
Calibration, Positioning and Tracking in a Refractive
and Reflective Scene

Tobias Palmér
Center for Mathematical

Sciences
Lund University
Lund, Sweden

Email: tobiasp@maths.lth.se

Giuseppe Bianco, Mikael T. Ekvall, Lars-Anders Hansson
Aquatic ecology, Department of Biology

Lund University
Email: giuseppe.bianco@biol.lu.se

mikael.ekvall@biol.lu.se
lars-anders.hansson@biol.lu.se

Kalle Åström
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Abstract—We propose a framework for calibration, positioning
and tracking in a scene viewed by multiple cameras, through
a flat refractive surface and one or several flat reflective walls.
Refractions are explicitly modeled by Snell’s law and reflections
are handled using virtual points. A novel bundle adjustment
framework is introduced for solving the nonlinear equations
of refractions and the linear equations of reflections, which in
addition enables optimization for calibration and positioning. The
numerical accuracy of the solutions is investigated on synthetic
data, and the influence of noise in image points for several settings
of refractive and reflective planes is presented. The performance of
the framework is evaluated on real data and confirms the validity
of the physical model. Examples of how to use the framework
to back-project image coordinates, forward-project scene points
and estimate the refractive and reflective planes are presented.
Lastly, an application of the system on real data from a biological
experiment on small aquatic organisms is presented.

I. INTRODUCTION

There has been a lot of interest in the computer vision society
on the subject of using and modeling cameras whose line
of sight is somehow disturbed by refractions [1]–[5]. There
are many different problems that can be posed by assuming
different configurations of known relationships between refrac-
tive planes, cameras, scene points etc. In the case where the
presence of refractions is due to the camera being under water,
there are additional radiometric effects that alters the imagery
[6]–[9]. Modeling of refractions has also been combined with
reflections. For example, the recovery of refractive and reflec-
tive objects has been studied by light-path triangulation [10],
[11], assuming known scene points. Furthermore, the problem
of reconstruction or pose estimation has been studied in the case
of flat reflections [12] and catadioptric cameras with parabolic
reflections [13], [14].

However, positioning and tracking of objects within a scene
where there are both refractions and reflections present has to
our knowledge not been considered in previous research. This
is an important application in for example biological sciences,
where it is common to study the behavior of objects (e.g.
animals) inside of an aquarium while viewing the scene from
the outside [15]–[17]. An equivalent problem is to estimate
structure inside a refractive (and possibly reflective) scene.
We therefore present theory and methods for the calibration
of refractive and reflective scene parameters, assuming pre-

calibrated cameras. We describe the subsequent use of methods
for finding the positions of objects within the scene. A frame-
work is created for this purpose and is applied for a study on
the behavior of small aquatic organisms.

In Section II, we explain how refractions and reflections are
modeled, using Snell’s law and virtual points. In Section III, we
show how the models are applied to create a residual vector and
how to minimize it efficiently by bundle adjustment. Examples
of how to use the framework to forward-project a scene point
(Section III-D), back-project an image point (Section III-D) and
estimate the refractive and reflective planes (Section IV) are
presented. The numerical accuracy of the method is thoroughly
tested on synthetic data in Section V-A, and the validity of the
framework on real data is tested using images of a calibration
pattern submerged in an aquarium in Section V-B. Lastly, an
actual application of the system is presented in Section VI,
providing a qualitative evaluation of the system on real data.

A. Related work
In [3], Agrawal et al. presents theory of flat refractive

geometry, deriving e.g. that a pinhole camera viewing a scene
through (multiple) parallel flat refractive surfaces corresponds
to an axial camera. It is also shown that the case of double
refractions in the case of air-glass-water, where the glass is thin,
is well approximated by disregarding the glass. This result is
also reported in [4].

A method for structure-from-motion in underwater settings
where the camera-refractive plane pose is known is presented
by Jordt-Sedlazeck and Koch in [1], deriving an error function
for virtual cameras for use in bundle adjustment. Here, the
standard methods for bundle adjustment in refractive structure-
from-motion are deemed infeasible.

The problem of estimating the absolute pose of a calibrated
camera viewing a refractive scene is solved minimally and near-
minimally for a few different settings of assumptions, by Haner
and Åström [4].

