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Abstract—We consider the problem of object figure-ground
segmentation when the object categories are not available during
training (i.e. zero-shot). During training, we learn standard
segmentation models for a handful of object categories (called
“source objects”) using existing semantic segmentation datasets.
During testing, we are given images of objects (called ‘“‘target
objects”) that are unseen during training. Our goal is to segment
the target objects from the background. Our method learns to
transfer the knowledge from the source objects to the target
objects. Our experimental results demonstrate the effectiveness
of our approach.

I. INTRODUCTION

Object segmentation is a fundamental task in image under-
standing. If there is a single object of interest, this problem
is often known as figure-ground segmentation, where the goal
is to produce a binary mask of an image that separates the
foreground object from the background. If there are multiple
objects of interest, this problem is also referred to as semantic
segmentation, where the goal is to assign each pixel in the
image a label indicating its object class.

Interactive segmentation (e.g. GrabCut [1]) has been suc-
cessfully applied for object segmentation. But it requires user
input, e.g. in the form of a bounding box around the object
of interest. Fully automatic object segmentation approaches
typically involve learning the segmentation model from im-
ages with ground-truth pixel-level segment annotations. How-
ever, manually annotating images with segmentations is very
time consuming. Compared with datasets for other visual
recognition tasks, current object segmentation datasets are
often limited in terms of the number of object classes and
the number of images. For example, ImageNet [2] contains
millions of images. Each image is annotated with the class
label of the main object in the image. ImageNet has proven
to be a valuable resource and has enabled the recent deep
learning revolution [3] in computer vision. However, none of
the ImageNet images is annotated with the object segmentation
mask.

To bridge this gap, we propose a zero-shot learning ap-
proach for object figure-ground segmentation. Our work is
motivated by the following observation. For certain object
classes (which we call “source objects”), we have reasonably
large datasets with segmentation annotations. For example,
the MS COCO dataset [4] contains images with segmentation
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annotations for about 80 objects. For these 80 objects, we
can learn standard segmentation models. But for many other
object classes (which we call “target objects’), we do not have
training images with segmentation annotations. So we cannot
directly learn segmentation models for these target objects.
Our goal is to transfer the segmentation models from the
source objects to the target objects.

Our problem setup is illustrated in Fig 1. We use a standard
semantic segmentation dataset (e.g. MS COCO) as the training
dataset. We consider the object classes in the training data as
the source objects and learn segmentation models for these
object classes. During testing, we are given an image where
we know the label of the main object in the image, but the
object is not one of the source object classes on the training
dataset. Our goal is to segment the object in the image from
the background, even though we have never seen images of
this object during training. A reliable solution to this problem
will allow us to automatically populate large-scale object
recognition datasets (e.g. ImageNet) with object segmentation
annotations. These segmentation annotations can then be used
to learn segmentation models for a large number of object
classes.

Previous zero-shot learning work in computer vision mainly
focuses on object classification. The main contribution and
novelty of our work is that we apply zero-shot learning to
object segmentation, which arguably is a more challenging
problem.

II. RELATED WORKS

Previous work has explored both interactive and fully au-
tomatic methods for object segmentation. GrabCut [1] is an
example of the interactive object segmentation. It requires the
user to provide an initial bounding box of the object of interest
in the image. Fully automatic object segmentation typically
requires learning segmentation models from annotated training
data. Early work (e.g. [5]) focuses on single object segmen-
tation. The goal is to generate a binary mask that separates
the object of interest from the background. Recent work in
semantic segmentation (e.g. [6]) focuses on multi-class object
segmentation. The goal is to assign a label from a predefined
set of object classes to each pixel in an image.
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Fig. 1. An illustration of our problem setup. Our training data consist of images of source objects. The pixel-level semantic labels are available on the training
data. Our test data consist of images of target objects, where we know the object label of each image, but we do not have the pixel-level segmentations. Note
that there is no overlap between the source and target object classes. Our goal is to transfer the knowledge from source objects to target objects, so that we

can segment the target objects in the test data.

In computer vision, there is a line of work on learning
new object classes by transferring knowledge from related
object classes. Most work in this area focuses on object
classification. For example, there has been work on knowledge
transfer for object recognition by sharing parameters [7],
learning intermediate attributes [8], etc. Some recent work [9]
uses word vectors to transfer the knowledge among related
objects. There is also some work on using transfer learning for
detection, e.g. by sharing parts [10] or domain adaptation [11].

