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Abstract—In this paper, we propose a bottom-up point cloud 

segmentation method, which utilizes a hierarchical clustering 

structure combined with the perceptual grouping laws. Our 

method allows a learning-free and completely automatic but 

parametric process for segmenting point clouds of 3D outdoor 

scenes. The experiments using terrestrial laser scanning dataset 

have demonstrated that our proposed method can achieve good 

results, especially for complex scenes and nonplanar surfaces of 

objects. The quantitative comparison between our method and the 

region growing based method also confirms the effectiveness and 

efficiency of our method. 
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I.  INTRODUCTION 

In the last decade, point clouds obtained via laser scanning, 
photogrammetry, and range imaging cameras have been widely 
employed to represent 3D geospatial information, with 
applications in a variety of fields, including geodesy, geomatics, 
geology, forestry, and archaeology. Among all the applications, 
the 3D scene reconstruction is of increasing importance to many 
related tasks such as constructing virtual reality, generating 
digital surface models (DSM), urban planning, or monitoring 
construction projects. In particular, since the emergence of 
Building Information Model (BIM), point clouds have been 
proved to be quite suitable for reconstructing geometric models 
as the 3D points provide direct measurements of 3D coordinates 
of the building surfaces sinuously [1]. 

However, the majority of 3D indoor and outdoor scenes 
consist of various objects and complex structures, having 
various surfaces, sections, and combinations. Thus, in practical 
applications, prior to the reconstruction of 3D models, individual 
objects must be identified from the point clouds. To achieve this 
task, segmentation algorithms are normally applied to the 
unstructured and massive original point cloud datasets. An 
effective segmentation algorithm can significantly increase the 
quality of models reconstructed and largely decrease the 
workload, but the performance of conventional algorithms is 
always restrained by the complicated environment of real 
outdoor scenes. Therefore, apart from the effectiveness, the 
reliability plays a vital role in the development of segmentation 
algorithms as well. On the other hand, since the point cloud 
segmentation is computationally intensive [1], an efficient 

strategy for the segmentation of points of a large scale scene is 
also in urgent need. 

II. RELATED WORK 

Enormous attempts and contributions have been done for the 
point cloud segmentation, which can be roughly grouped into 
three major categories [1][2]: the model-based methods, the 
region growing-based methods, and the clustering based-
methods. 

The model-based segmentation methods directly fit the 
geometric shapes of objects according parametric equations of 
their mathematical models. For example, the 3D Hough 
Transform (HT) [3] and the RANSAC [4] are two kinds of 
widely used algorithms [5]. The HT and it variations adopt a 
voting strategy for extracting planes [6], cylinders [7], and 
spheres [8] from the point cloud in the parameter domain. 
Whereas RANSAC and its extensions directly estimate optimal 
parameters of the geometric models in spatial domain [4]. The 
advantage of the model-based methods is that they are robust to 
noise and outliers in the dataset and provide optimized 
parameters for modelling simultaneously. However, when 
coping with large scale datasets, they require normally a long 
processing time and high memory consumption [1]. Besides, 
these methods can hardly cope with objects having no explicit 
mathematical expressions like irregular shaped or curvature 
surfaces. 

The region growing-based methods utilize an iterative 
process, which examines points in the vicinity of an initial seed 
and judge whether they belong to the region of the seed or not 
via given criterions. This examination of points is an inside-out 
process, like the growth from seeds.  For selecting appropriate 
initial seeds, regions or points with the least curvature [9] are 
usually preferred. As for the growing criterions, the normal 
vectors [10][11] is the most commonly used growing criteria. 
Recently, structured voxels are introduced as basic elements for 
the growing process instead of points for the purpose of 
efficiency [1]. The growing-based methods are simple and can 
keep the boundaries well [11], but the selection of the growing 
criteria and seeds, which are significantly affected by the quality 
of dataset are influential to the segmentation performance, 
making this kind of method sensitive to noise and outliers. 