Concerning reflections and ray-tracing, Sturm and Bonfort
considered the task of computing the pose of an object without
a direct view [12], viewing a calibration pattern through a flat
reflective surface. In [11], Chari and Sturm use both reflections
and refractions for estimating the structure of transparent refrac-
tive objects. In the case of catadioptric cameras, i.e. cameras
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Fig. 1. Snell’s law. A ray originating from the camera center C with direction
~u undergoes a change of direction according to ρ1 sin θ1 = ρ2 sin θ2. This
causes the usually linear equations for projections, for example, to become
nonlinear and much harder to solve.

with parabolic mirrors, Geyer and Daniilidis derive epipolar
constraints and use them for structure and motion in [13], [14].

In the field of biology, Ekvall et al. studied the movement
of small aquatic organisms [15] inside a rectangular aquarium
using four cameras, positioned pairwise and orthogonal to two
of the surfaces and approximating the cameras as orthogonal.

II. THEORY OF REFRACTIONS AND REFLECTIONS

In this section, we introduce the equations for modeling
refractions and reflections that are later used for defining the
error functions in Section III-B. Note that some indices of
variables, later introduced in Section III-A, are omitted here.

A. Refractions (Snell’s law)

Snell’s law describes how the angle θ1 of an impinging ray
~u, with respect to the refractive plane normal, is related to the
angle θ2 of the outgoing ray ~v by

ρ1 sin(θ1) = ρ2 sin(θ2), (1)

where ρ1 and ρ2 are the refractive indices of the surfaces. A
visualization of this is given in Fig 1. This nonlinear relation
is the main source of the challenges encountered in underwater
structure-from-motion. Another issue is ambiguity in Eq (1)
that gives rise to false solutions.

In order to express Snell’s law as a function of the ray
directions and plane normal, a property of the cross product
is applied:

~u× ~n = ‖~u‖‖~n‖ sin(θ1)~w, (2)

where ~w is a unit vector orthogonal to both ~u and ~n, and θ1 is
the angle between ~u and ~n. Since any vector orthogonal to ~u
and ~n is also orthogonal to ~n, Eq (2) can be used to reformulate
Eq (1) to

ρ1
~u× ~n
‖~u‖‖~n‖

= ρ2
~v × ~n
‖~v‖‖~n‖

, (3)

where ~u and ~v are the previously defined ray directions.
Assuming that ‖~n‖ = 1 and multiplying by ‖~u‖ and ‖~v‖ gives
the expression

ρ1‖~v‖(~u× ~n) = ρ2‖~u‖(~v × ~n). (4)

Squaring both sides of the equation element-wise gives expres-
sions that are polynomial in all variables, of which only two are
independent (ref e.g. [4]). Solutions to this equation will later
be sought for the purpose of computing forward projections.
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Fig. 2. Reflections. A ray with direction ~u originating from a point ~P intersects
a reflective plane (~n, d) at a point ~R, where the ray changes direction to ~v and
subsequently intersects a point ~U . Note that the ray segment from ~R to ~U is
the mirror image of the virtual ray segment from ~R to ~Q.

Note that in the case where ~u and ~n are known, solving for
~v gives the expression

~v = r~u+ (r cos θ1 − sign(cos θ1) cos(θ2))~n, (5)

where
cos θ1 = −~n · ~u,
cos θ2 =

√
1− r2(1− cos2 θ1),

(6)

and r = ρ1/ρ2. This provides a convenient method for
computing the refraction of directions and will later be used
for back-projections.

B. Reflections

The law of reflection states that the angle θ1 of an impinging
ray is related to the angle θ2 of the outgoing ray as

θ1 = θ2, (7)

with respect to the normal of the reflective surface at the
point of reflection, as depicted in Fig 2. This relation can be
reformulated on vector form as a linear transformation from
the incoming ray direction ~v to the outgoing ray direction ~w
as

~w = (~I − 2~n~n>)~v, (8)

where ~n is the normal direction of the surface at the point of
intersection.

An equivalent way to model reflections is to reflect points
instead of directions. The observation of a point ~U that is
reflected in a surface appears the same as the observation of
a virtual point ~Q that is the mirror image of ~U and travels
straight through the surface. Adapting Eq 8 for points gives
the following linear transformation for the reflection of a point
~U in ~π: [

~Q
1

]
=

[
(~I − 2~n~n>) −2~nd

~0> 1

] [
~U
1

]
. (9)

This property of modeling the reflection of rays provides a
convenient method for computing forward projections through
one or multiple reflections.