The closest work to ours is the work on segmentation
propagation in ImageNet [12]. It populates the ImageNet with
pixel-level segmentations by exploiting existing annotations
in the form of class labels and bounding-boxes. In contrast,
our work does not require bounding boxes for any unknown
classes.

III. OUR APPROACH

Our approach consists of several steps. First, we build
segmentation models for source object classes by learning
standard semantic segmentation models (Sec. III-A). For a
target object, we propose two approaches for measuring the
semantic distances between this target object and all the source
objects (Sec. III-B). Given an image of the target object, we
transfer the segmentation scores from the source objects that
are semantically close to the target object (Sec. III-C). Finally,

we use the transferred scores to obtain the figure-ground
segmentation of the target object in this image (Sec. III-D).

A. Segmentation Models for Source Objects

The first step of our approach is to build segmentation
models for source objects. We use the approach in [13]
to train the segmentation models using images of source
objects with segmentation annotations. This method uses the
deep convolutional neural network (DCNN) to generate an
initial segmentation result and then refines the result using a
fully connected conditional random field (CRF) for semantic
segmentation. Given a test image, we can use the learned
DCNN-CRF model to generate scores for each pixel being
one of the source object classes.

B. Object Semantic Relationship

In order to do the knowledge transfer, we need to establish
the semantic relationship (i.e. distance) between two objects.
In this paper, we consider two different knowledge sources for
measuring the distance between objects.

Word vectors: In natural language processing, there has
been work on learning word embedding from large collections
of text corpus. The goal is to learn to represent each word as
a fixed length vector. If two words (e.g. “dog” and “cat”) are
semantically close, their corresponding word vectors will tend
to be similar. Word vectors have been used in various computer
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vision applications, e.g. zero-shot object recognition [9], [14].
Given two object classes ¢ and j, let v; and v; be the word
vectors corresponding to the names of these two objects. We
can use the Euclidean distance between v; and v; to measure
the distance between these two object classes.

ImageNet hierarchy: We can also use the ImageNet hierar-
chy to define the distance between two objects. Object classes
(known as “synset”) in ImageNet are organized in a hierarchy.
To find the distance between two objects, we calculate the
distance between the two corresponding nodes in the ImageNet
hierarchy.

A target object can then be represented as a ranked list of all
the source objects. If a source object is closer (in terms of the
distance based on either word vectors or ImageNet hierarchy)
to the target, this source object will be ranked higher on the
list.

C. Knowledge Transfer

During testing, we are given an image of one of the target
object classes. We assume that we known the class label of
the image during testing. Our goal is to perform figure-ground
segmentation on this image to separate this target object from
the background. Since the source objects and target objects
are disjoint, we cannot directly use the segmentation models
trained for the source objects (Sec. III-A) to segment this
image. Our next step is to transfer the knowledge from source
objects to target objects, so that we can apply the segmentation
models learned in Sec. III-A to segment the target object.

Figure 2 illustrates the knowledge transfer. Let K be the
number of source objects. For a target object u, we use r,, =
[rL, 72 ...,rX] to denote the ranked list of all source objects.
In other words, ri is the source object most similar (in term of
the distance based on word vectors or ImageNet hierarchy) to
the target object u, while 7 is the most dissimilar one. For a
given image z, we apply the segmentation model in Sec. ITI-A
on this image. For each pixel p in the image x, we will get a K-
dimensional vector indicating the score of this pixel being one
of the K source objects. We use C’g (z) to denote the score of
the source object j for a particular pixel p in the image x. For
example, if the target object is “dolphin” (Fig. 2(a)). The top-5
ranked source objects to “dolphin” might be “bear”, “mouse”,
“bird”, “horse”, “zebra”. Figure 2(b) shows visualizations of
the scores corresponding to these source objects.