The clustering-based methods group points having 
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similarities in a spatial or feature space on the basis of their 
geometric characteristics or spatial distribution. This kind of 
methods requires no seeds and deems more robust under noisy 
conditions. Euclidean distance [12] and normal vector [1] are 
representative similarity measures for the clustering. Recently, 
the graph-based algorithms are frequently used for the clustering 
process as well. The graph cut based methods [13][14], the 
Markov Random Field (MRF) [15] or Conditional Random 
Field (CRF) [16][17] based methods are the representatives. 
However, clustering methods commonly suffer expensive 
computational cost due to the calculation of similarities and the 
optimization of cost functions [1][18]. 

The overall goal of this research is to automatically segment 
3D point clouds of different outdoor scenes. Here, the definition 
of segmentation is limited to partitioning point clouds of the 
entire scene into meaningful segments on the basis of their 
natural geometric characteristics. Especially, we intend to 
segment the surfaces of buildings into individual objects, 
referring to logical groups of points pertaining to same structures, 
which can be easily used for the further modelling work. To that 
end, we develop a learning-free and bottom-up segmentation 
method utilizing a hierarchical clustering structure based on the 
perceptual grouping laws, allowing completely automatic but 
parametric segmentation of outdoor scene from point clouds. 
The proposed method clusters oversegmented patches of 
different levels in a hierarchical structure, in which different 
principles of the perceptual grouping laws are considered as the 
basic criterion of clustering. 

III. METHODOLOGY 

A. Workflow 

Conceptually, the implementation of our segmentation 
method focuses on two crucial aspects: the clustering criterions 
and the hierarchical clustering structure. The workflow is 
depicted in Fig. 1, with involved algorithms and sample results 
illustrated. All the approaches and algorithms shown in this 
workflow will be introduced in the following sections. 

 
Figure 1. Workflow of the proposed segmentation method. 

B. Clustering criterion based on perceptual grouping laws 

Perceptual grouping has a long history in the field of 
computer vision for recognizing objects from the scene, which 
refers to the process of determining regions and parts of the 
visual scene belonging to the same part of higher-
level perceptual units (e.g., objects or patterns) [19]. In our work, 
we aim to segment the outdoor scene by imitating the natural 
way of human perceiving objects, following the perceptual 
grouping laws combined with our hierarchical structure. To that 
end, three representative principles of the grouping laws are 
selected as our clustering criterion, namely the proximity, the 
similarity, and the continuity.  

According to [20], the proximity principle claims that 
elements are highly likely to be aggregated into a same group 
when they are close to each other. Whereas the similarity 
principle states that the elements tend to be summed into a group 
if they resemble each other. As for the continuity principle, it 
indicates that the oriented elements are disposed to be integrated 
into one part if they can be aligned with each other. 

To measure the proximity between two elements 
iV  and 

jV  

(i.e., voxels or supervoxels), we consider the spatial distance 
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the centroids of points within the elements. Here, cX
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 is a vector 

from the origin to the centroid of the element.  

As for the similarity, the geometric coherence of shapes 
formed by the points are estimated as criteria. To achieve this, 
we use the eigenvalue based geometric features [21] to 
delineating the 3D properties of points inside an element. For the 

points within an element, their eigenvalues 0321  eee  can 

be calculated via the covariance tensor 
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, where iX  denotes the point 

within the element iV , k  represents the number of points, and 

the X  stands for their medoid. All the eight geometric features 
employed are listed in Table 1 [21]. 

With the geometric features 
iS  and 

jS of two elements, their 

similarity ),( ji VV  is defined by the Person product-moment 

correlation coefficient as shown in (1): 
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When it comes to the continuity, we consider the smoothness 
of the surfaces formed by the points, which is quantified by two 

contributions: the angle between normal vectors N


 and the 

offset between surfaces. The implicit plane representation (see 
(2)) is introduced by assuming that the points in each element 
can approximate a planar surface with a normal vector and a 
centroid. 
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where D  refers to the distance from the origin to the plane. 

 
Figure 2. Connections between surfaces of elements. (a) General case. 

(b) “Stair-like” case. 

TABLE I.  EIGEN VALUE BASED GEOMETRIC FEATURES 

Eigenvalue based geometric features 

Sum 
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The angle between approximated planar surfaces is 
calculated by normal vectors N , referring to the smallest 

eigenvectors of the aforementioned covariance tensor C . Here, 

the  angle  jiji NNVVg


,),(1
 is calculated via the inner 

product of the normal vectors. Whereas the offset between 
surfaces is related to the distance between parallel surfaces 
resembling a “stair-like” connection. To measure this offset, we 
adopt the distance of the centroid from the best fitting plane of 
the other centroids [22], which is defined by the following: 
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where ijd


 is the vector between the centroids of two elements. 

