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Abstract—Level set-based contour tracking methods have gen-
erated recent interest in the computer vision community. In
this paper, we propose a novel level set-based algorithm for
tracking dynamic implicit contours that utilizes minimal prior
information. Our solution consists of two main steps. In the
first step, a simple first-order Markov chain model is employed
for the coarse localization of a target object. In the second
step, we evolve level sets within a narrow band to accurately
track the target contour. Narrow band curve evolution is guided
through color- and region-based terms in the standard Chan-
Vese framework. Comprehensive experimentation on a dataset
comprising of several publicly available video sequences clearly
demonstrate the advantage of the proposed tracking algorithm.

I. INTRODUCTION

Accurate target tracking has been the focus of researchers
in the computer vision community for several years with
applications drawn from diverse domains such as content-
based video indexing, gesture recognition, video-based surveil-
lance, traffic flow monitoring and medical imaging [1]. Objects
to be tracked can be represented by points [2], primitive
geometric shapes, such as circles, ellipses, and rectangles [3],
and articulated shape models and skeletal models [4], [5].
In [6], the tracked object is represented as a Gaussian mixture
model.

Statistical methods, such as the Kalman filter [7] and par-
ticle filter [8], track the object of interest by computing prior
and posterior probabilities for change in inter-frame object
location. Kernel-based methods [9] track foreground regions
defined for the object(s) using a specific appearance model for
the target. Silhouette tracking algorithms [10], on the other
hand, track the contour of the target object. Level set-based
methods represent a robust subclass of silhouette tracking
algorithms. Many contour tracking methods rely heavily on
prior information derived from low- or high-level features
and/or a motion model. In this paper, we propose a novel
two-step algorithm for contour tracking that uses minimal prior
information. In the first step, a simple first-order Markov chain
model is used for the coarse localization of a target object.
In the second step, intensity- and region-guided narrow-band
level sets are used to accurately track the target contour.

The remainder of the paper is organized as follows: In
Section II, we present the related work and highlight our
contributions. In Section III, we describe the proposed tracking
algorithm in detail. Experimental results are presented in

Section IV. The paper is concluded in Section V with an
outline for future research.

II. RELATED WORK

Level set models for tracking differ in many aspects from
one another. In [11], level sets evolve using the amount of shift
the centroid of the inner region of the object has undergone.
In [12], temporal information is incorporated within a level
set evolution model. Another class of level set-based track-
ing methods employ shape priors. For example, [13] tracks
multiple regions in an image, based on previously trained
static or dynamic shape priors, employing statistically evolving
level sets to localize each region in an image. Shape prior-
based models have been also used for medical cell cycle
analysis [14]. In [15], the authors employ appearance-based
models for different image regions and subsequently, based
on probabilistic estimation, discriminate between foreground
and background pixels and track the object contour. In related
work [16], primitive color features are used to discriminate
between object and background pixels. Level set-based contour
tracking methods work by constantly updating an implicit
function for tracking the contour of the object of interest [1],
[17], [18]. In [19], prior region- and edge-based cues are
considered within a Bayesian framework to enable the level
curve to converge to the target contour. In [6], probability
density functions defined on texture- and color-based features
are used as priors to track target contours using Bayesian infer-
ence. An alternative level set-based approach in [20] maintains
two interacting level sets to track evolving contours. Coupling
between these sets is determined by an image feature-driven
probabilistic estimate that is computed for each pixel. Overall,
all the aforementioned tracking methods depend heavily on
prior information and their applicability is limited by several
factors such as the constrained feature space and the velocity
profile of target.