Now we would like to use the scores of source objects
to estimate the score of the target object on each pixel. Let
s, (x) denote the score of the pixel p of the image z being a
foreground pixel of the target object u. Let d* be the semantic
distance between the target object u and the source object k.
We define s, () as follows:

M r!
C u
splo) =30 M)
=1 u

where M is a free parameter and M < K. The intuition
of Eq. 1 is to approximate the score of the target object
using scores of source objects weighted by their semantic

distances to the target object. Note that if a source object is
very different from the target object, the scores of the source
object are unlikely to be transferable to the target object. The
parameter M allows us to only consider the source objects
that are similar enough to the target object. By choosing M
appropriately, we can effectively ignore those source objects
that are very different from the target object. Figure 2(c) shows
the visualization of s} ().

D. Segmenting Target Objects

After the knowledge transfer in Sec. III-C, we will have
a score s, (r) for each pixel p in the image = indicating
how likely this pixel belongs to the target object u. A
straightforward way of getting the object segmentation is to
assign a binary label for each pixel (foreground or background)
depending on whether s;(z) is greater than some threshold.
In this section, we propose two post-processing techniques to
further refine the segmentation output. Figure 3 shows some
examples of these two post-processing techniques.

We can consider sj(z) as a rough estimate of the fore-
ground/background for each pixel in the image x. This
suggests that we can use sy(z) to build a discriminative
appearance model for the target object in this specific image
x. Similar ideas have been used in [15] for people tracking.
To build the appearance model, we take the output from the
fully connected layer “fc7” of the trained Deep Convolutional
Neural Network and use interpolation to resize the output to
have the same size as the test image x. After the interpolation,
we get a 1024-dimensional feature vector for each pixel of the
image. We consider the top 20% pixels in terms of their s, (z)
values as foreground pixels and the bottom 20% as background
pixels. We then train a logistic regression classifier by using
the “fc7” features of the foreground and background pixels.
Then we use the trained classifier to label each pixel of test
image x as foreground or background. Examples of applying
the trained classifiers are shown in Fig. 3(c).

Finally we use GraphCut to further improve the results.
The GraphCut algorithm needs the color histograms of the
foreground/background of an image in order to define the
unary potentials. We take the pixels labeled as foreground
(background) by the logistic regression classifier and build
the color histograms. Examples of final segmentation results
obtained from GraphCut are shown in Fig. 3(d).

IV. EXPERIMENTS

We use the Microsoft Common Objects in Context (MS
COCO) dataset [4] as the source object dataset and consider
two different target object datasets: the ImageNet-445 dataset
used in [16] and the Cross-Category Object Recognition
(CORE) dataset used in [17], [18]. In the following, we first
describe the experiment setup in Sec. IV-A, then present the
results in Sec. IV-B.

A. Experiment Setup

The MS COCO dataset contains images of 80 object cat-
egories. All images are annotated with ground-truth semantic
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Fig. 2. Tllustration of the knowledge transfer: (a) a test image of a target class “dolphin”; (b) visualization of Cg (z) for each of top-3 ranked source objects

(bear, mouse, bird); (c) visualization of the transferred score sg(a:).
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Fig. 3. Tllustration of refinement and GraphCut steps: (a) original image; (b) visualization of s} () obtained by knowledge transfer; (c) refined segmentation
using the image-specific discriminative appearance model; (d) final segmentation obtained from GraphCut.

segmentation labels. We consider these 80 objects as the
source objects and train segmentation models using the MS
COCO dataset. We use the training images from the MS
COCO dataset to train the “Deeplab COCO LargeFOV” model
from [13]. We use the default parameters in [13] for the
learning.

We then transfer the segmentation models to segment
images of target objects using either the word vector or
ImageNet hierarchy based distance between objects. The free
parameter M is set to be M = 15 in our experiments. We
use the average interaction-over-union (IoU) [19] to measure
the performance and compare our approach with the following
baseline methods.

GrabCut image center: This baseline considers an initial
window with a rectangle of 25% area of the whole image
centered at the image center. Based on this initial window, it
then uses GrabCut to segment an image into foreground and
background. This baseline method has also been used in [12].

Distance: Given an image «x of a target class u, this baseline
first finds the closest source object class (based on either word
vector or ImageNet hierarchy distance). In other words, this

baseline considers s%(z) as s&(x) = Cp*(x). Then we use

the median of the scores of pixels in the image as a threshold
and mark a pixel as foreground if its score is great than the
threshold and mark it as background otherwise.

We also consider two baselines that are stripped down
versions of our approach.