Similar to the method described in [22], we also combine these 
two contributions in a multiplicative way in order to estimate a 
good coincidence of two connected elements. Thus, the 

smoothness ),( ji VVs  is equal to ),(),( 21 jiji VVgVVg  . 

C. Hierarchical clustering structure 

The hierarchical clustering structure we use is similar to the 
classificatory structure proposed in [23], which is a bottom-up 
strategy consisting of three different clustering levels, namely 
the primitive level, the structural level, and the assembly level. 
Different grouping principles are used in the different clustering 
levels. It is notable that we do not define the first signal level 
mentioned in [23] in our clustering structure. This is because we 
have already conducted the voxelization to pre-cluster points 
into 3D voxels as fundamental elements. 

The primitive-level is the clustering of voxels carried out by 
the Voxel Cloud Connectivity Segmentation method (VCCS) 
[24], which is an effective region growing based 
oversegmentation method extracting supervoxels from voxels of 
points. The structural-level represents the aggregation of 
supervoxels conducted via the local affinity graph and Markov 
Clustering Algorithm (MCL) [25], in order to group supervoxels 
into clusters. The assembly-level denotes the merging of clusters 
achieved by the judgement of connections between adjacent 
clusters. By the use of this hierarchical clustering structure, we 
can utilize the features of different abstraction levels in terms of 
their complexity, which is in coincidence with the perceptual 
grouping laws we followed. 

D. Octree-based voxelization 

The octree-based voxelization has been commonly 
employed in point cloud processing [1][18]. Compared with the 
processing at point level, the use of voxels can suppress the noise 
and outliers existing in the point clouds and greatly reduce the 
computational cost simultaneously. In addition, the effect of 
anisotropic densities of points caused by the varying distances 
between the sensor and objects in an outdoor scene [16] can be 
partially reduced by the voxelization process. We adopt the 
octree-based voxelization to rasterize the entire point cloud with 
3D cubic grids, the nodes of which have explicit linking relations, 
facilitating the traversal for searching the adjacent ones [1]. 
However, selecting the size of voxels is a trade-off between the 
efficiency of computations and the preservation of details. The 
larger the voxel, the more details will be blurred. In our work, 
the size of voxel is selected according to the application and the 
density of points. 

E. Clustering of voxels 

The VCCS method clusters the voxels of points in terms of 
the distance between the seed and candidate voxels in a feature 
space, involving the geometrical features, and RGB colors [24]. 
Slightly different from the method described in [24], we merely 
use the normal vectors and spatial coordinates of voxels to 
define the distance, which is related to the proximity and 
continuity principles. The VCCS we used is implemented and 
tailored from the Point Cloud Library (PCL) [26].  

One of the most significant advantage of the VCCS is the 
boundary preservation performance [24], so that we can obtain 
the supervoxels sharing same boundaries with the major 
structures of objects in the scene. Note that, the size of the voxel 
and the resolution of seeds can greatly affect the performance of 
VCCS. The former one will determine the details preserved in 
the scene, while the later will influence the effectiveness of 
keeping boundaries. Empirically, we set these two factors 
according to the density of points and the varying range from the 
sensor to the objects. 

F. Aggregation of supervoxels 

As we mentioned before, the aggregation of supervoxels 
includes two steps: the construction of local affinity graphs and 
the partition of these graphs using MCL algorithm. 

The adjacency relationship acts as a significant aspect in the 
aggregation of supervoxels. In the vicinity of each supervoxel, 



its adjacencies defined by a radius 
aR  are found to construct a 

full-connected local affinity graph, in which each node represent 

a supervoxel. The size of 
aR  determines the number of adjacent 

supervoxels in one local affinity graph. The weight of edges in 
the affinity graph is defined the aforementioned principles of 

grouping laws. In detail, for two adjacent supervoxels 
iV  and 

jV , 

the weight 
ijW   of the edge connecting them is estimated by the 

aforementioned three criterions, namely the spatial distance 

),( ji VVd  , the surface smoothness ),( ji VVs , and the geometric 

similarity ),( ji VV , forming the corresponding weights 
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Gaussian kernel: 
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where d , s , and   are the global scale factors. The 