III. METHOD

In this section, we describe how the theory of reflections
and refractions introduced in Section II can be applied. First
the notation is introduced, then the equations of refractions and
reflections are adapted for use in a residual vector, and lastly
initialization and practical application is presented.
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Fig. 3. The refraction and reflections of two pairs of rays from two camera
focal points ~Ci , all corresponding to the same scene point ~Uk . All of the rays
intersect the plane of refraction (~n1, d1) where they change direction, resulting
in second linear pieces of the ray originating at the points of refraction ~Pijk .
Two of the rays also intersect a plane of reflection (~nj , dj), j > 1, resulting
in additional linear pieces of the ray originating at the points of reflection
~Rijk . In the case of forward projection, computing the points of reflection is
conveniently avoided by instead forward projecting the virtual point ~Qjk that
is the reflection of the scene point in zero, one or several planes of reflection.

A. Data structure and notation

The modeling of a ray subject to refraction and reflection
is based on the use of a help point at the refractive plane
and a virtual point that is the reflected scene point, as shown
in Fig 3. Scene point k is denoted ~Uk and the reflection of
~Uk in reflective plane configuration j ∈ N is denoted ~Qjk. A
reflective plane configuration can be for example reflection in
~π2, followed by reflection in ~π4. By defining j = 1 as the empty
reflection, ~Qjk denotes an end point that is either the scene
point for j = 1 or a virtual point for j > 1. The observation
of an end point by camera i corresponds to a ray in two linear
pieces - from ~Qjk to ~Pijk and from ~Pijk to ~Ci, where ~Ci is the
focal point and ~Pijk is a help point. The help point ~Pijk lies
on the refractive plane and is defined such that the angles of
the vectors ~u = ~Pijk− ~Ci and ~v = ~Qjk− ~Pijk satisfies Eq (4).

A ray corresponding to the observation of an end point ~Qjk

by camera i is represented by the points it interpolates as(
~Ci, ~Pijk, ~Qjk

)
, (10)

where ~Pijk is the help point. The normalized image coordinates
in camera i relating to an end point ~Qjk are denoted ~uijk and
are given by the projection of the help point ~Pijk.

Note that in the notation used throughout the paper, it is
assumed that all scene points are subject to a single refraction
and that the plane of refraction separates the end points from
the camera focal points.

B. Bundle adjustment

Equations describing refractions and reflections, as intro-
duced in Section II-A and Section II-B, together with the data
structures introduced in Section III-A are used to create a
residual vector ~r.

The error function for the refraction of a ray (~Ci, ~Pijk, ~Qjk)
is adapted from Eq (4) and defined as

~rrefr(~Ci, ~Pijk, ~Qjk, ~µ, ~n1) =

µ2
1

((
~Ci − ~Pijk

)
× ~n1

)2 ∥∥∥ ~Qjk − ~Pijk

∥∥∥2
2

− µ2
2

((
~Qjk − ~Pijk

)
× ~n1

)2 ∥∥∥~Ci − ~Pijk

∥∥∥2
2
,

(11)

where the square of the cross product is computed element-
wise. The refractive error function is complemented by an error
function constraining the help points to lie on the plane of
refraction.

The error function for the reflection of a scene point ~Uk to
a virtual point ~Qjk is adapted from Eq (9) as

~rrefl(~Uk, ~Qjk, ~πj) =(
~I − 2~nj~n

>
j

)
~Qjk − ~Uk − 2~njdj .

(12)

Also, error functions for the re-projections of help points
~Pijk to image points ~uijk, ~rproj(~Pijk, ~uijk), and constraints
‖~nj‖ = 1 for the plane normal vectors ~nj , ~rn(~nj), are added.

C. Using the Schur complement

Given an end point ~Qjk and a camera center ~Ci, there is
always a help point ~Pijk such that the ray (~Ci, ~Pijk, ~Qjk)
satisfies Snell’s law. Finding the help points is computationally
very cheap - each help point is subject to four constraints
and only a few iterations using Gauss-Newton’s method are
enough to find it accurately. Furthermore, all help points are
independent from other help points. The existence of ~Pijk and
the computational efficiency in estimation can be leveraged to
increase effiency in the estimation of other variables as follows.