The proposed tracking algorithm is based primarily on a
level set curve evolution model that minimizes the dependence
on prior information while improving the accuracy of the
tracked contour. Our model is shown to perform well on
widely varying datasets. In the first stage of the proposed
algorithm we use a first-order Markov chain which coarsely
estimates a rectangular region within each frame that localizes
the moving object. This estimate is based on simple primitives
such as, the color features and the directional property of the
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evolving curve. The choice of the Markov chain enables the
proposed model to overcome the shortcomings of existing
tracking methods such as the aperture problem associated
with optical flow computation. Instead, the proposed tracking
method provides a very generic setting [21] under which
methods such as optical flow computation can be modeled.

In the second stage of the proposed tracking method, we in-
corporate novel temporal information within the spatial Chan-
Vese [17] model for tracking contours of dynamic objects. The
first temporal term represents the variation in the histogram
within a narrow neighborhood around the initial contour. The
second temporal term captures the variation between the areas
of the region enclosing the contour over successive frames.
The contributions of the proposed tracking method can be
summarized as follows: First, we introduce novel intensity-
and region-based terms to guide the evolution of narrow-band
level sets. Second, we do not use any prior shape information
nor any explicit motion model, unlike many level set-based
tracking methods that employ a Bayesian inference framework.
In sharp contrast, we enable simple coarse localization of the
target object using a first-order Markov chain. This limits
the search region within which the narrow level set curve is
allowed to evolve.

III. PROPOSED MODEL

In this section, we provide a detailed description of the
proposed model. The two main components of the proposed
model are discussed in the following two subsections.

A. Coarse Localization of the Target

We first employ a Markov chain based model for a coarse
localization of the moving target using a rectangular region
(i.e., the bounding box) within each frame as shown in
Fig. 1. We describe the procedure for coarse estimation of
the bounding box for frame k + 1 (Fig. 1).

Fig. 1. Parameters for boundary estimation for subsequent frames

In Fig. 1, two successive frames k and k+1 are shown. For
estimating a rectangular region enclosing the moving object
within frame k + 1, the model depends upon the information
from frame k. In Fig. 1, the dependence of the bounding
box estimate in frame k + 1 on the parameters derived from
frame k is illustrated. From the tracked contour in frame
k, the minimally fitting bounding box is sampled for some
reference points (marked in red in Fig. 1). Let us denote
by set S = {p1, p2, ..., pn}, n such points from frame k.

It is to be noted that this bounding box (and hence these
points) in frame k can be easily determined from the tracked
contour. Subsequently, from each point pi ∈ S we determine
the transition probabilities T ipR = exp

(
− (IpR−Ipi )

2

2

)
for

some points pR within a neighborhood of point pi. These
neighborhoods are illustrated by circular regions in Fig. 1.
Ipi denotes the color features at point pi. Along with T ipR ,
we determine the directional inclination function Dpi for each
pi ∈ S. Dpi is a discrete function that indicates the direction
of propagation of the level curve at point pi.

Given T ipR and Dpi the model computes the probable
updated position of pi within frame k + 1 as follows:

pi(k + 1) = argmax
pR

k∏
m=k−1

{T ipR(m) + β(Dpi(m))} (1)

In eqn. (1), T ipR(m) is the transition probability for frame m.
The term Dpi(m) is an additional cost function that rewards
uniform progress in the level curve movement and penalizes
change in direction. Conceptually T ipR(m) for frame m should
depend on T ipR(m − 1) that would help localize the corre-
sponding contour pixels between successive frames. However,
the curve evolution model is restricted within a narrow band
around the previously determined contour, supporting this cor-
respondence automatically. Therefore, the terms T ipR(m) and
T ipR(m− 1) can be assumed to be approximately independent
of each other, hence they are multiplied in eqn. (1). This as-
sumption does not adversely impact the accuracy of the tracked
contour. The proposed model, however, does not eliminate
entirely the mutual interdependence of contour points tracked
in successive frames. The term D(m) encodes the information
about the direction of motion between frames m and (m−1).
D(m) assumes a value ∈ {−1,+1} based on backward and
forward motion respectively along the direction of level curve
propagation. Dpi(m) is positive (+1) for pi when the direction
of propagation of the level curve between subsequent frames
is consistent and is negative (−1) otherwise. This enables the
level curve to adjust faster to sudden directional changes in
contour movement. The coefficient β rewards or penalizes
local contour pixel evolution depending on whether there is a
detectable change in the direction of evolution when compared
to the previous frame.