overall weight between two supervoxel is defined in a 
multiplicative way constrained by the distance: 
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To partition the local affinity graph, the MCL algorithm is 
adopted by clustering the nodes in terms of their probabilities of 
connections. For each supervoxel, the nodes (i.e., supervoxels) 
clustered into the same group by partitioning its local affinity 
graph deem to be connected as a cluster. By this way, each 
supervoxel will be assigned to a cluster containing several 
connected and adjacent supervoxels. It is noteworthy that we 
directly use the weights of edges in the affinity matrix to 
represent the probability of connection between two nodes. 

G. Merging of clusters 

As we described in the process of the assembly-level, each 
cluster consists of several supervoxels having similar perceptual 
characteristics. Since the size of local affinity graph is larger 
than the size of supervoxel, so there must be supervoxel being 
judged as parts of more than one cluster in the MCL clustering. 
These clusters sharing the same supervoxel members will be 
identified as the “connected ones”, and then merged together to 
form a segment. To achieve this process, the connections of all 
the supervoxels will be judged, so that whether two clusters 
should be merged or not can be determined. 

IV. EXPERIMENTS AND RESULTS 

The experimental datasets used are the terrestrial laser 
scanning point clouds from the large-scale point cloud 

classification benchmark datasets published on: 
www.semantic3d.net by ETH Zurich (Hackel et al., 2016). 
Specifically, two point clouds of different scenes are tested: one 
is measured in the urban area of the cathedral of St. Gallen, while 
the other one is obtained from a farm located in a rural area. The 
sizes of these two point clouds are around 3.7 million and 7.5 
million points, respectively. Compared with optical based 
photogrammetric techniques (e.g., 3D reconstruction using 
aerial and spaceborne images), laser scanning can avoid 
influences of shadows and changing illuminations resulting 
from sunlight conditions and relief the uncertainties of matching 
points caused by the low texture areas in the images. 

The size of voxels, the resolution of seeds, the radius of local 
affinity graph, and the parameters of MCL algorithm are factors 
that can significantly affect the final performance of our 
proposed method in the overall workflow. To be specific, the 
size of voxels will limit the representation of details in the final 
segments. While the resolution of seeds can directly influence 
on the preservation of edges and boundaries. The radius of graph 
will determine the degree of accuracy for the final segments, 
which should be larger than the resolution of seed. If the radius 
of graph is smaller than the seeds resolution, oversegmentations 
may happens because there will be no “connected supervoxels” 
for merging clusters. The parameters of MCL (e.g., particle size) 
will control the size and smoothness of resulting segments.     

 
Figure 3. The segmentation results of Cathedral of St. Gallen. (a) RGB 

textured original point cloud. (b) Segmented point cloud. 
 

 
Figure 4. The segmentation results of the farm. (a) Segmented point cloud. 

(b)-(d) Details of some segments. 



 

 
Figure 5. (a) The original point cloud. Segmentation results of using (b) region growing based method and (c) our method. 

In Fig. 3, we illustrate the segmentation result of the 
Cathedral of St. Gallen. It can be seen from the result that our 
method achieves good segments for the planar, cylindrical, and 
curvature surfaces of objects in a complex outdoor scene. 
However, there is still many oversegmented and 
undersegmented parts due to the missing points caused by the 
occlusions. In Fig. 4a, the segmentation of the farm located in a 
rural area is displayed. Several detailed views of segments are 
zoomed in Figs. 4b-d. Similarly, for the parts with enough points, 
our method can perform well even for the objects having a 
complex background environment. However, for the parts with 
very sparse or uneven distributed points, like the grass and the 
crowns of trees, oversegmentations may occur. 

In addition to qualitative results, a quantitative evaluation of 
the segmentation results is conducted as well, by comparing the 
segments against ground truth using two standard metrics: the 
precision and the recall [14], which are calculated via the true 
positive (TP), the true negative (TN), the false negative (FN), 
and false positive (FP). In theory, the higher the precision and 
the recall values are, the better the segmentation result is. Here, 
the ground truth we used is segmented manually, and the criteria 
of manual segmentation is based on the perceptual laws 
mentioned in Section IIIB using human visual inspection.  