First, the residual vector and variables are partitioned as

~r =
[
~r1 ~r2

]>
,

~x =
[
~xA ~xB

]>
,

(13)

where ~r1 are the residuals for refractions and reflections, ~r2
the residuals for projections and plane normalization, ~xA is
the vector containing help points and ~xB contains some other
disjoint subset of ~x, for example the reflective plane parameters.
The linearization of the problem at ~x is{

δ~r1 = ~J1Aδ~xA + ~J1Bδ~xB ,

δ~r2 = ~J2Aδ~xA + ~J2Bδ~xB .
(14)

where ~J1A is the matrix of partial derivatives of ~r1 with respect
to ~xA and ~J1B , ~J2A, ~J2B are defined analogously. First solving
for help points with respect to refractions and reflections gives
(approximately) ‖~r1‖ = 0. Inserting ~r1 into Eq (14) and solving
the first line for δ~xA gives δ~xA as a function of δ~xB . Inserting
the solution δ~xA into the second equation, and solving the
second equation for δ~xB results in
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{
δ~xA = − ~J−11A

~J1Bδ~xB ,

δ~xB = −( ~J2A ~J−11A
~J1B + ~J2B)

−1δ~r2,
(15)

where ~J2A ~J
−1
1A

~J1B + ~J2B is known as the Schur-complement.
This is applied in the estimation of e.g. the refractive plane,
by first optimizing the help points, then optimizing in the
direction δ~x obtained by solving Eq (15) for δ~xA and δ~xB .
The procedure is repeated from the newly obtained ~x until some
stopping criteria is met.

D. Computing the back-projections and forward projections

The bundle adjustment methods assumes that there is an
initial value for each variable, thus there is need for methods
of initializing those variables. In this section, initialization for
forward projections and backward projections are explained.

In the case of forward-projections, a scene point ~Uk is known
and the set of image points ~uijk that corresponds to ~Uk are
sought. This amounts to finding and then projecting the point
of refraction ~Pijk for any end point, i.e. for the scene point
or any reflection ~Qjk of it. For this purpose, the scene point
is reflected in some set of plane configurations, resulting in
the set of end points { ~Qjk}. For each such end point ~Qjk

and camera center ~Ci, an initial value for the corresponding
help point ~Pijk is given by the intersection of the straight
line from ~Qjk to ~Ci and the refractive plane ~π1. For each
camera i and plane configuration j, the error of refraction for
the ray ~rrefr(~Ci, ~Pijk, ~Qjk, ~µ, ~n1) is subsequently minimized
with respect to the help points ~Pijk. The help points are then
projected by their corresponding camera matrix to provide the
sought image coordinates ~uijk.

In the case of back-projecting an image point, assuming
that the refractive and reflective planes are known, the help
point and refracted ray direction can be obtained by tracing
the ray from the camera focal point to the plane of refraction
and computing the new direction by Eq (5). The process is
analogous for the reflective planes using Eq (8). Note that the
bundle adjustment framework is not used for this task.

In the case of back-projecting a set of image points ~uijk
corresponding to the same scene point ~Uk, assuming knowledge
of the reflective plane configuration j each ray undergoes,
the scene point ~Uk is sought. Help points ~Pijk and refracted
and reflected ray directions are computed as was presented
in the case of single back-projection. This results in a set of
points and directions whose intersection is used as an initial
value for the scene point ~Uk. Note that in the case where
there are at least two rays unaffected by reflections, the initial
value is more conveniently computed using only those rays.
The virtual points are then initialized by reflecting ~Uk in the
specified reflective plane configurations using Eq (9), Thus the
ray (~Ci, ~Pijk, ~Qjk) is known for each end point. The residual
vector for this estimation is composed of ~rrefl(~Uk, ~Qjk, ~πj),
~rrefr(~Ci, ~Pijk, ~Qjk, ~µ, ~n1) and ~rproj(~Pijk, ~uijk), and is subse-
quently minimized with respect to the virtual points ~Qjk and
scene points ~Uk.