In the present work, a low value of β(= 0.1) was chosen
since the dataset in our experiments displayed predominantly
unidirectional movement. However, one can certainly assign a
higher value to β in the case of datasets wherein the target
motion undergoes a higher degree of directional variation.
The optimization procedure in eqn. (1) is carried out for
all pi ∈ S. The outcome of this optimization is an initial
estimate in the form of a rectangular region that encloses the
target object as indicated by the red box in frame k + 1 in
Fig. 1. The model subsequently finds a contour of the target
object within this rectangular region. Once the final contour
is determined for this frame using the procedure described in
the next subsection, one can easily determine a closely fitting
bounding box to aid similar optimization for the subsequent
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frame k+2 and so on. The best fitting bounding box for frame
k + 1 is shown in yellow in Fig. 1.

B. Narrow Band Level Set Curve Model

The proposed curve evolution model uses the foreground
region estimate or segmentation information to obtain the
contour. Segmentation in frame k+1 uses the extracted contour
information from the previous frame k. For this purpose a term
A(x, y) = f(Id(x, y), Ih(x, y), Iv(x, y)) is defined for each
point (x, y) on the contour extracted in frame k. The three
terms Id(x, y), Ih(x, y), and Iv(x, y) respectively represent
color histograms in the diagonal (and off-diagonal), horizontal
and vertical directions over a n×n neighborhood of a contour
point (x, y). Thus, the first term A(x, y) in the proposed curve
evolution model has the following form:

A(x, y) = Id(x, y) + Ih(x, y) + Iv(x, y) (2)

It is to be noted that Id in eqn. (2) represents both, the
diagonal and off-diagonal histograms. In Fig. 2, we show how
a portion of a human silhouette can be tracked over multiple
frames based on the three terms in eqn. (2) using a 3 × 3
neighborhood. Let us assume that in frame k a portion of the
shoulder (marked with black points within a box) has been
tracked correctly. Then, using eqn. (2), the direction of contour
motion for each of these marked points can be computed.
These computed directions are used by the level set model
to compute the corresponding set of points on the evolved
contour in the next frame k + 1. For instance, let us consider
the center cell in Fig. 2(b), which is a contour point in frame k.
The complete histogram in the 3×3 neighborhood around this

Fig. 2. (a) Human silhouette tracked over frames k−1, k and k+1. A 3×3
neighborhood around a contour point in (b) frame k and in (c) frame k + 1

point suggests movement of the contour in the horizontal and
top-right directions. This movement is detected by comparing
A at the same point within frames k and k + 1. Note that
the first point in frame k belongs to the previously detected
contour. From the extracted motion information, an estimate
of the corresponding contour point in frame k+ 1 is obtained
as shown by the central cell in Fig. 2(c).

Formally, to extract the motion information at point (x, y)
we define the following terms.

∆A+
k (x) = Ak(x)−Ak(x+ ∆x)

∆A−k (x) = Ak(x)−Ak(x−∆x)

∆A+
k (y) = Ak(y)−Ak(y + ∆y)

∆A−k (y) = Ak(y)−Ak(y −∆y)

(3)

These four terms represent changes in A at the point (x, y)
along positive and negative x and y directions. The maximum
possible horizontal and vertical motion can be now defined as:

∆Ak(x) = max{∆A+
k (x),∆A−k (x)}

∆Ak(y) = max{∆A+
k (y),∆A−k (y)}

(4)

The parameters ∆A(.)(.) in eqn. (4) are computed for two
successive frames k and k + 1 at the same location (x, y)
and are the compared to extract the motion information.
This comparison is represented using a vector Tk+1(x, y) =(