To make a comparison, the renowned smoothness based 
region growing [11] method is used as reference, which is 
implemented by the Point Cloud Library (PCL) [26]. A part of 
point cloud from Cathedral St. Gall is selected as test dataset, 
having around 0.65 million points (see Fig. 5a). The 
segmentation results using two different methods are displayed 
in Figs. 5b and 5c. Here, the radius of normal vector estimation 
for the region growing method is set as 0.05 m. While the size 
of voxels, the resolution of seeds, and the radius of graph used 
in our method are set 0.05 m, 0.25 m, and 0.6 m, respectively. 
Apparently, both of the two methods show acceptable 
segmentation results. Since the region growing based method 
uses the smoothness as the criteria, it can perform very well in 
the planar or smooth surfaces. However, the rough surfaces can 
significantly affect its performance. For example, the points of 
windows are segmented into broken small patches. In contrast, 
our method can better segment the rough surfaces and nonplanar 
objects, with the help of the perceptual laws. Moreover, the use 
of voxel based structure can also help us to suppress the 
influence of noise and outliers. 

Quantitative evaluation results are given in Table II, where 
segmentation results of 10 major objects (4 wall surfaces, 4 
dome surfaces, and 2 roof surfaces) are assessed. Seen from 
Table II, we can find that our method shows better performance 
than the region growing in precision values, but slightly inferior 
to the region growing method in the recall values. Such 
phenomenon can be explained by two aspects. One is that the 
voxel based structure will decrease the resolution of the 
segmentation. Especially for the edges and corners of the object, 
the use of voxels limits the ability of finding very accurate 
segmenting boundaries. In fact, the segmenting boundary found 
by our method is approximated by the edges of voxels belonging 
to the same segment. The other one is that we have tested merely 
the objects with simple geometric shapes in this validation. For 
the performance of our method in dealing with more complex 
objects, it still needs to be verified in our future work. In addition, 
as for the efficiency, for segmenting the test dataset, the 
computation time of our method and the region growing method 
is 19.2 s and 184.6 s, respectively, implemented in C++ on a 
computer with an Intel i7-4710MQ CPU. It reveals that our 
method is much faster than the region growing, with almost a 
same level of performance achieved. 

TABLE II.  QUANTITATIVE EVALUATION RESULTS  

Criterions Precision Recall 

          Method 

Object   

Region  

growing 

Our  

method 

Region  

growing 

Our  

method 

Wall 1 0.8847 0.9570 0.9984 0.9866 

Wall 2 0.8828 0.9400 0.9941 0.9227 

Wall 3 0.8517 0.9293 0.9968 0.9503 

Wall 4 0.8656 0.9401 0.9863 0.9283 

Dome 1 0.8887 0.9476 0.9975 0.9908 

Dome 2 0.8992 0.9833 0.9970 0.9716 

Dome 3 0.8413 0.9705 0.9636 0.9194 

Dome 4 0.8267 0.9825 0.9635 0.9501 

Roof 1 0.7234 0.9195 0.9980 0.9958 

Roof 2 0.7403 0.9114 0.9943 0.9930 

Mean 0.8404 0.9481 0.9889 0.9609 

V. CONCLUSIONS 

In this work, we develop a bottom-up method for segmenting 
point clouds of the outdoor scenes, which utilizes a hierarchical 
clustering structure based on the perceptual grouping laws. Our 
method allows a learning-free and completely automatic but 



parametric segmentation process. The proposed method clusters 
oversegmented patches of different levels in a hierarchical 
structure, in which different principles of the perceptual 
grouping laws are considered as the basic criterion. The 
qualitative and quantitative experimental results show that our 
proposed method is effective and efficient, and can achieve good 
segments when dealing with complex scenes and nonplanar 
surfaces of objects. However, our proposed algorithm tends to 
fail on the cloud with very sparse points density (i.e., the ground 
areas), which should be improved in our future work. It is also 
noticed that we only compared our method with the most 
classical region growing method. As future steps, we will 
conduct more experiments using the state-of-the-art 
segmentation method in order to find solutions of improving our 
method. Beside, we also plan to increase the robustness of our 
method and set the sizes of voxel, supervoxel, and graph 
adaptively. 
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