Transfer only: This baseline is similar to our approach,
but without the post-processing in Sec. III-D. After getting
the score s, (x) for each pixel p in the image z indicating
how likely it belongs to the target object u, we simply take the
median of the scores of all pixels in the image as the threshold.
A pixel is marked as foreground if its score is greater than the
threshold.

Transfer + refinement: This is similar to our approach, but
without the final GraphCut step.

B. Results

We consider two datasets as target objects and present
results on them.

ImageNet-445: The ImageNet-445 dataset [16] contains
4276 images of 445 classes from ImageNet. There are two
overlapping classes (cow and tennis racket) between these 445
object classes and the 80 object classes in the MS COCO
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TABLE I

SEGMENTATION RESULTS ON THE IMAGENET-445 DATASET. WE COMPARE OUR APPROACH WITH SEVERAL BASELINES IN TERMS OF THE AVERAGE
INTERACTION-OVER-UNION (AVERAGE I0U). WE CONSIDER BOTH WORD VECTOR AND IMAGENET HIERARCHY DISTANCES IN OUR APPROACH AND THE

BASELINE APPROACHES.

Approach

GrabCut image center

distance

transfer only

transfer + refinement

ours

Avg IoU (%)

35.04

Word vector 42.46
ImageNet hierarchy 43.89
Word vector 45.73
ImageNet hierarchy 47.52
Word vector 49.50
ImageNet hierarchy 51.61
Word vector 53.63
ImageNet hierarchy 55.65

TABLE I

SEGMENTATION RESULTS ON THE CORE DATASET. WE COMPARE OUR APPROACH WITH SEVERAL BASELINES IN TERMS OF THE AVERAGE
INTERACTION-OVER-UNION (AVERAGE I0U). WE CONSIDER BOTH WORD VECTOR AND IMAGENET HIERARCHY DISTANCES IN OUR APPROACH AND THE

BASELINE APPROACHES.

Approach

GrabCut image center

distance

transfer only

transfer + refinement

ours

dataset. We remove these two classes from the target object
set. We have used both the word vectors and the ImageNet
hierarchy to represent the semantic distance between object
classes. For the word vectors, we extract a 300-dimensional
vector corresponding to the name of each object class using
GloVe [20]. The results on this dataset are shown in Table I.
We can see that our approach outperforms other baseline
methods. Figure 4 shows some qualitative examples on this
dataset.

CORE: We also apply our approach on the CORE
dataset [17], [18]. The dataset contains 1049 images of 27
object classes. Ten of these object classes also appear in the
MS COCO dataset. We remove these ten object classes from
the set of source objects when doing the knowledge transfer.
The results on this dataset are shown in Table II. Again,
our proposed approach outperforms other baseline methods.
Figure 5 shows some qualitative results on this dataset.

V. CONCLUSION

In this paper, we have proposed a zero-shot learning ap-
proach for object figure-ground segmentation. Our approach
learns the segmentation models for a set of source objects,
then transfers the knowledge from source objects to target
objects. This transfer learning allows us to segment target
objects even when we have never seen images of target objects
during training. Our experimental results demonstrate that our
approach outperforms other alternative methods.

Avg IoU (%)

38.77

Word vector 31.44
ImageNet hierarchy 33.20
Word vector 33.72
ImageNet hierarchy 33.56
Word vector 37.98
ImageNet hierarchy 37.82
Word vector 44.94
ImageNet hierarchy 44.24
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Fig. 4. Quantitative results on the ImageNet-445 dataset. (a) input image; (b) ground truth object segmentation; (c) GrabCut image center; (d) distance (word
vector); (e) distance (ImageNet hierarchy); (f) transfer only (word vector); (g) transfer only (ImageNet hierarchy); (h) transfer + refinement (word vector); (i)
transfer + refinement (ImageNet hierarchy); (j) ours (word vector); (k) ours (ImageNet hierarchy).
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Fig. 5. Quantitative results on the CORE dataset. (a) input image; (b) ground truth object segmentation; (c) GrabCut image center; (d) distance (word vector);
(e) distance (ImageNet hierarchy); (f) transfer only (word vector); (g) transfer only (ImageNet hierarchy); (h) transfer + refinement (word vector); (i) transfer
+ refinement (ImageNet hierarchy); (j) ours (word vector); (k) ours (ImageNet hierarchy).
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