∆Ak+1(x)
∆Ak(x)+ε ,

∆Ak+1(y)
∆Ak(y)+ε

)
. The vector Tk+1 is used to guide the

level set-based curve evolution within the bounding box and to
update the contour in frame k+1. The elements of T represent
the ratio of changes in this vector along the x and y directions
with respect to the previous frame. For example, non-zero
values for both the elements suggest motion in the diagonal
and/or off-diagonal direction and so on. A small constant ε
is added to the denominator of the elements of T to avoid
division by zero. For brevity, we just use the notation T to
denote Tk+1(x, y) and formally express it as:

T =

(
∆Ak+1(x)

∆Ak(x) + ε

)
x̂ +

(
∆Ak+1(y)

∆Ak(y) + ε

)
ŷ (5)

The magnitude and phase angle of T are given

by M =

√(
∆Āk+1(x)
∆Ak(x)+ε

)2

+
(

∆Ak+1(y)
∆Ak(y)+ε

)2

and θ =

tan−1

((
∆Ak+1(y)

∆Ak(y)+ε

)
(

∆Ak+1(x)

∆Ak(x)+ε

)
)

respectively. A non-zero value of M

denotes a location where the curve dynamics change. A lower
value of M denotes a slowly moving region of the contour
whereas a higher value denotes faster movement. The phase
angle θ denotes the direction along which local changes in
the proximity of the contour between subsequent frames are
evident.

The second term of the curve evolution model captures a
region Rk+1 in frame k + 1 that is maximal in size and has
undergone minimal changes relative to the region bounded by
the object contour in frame k. Essentially, this term serves to
ensure that the contour in frame k+ 1 most closely resembles
the contour in frame k while simultaneously preserving the
maximum contour evolution information. We denote this term
as G and express it as:

G = argmin
Rk+1

[

∫
Rk+1

(H(φ(x))+CH(x))dx−(H(φ)+CH)Rk ]

(6)
In eqn. (6), Rk denotes the region bounded by the object
contour in frame k. Numerically, G should not vary consid-
erably with respect to Ak as it signifies minimal inter-frame
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change in areas. H(φ(x)) is the Heaviside function which is
positive if the test point x lies within the object boundary and
zero outside; whereas φ(x) is the implicit level set function
computed at point x such that φ < 0, φ > 0, φ = 0
respectively indicate regions outside, inside and on the contour
at test point x [18]. CH(x) is the color histogram within the
region bounded by the object contour at point x. Integrating
the Heaviside function within the region gives us the region
size in terms of the number of pixels bounded by the contour.
The second term in eqn. (6) is the integrand computed on the
target object in frame k. The integration is performed over
the evolving contour φ at each point x ∈ φ. In effect, eqn.
(6) determines the region in frame k + 1 that minimizes the
variations in the area bounded by the object contour. Note
that (H(φ) + CH)Rk is evaluated for frame k and serves as
a constant in eqn. (6).

Let the contour of the optimized region G from eqn. (6)
be denoted by C. Combining the terms in eqns. (5) and (6)
with the standard Chan-Vese terms [17], we obtain the Euler-
Lagrange equation that describes the proposed curve evolution
model:

∂φ

∂t
= δε(φ)[µ div

(
∆φ

|∆φ|

)
− ν − λ1(u0 − c1(φ))2+

λ2(u0 − c2(φ))2 + χM cos(θ) + σ|∆t(C)|(x,y)]

(7)

The first term div
(

∆φ
|∆φ|

)
represents the rate of change of

the level curve at different points on the curve in the normal
direction and acts as a regularizer. The second term ν, which
is a constant, results from the integration of the Heaviside
function. The third and fourth terms together determine the
optimum balance of intensities within and outside the object
region. Terms c1(φ) and c2(φ) respectively represent the
average color intensity within and outside the evolving contour
φ whereas u0 is the local color intensity at the point of
optimization. Thus the aforementioned spatial terms together
yield a contour representing an optimal boundary, one that
balances color intensity within a narrow band.