An issue in tracking applications is that the configuration
of reflections that each ray undergoes on its way to the end
point can not always be assumed to be known. However,
the above methods can be combined to create a method
that can be used to find the configurations. Given a putative
pair of image point correspondences and assume that their
corresponding rays do not undergo reflections before meeting
their common end point. Then the end point can be estimated
by back-projection as previously explained. If the estimated
end point is located outside of the scene (e.g. in the case of
an aquarium), the estimate is discarded. A set of reprojected
points are given by reflecting the end point in several reflection
configurations and forward projecting each of the resulting
virtual points. Each such forward projection is feasible only if
the help point is located inside of the bounded refractive plane.
Lastly, the distances to detected image points are evaluated and
points sufficiently close to the re-projections are assumed to
correspond to the same scene point. If additional image point
correspondences are found, the position of the scene point can
subsequently be further optimized.

IV. CALIBRATING THE SCENE

The calibration process is divided in two steps - pre-
calibration and refractive scene calibration. The pre-calibration
is, in this case, composed of estimating the intrinsic parameters
of each camera and the relative poses of the cameras, i.e.
radial distortion, skew, focal length, etc. and position and
orientation. This is done using the standard methods with a
moving checkerboard [18], [19].

The refractive scene calibration consists of estimating the
parameters of the planes of refraction and reflections in the
scene, i.e. (π1, π2, ...), and is done using a set of observed
image points. It is assumed that the plane configurations that
each of the corresponding rays are reflected in before they meet
their scene points are known, and that there are sufficiently
small errors in the initial values of the scene parameters. The
method for back-projection explained in Section III-D is used
to find a ray (~Ci, ~Pijk, ~Qjk) for each image point. Each ray
is entered into the framework and the corresponding residual
vector of refractions, reflections and projections is minimized
with respect to the help points, end points and planes. The
estimated planes are the results of calibration.

In the experimental evaluation (section V-B), the refractive
scene calibration was performed using a checkerboard sub-
merged in a water tank and the checkerboard points were
found using the same checkerboard-detection algorithms as for
the pre-calibration. In this case, heuristics for deciding the
refractive/reflective configuration that each ray undergoes could
be easily decided due to the scene-geometry of this particular
application. A close-enough initial calibration was attained by
manually selecting the points in the corners of the tank for
which the geometry was known.

V. EXPERIMENTS

The performance of the system is evaluated on both real data
and synthetic data. The accuracy and robustness in estimates
of image points, scene points and refractive and reflective
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Fig. 4. Left: the distribution of angular errors with respect to Snell’s law for
forward-projection in 1000 random synthetic problem instances with no added
noise. Right: The distribution of error in position, defined as the euclidean
distance from an estimate to ground truth, for back-projection in 1000 random
synthetic problem instances with no added noise. Points were simulated at
distances approximately 200 mm from the camera focal points.

planes is analyzed in Section V-A. Real images are analyzed
in Section V-B, where a checkerboard is submerged in an
aquarium.

A. Synthetic experiments

The method for forward-projection is evaluated by simulating
1000 random scenes, each consisting of a refractive plane,
a reflective plane and two camera poses. Scene points are
generated and subsequently forward-projected to image points
in the cameras, as explained in Section III-D. The difference
in θ2 given by solving ‖~n‖‖~v‖ cos(θ2) = ~n>~v and Eq (1) for
θ2, using the estimated θ1, is evaluated and presented in Fig 4.
This shows that the forward projections of the synthetic data
are accurate, thereby proving the validity of the synthetic data
that the following analyses are based on.

The numerical accuracy of the method for back-projection
(introduced in Section III-D) is tested by back-projecting
simulated image points and estimating the 3d positions that
corresponding pairs of image points are observations of. The
estimated 3d points are compared to the ground truth 3d points,
and the distribution of distances between the points is presented
in Fig 4. Sensitivity to noise was tested by adding zero mean
normal distribution noise with increasing variance to the image
points, resulting in the distribution of distances shown in Fig 5.

