=1
n−1∑ . (38) 

However, since we are dealing with angles, i.e., circular data 
[2], Equation (38) must be replaced with (39):

drot (δuv ) =
2

n(n −1)
π − π − δij − δuv( )j=i+1

n∑i=1
n−1∑   (39) 

Angles are in (−π,π]. The δ-angle rotation may be seen as the 
rotation that best transforms (A1, A2, …, An) into (B1, B2, …, Bn). 
The lower each π − π − δij − δ  and the more similar the two 
configurations. Likewise, and since we are dealing with scale 
factors, let σ be the logarithmic median of the multiset {σij}i<j :   
σ = argminu,v dsca (σuv ) ,  where (40) 

dsca (σuv ) =
2

n(n −1)
logσij − logσuvj=i+1

n∑i=1
n−1∑ .  (41)  

The lower each logσij − logσ , i.e., each 
exp logσij − logσ

= exp log(σij /σ) = (σij /σ)±1 , the more similar the configura-
tions. In the end, the similarity between (A1, A2, …, An) and 
(B1, B2, …, Bn) is defined as:

   S((A1,A2,...,An ),(B1,B2,...,Bn ))  
=

2

n(n −1)
wij SIM (ΦAiAj ,ΦBiBj )

j=i+1
n∑i=1

n−1∑ , (42) 

(a) (b) 

(c) (d) 
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where wij = wrot (π − π − δij − δ ) wsca (exp log(σij /σ) )
      

(43) 
and wrot and wsca are weighting functions as in Fig. 8.

C. Experimental Results 
Consider the reference objects in Fig. 6 and a query config-

uration (A1, A2, A3, A4, A5) as in Fig. 7a. The result of the query 
is the tuple of reference objects (B1, B2, B3, B4, B5) with the 
highest similarity S((A1, A2, A3, A4, A5), (B1, B2, B3, B4, B5)). 

We trust the results do not go against the reader’s percep-
tion. Note that the exact shapes of the objects do not matter, 
since the focus is on their arrangement in space. For instance, 
the result of the query in Fig. 7a is Fig. 7d, even though there 
are many 5-tuples of perfectly rectangular reference objects (see, 
e.g., top-right corner of the map). Likewise, the result of the query 
in Fig. 7c is Fig. 7f, even though there is a perfect hollow 
rectangle in the set of reference objects (left side of the map). 

VI. CONCLUSION 
The affine properties of visual descriptors have been the 

subject of much attention. Here, we have focused on the Φ-
descriptor—a relative position descriptor introduced in recent 
work. It is much faster to compute than most of its competitors, 
and it carries way more spatial relationship information. We 
have shown in this paper that the Φ-descriptor has remarkable 
affine properties, which give it unique capabilities. For example, 
consider the relative positions ΦAB

 and Φaff(A)aff(B) of two spatial 
objects, before and after the affinity aff is applied to the objects. 
Any two of these elements allow the third one to be recovered, 
without relying on any computational optimization technique. 
Moreover, the Φ-descriptor can be normalized so as to become 
invariant under the affine group, or under a subgroup of the 
affine group (like the group of similitudes). No other relative 
position descriptor has comparable properties. Finally, our 
preliminary experiments tend to show that the Φ-descriptor 
reacts well to nearly-affine transformations, is robust to varia-
tions in shapes, and can be used to define perceptually relevant 
measures of relative position similarity between spatial config-
urations. In future work, we will conduct thorough experi-
ments to corroborate and refine these findings, we will describe 
how to detect and handle ill-behaved object pairs (Section 
III.B.1), and we will investigate the recovery problem (III.C). 
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