The last two terms in eqn. (7) constitute the temporal
components necessary for tracking. They force the implicit
level set function φ to take an updated value in the direction
of motion specified by T (eqn. (5)) and the region-based
optimization (eqn. (6)). M and θ are the magnitude and phase
angle of T (eqn. (5)). The last term in eqn. (7) denotes the
region-based optimization described in eqn. (6). Following the
optimization procedure in eqn. (6) an optimal contour C is
extracted for each frame k. The relative changes in C for two
successive frames is represented using ∆t(C) where the term
∆t indicates time (t) dependent changes.

As mentioned earlier, an important contribution of this
work is the introduction of temporal components within the
spatial level set framework. The level set-based model finds
an optimum contour within a statistically determined coarse
region of the image that encloses the target object. We term
the proposed algorithm as the Intensity- and Region-guided
Narrow-Band Level Set (IRNBLS) tracking algorithm. The

IRNBLS algorithm evolves the contour within a narrow band
that lies entirely within the coarsely localized region. Let φk
represent the evolved contour in frame k and nk the number of
iterations before the level set model saturates at frame k. The
tolerance level for the finally converged contour is denoted
by τ = 10−3. The model is not allowed to iterate more
than N times. The algorithm returns the cumulative frame-
wise tracked contours Y for the entire sequence given three
inputs, i.e., the number of frames in video sequence n, an
initial contour φ0 in frame 1 and the set of coefficients CF
in eqn. (7).

Algorithm 1 IRNBLS
procedure IRNBLS(φ0, CF,N, τ )

φ1 ← φ0, φ−1 ← φ0 k ← 0, nk ← 0, n← 3, Y ← ∅
for k = 2 to n− 1 do

Construct set S following Fig. 1.
for all xi ∈ S do

x
′

i ← optimize eqn. (1) for xi.
end for
X ← {x′

i} for frame k.
Compute c1(φk) and c2(φk) following [17].
Compute M and θ from eqn. (5).
Optimize eqn. (7) in n×n neighborhood within X .
nk ← steps to converge.
if nk ≥ N or φ ≥ τ then

n← n+ 2. Increase neighborhood size.
Re-optimize eqn. (7).

end if
Y = Y ∪ φk

end for
Return Y = ∪nk=1φk

end procedure

IV. RESULTS

We show the superiority of the proposed curve evolution
model over the standard Chan-Vese framework [17]. The
parameter values for the proposed model (eqn. (7)) are exper-
imentally chosen as: λ1 = λ2 = 0.1, χ = 0.4, σ = 0.4,µ =
0.001× 2552, and ν = 0.01.

Fig. 3. (a) Target with non-uniform intensity distribution. (b) Tracked contour
using the Chan-Vese method (shown in red). (c) Tracked contour using the
proposed method (shown in blue).

Consider a frame of the Hall Monitor video sequence in
Fig. 3(a), where the person being tracked is wearing a shirt and
pants of different colors, i.e., a target object characterized by
varying color and intensity values. The Chan-Vese model [17]
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fails to give correct results in this situation since the curve
evolution procedure based on the Chan-Vese model segments
the frames into piecewise uniform regions. As shown in
Fig. 3(b), instead of separating the dynamic body (i.e., the man
walking in the corridor) as a whole, the Chan-Vese model can
only partially identify the dynamic portions (i.e., the relatively
darker regions such as the shirt and suitcase) of the frame. The
proposed IRNBLS algorithm yields significantly better results,
as can be seen in Fig. 3(c), in that it can separate the entire
moving target as a whole.

Fig. 4. Effectiveness of coarse target localization: (a) Object (human face)
with non-uniform color distribution. (b) Tracked contour without using coarse
localization. (c) Tracked contour with coarse localization.