The numerical accuracy of the method for estimating refrac-
tive and reflective planes, as introduced in Section IV, is tested
on 1000 random simulated problem instances. Each instance
consists of the observed image coordinates of 3 scene points
(the minimal case) in a fixed, simulated scene with two cameras
and planes similar to the real scene analyzed in Section VI.
The performance of the plane estimation method is tested by
perturbing the initial plane parameters slightly and using the
image points to estimate the planes. Fig 5 presents the results
of plane estimation with respect to estimating the position of the
refractive plane, where the position of the plane is defined as the
point at the center of the plane, computed using the ground truth
planes for all other planes. Additionally, sensitivity to noise
in image coordinates is tested by adding zero-mean normal
distributed noise to the image coordinates and subsequently
estimating the planes. The result of estimating the refractive
plane position as a function of added noise variance is presented
in Fig 6.

−10 −5 0

log10(pos. error)

~πrefr : 1 refr., 0 refl.

−10 −5 0

log10(pos. error)

~πrefr : 1 refr., 1 refl.

−10 −5 0

log10(pos. error)

~πrefr : 1 refr., 2 refl.

−10 −5 0

log10(pos. error)

~πrefl : 1 refr., 2 refl.

Fig. 5. Distribution of errors in estimated plane positions compared to ground
truth for three scene settings, given slightly perturbed initial plane parameters.
Note that the distributions in the top row and the left column shows the errors
in position of the refractive plane, and the bottom right shows the distribution
of errors in position of both reflective planes.
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Fig. 6. The median of error in position of the refractive plane for three scene
settings as a function of the noise variance σ2. For each σ, zero-mean Gaussian
noise with variance σ2 is added to the normalized image coordinates, and the
planes are estimated given slightly perturbed initial plane parameters. Note that
the difference between one and two reflective planes is small.

B. Real checkerboard experiments

The setup presented in Section VI was used for testing the
performance of the method on real data. A checkerboard of
known dimensions was submerged in the water in an aquarium
overlooked by four cameras, as presented in Fig 8, in order to
evaluate the performance of the system. The checkerboard was
moved in a range of approximately 200 mm to 400 mm from
the cameras. The cameras have been pre-calibrated and initial
estimates of the planes of the aquarium are used. The method
of optimizing the refractive and reflective planes, presented in
Section IV and synthetically evaluated in Section V-A, was
applied to observed image points from the scene.

The re-projection errors obtained during the estimation are
presented in Fig 7. In addition, the relative positions of the
estimated scene points are analyzed as follows. Since the abso-
lute pose of the checkerboard is unknown, the estimated scene
points are transformed by an euclidean transformation to the
local coordinate system of the checkerboard. The distribution
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Fig. 7. The distribution of re-projection errors (left) and estimated scene points
position errors (right) for a real experiment using a checkerboard.
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Fig. 8. (a) and (b): Side and top view of the experimental setup, composed
of an aquarium and four cameras arranged as vertical stacked stereo-pairs that
overlook the entire aquarium from the side. (c): The track of one Daphnia, the
model of the aquarium and the four cameras.

of distances between the transformed estimated scene points
and the checkerboard points is presented in Fig 7.

VI. APPLICATION - TRACKING SMALL AQUATIC
ORGANISMS

The proposed system is applied for a biological experiment
on Daphnias (small aquatic organisms), where the behavioral
response to e.g. ultraviolet radiation is studied. A setup con-
sisting of an aquarium overlooked by four cameras arranged
as vertical stacked stereo-pairs was used to acquire videos, as
depicted in Fig 8. The cameras were pre-calibrated and the
refractive plane was estimated, as described in Section IV.
Note that since the cameras approximately lie in a plane
which is approximately parallel to the refractive surface, a
good initial estimate of the refractive surface normal can be
made. Measuring the distance from the refractive plane to the
cameras by ruler enables initiation of the fourth parameter of
the refractive plane. Since the aquarium is rectangular and
distances between parallel surfaces are known, initial values
of all planes can be made with sufficient precision.

Videos of daphnias were recorded and the daphnias were
subsequently detected. The daphnias’ image points were input
into the framework and their corresponding 3-d positions were
estimated as explained in Section III-D. The track of one
daphnia is shown in Fig 8.

VII. CONCLUSION

We have presented a method that can be used for the tracking
of objects within a scene where both flat refractions and flat
reflections are present. Evaluations on both synthetic data and
real data have confirmed that the information that is found

in the reflections can be used to improve the performance of
estimating the refractive and reflective planes and the position
of objects in the scene. Lastly, we have presented an application
of the system that produces qualitatively good results.
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