Next, using Fig. 4, we show the usefulness of the coarse
target localization procedure where the task is to track a human
face. Without the initial bounding box estimate (eqn. (1)), the
curve evolution model fails to converge accurately even after
several iterations (Fig. 4(b)). In Fig. 4(c), we show that the
coarse initial localization results in more accurate tracking.

Fig. 5. Tracked contours for different datasets: Hall Monitor sequence (a)
Frame 61, (b) Frame 82; Car sequence (c) Frame 1, (d) Frame 67; Boat
sequence (e) Frame 35, (f) Frame 93; Pedestrian sequence (g) Frame 114, (h)
Frame 127.

The proposed IRNBLS algorithm is evaluated using a
dataset consisting of 8 different publicly available video se-
quences [22]. The video sequences exhibit varying degrees of
motion, e.g., less motion for the Car sequence in Fig. 5(c)-
(d) versus considerable motion for the Boat sequence in
Fig. 5(e)-(f). In some cases the background of the target
object is changed by a dynamic entity, such as the larger
boat in Fig. 5(e)-(f), or by a panning camera resulting in a

TABLE I
STATISTICAL COMPARISON (MEAN µ AND STANDARD DEVIATION σ) OF
CONTOUR HAUSDORFF DISTANCE FOR DIFFERENT TRACKING METHODS

SK [20] DAM [19] Yilmaz [6] IRNBLS
µ σ µ σ µ σ µ σ

10.44 4.775 7.34 3.23 6.8188 2.2939 5.428 1.517

dynamic background (Fig. 5(e)-(f)). We compare the results
of the proposed IRNBLS algorithm with those of competing
level set-based contour tracking methods such as the Yilmaz
method [6], discriminative appearance method (DAM) [19],
and the Shi-Karl (SK) [20] method. Quantitative comparisons
among these methods are performed using the Contour Haus-
dorff Distance (CHD) measure [23]. The CHD measure for
each tracking method is computed by comparing the extracted
contours with the manually extracted ground truth contours
for the selected frames within each video sequence. Lower
CHD values denote higher tracking accuracy. In Fig. 5 we
show the tracked contours in selected frames from 4 of
the 8 video sequences in our evaluation dataset. In Table I,
we display the mean ± s.d. of the CHD values for each
tracking method. The results in Table I clearly show that the
proposed tracking method outperforms the competing methods
in [6], [19] and [20].

Fig. 6. Variation of x (series 1) and y (series 2) coordinate values of the
target objects in the (a) Hall Monitor sequence; (b) Car sequence; (c) Boat
sequence; and (d) Pedestrian sequence.

The video sequences in our experiments exhibit varying
dynamic characteristics. Fig. 6 decpicts the different dynamic
behaviors by jointly plotting the frame-wise variations in the
x and y coordinates of the centroid of the target objects in
different video sequences. The plots in Fig. 6 support our claim
that the proposed method can be applied to several widely
varying video sequences.

Note that in contour tracking methods, one can potentially
obtain a bounding box which minimally encloses the tracked
contours (e.g., the yellow box in Fig. 1). Since bounding
box-based performance evaluation measures such as the se-
quence frame detection accuracy (SFDA), multiple-object de-
tection precision (MODP), multiple-object detection accuracy
(MODA), and average tracking accuracy (ATA) [26] are used
for object tracking methods, we extend our comparison to
two such methods [24], [25] those track multiple objects.
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Fig. 7. Graphical comparison using the SFDA, MODP, MODA, and ATA
measures between competing tracking methods in [19], [20], [24], [25] and
the proposed IRNBLS algorithm

Though used extensively for multiple-object tracking analysis,
performance evaluation measures such as MODP and MODA
can be easily adapted for single-object tracking analysis. For
the proposed method, and competing tracking methods in [19],
[20], [24], [25], we compute the bounding boxes for the
tracked objects. Fig. 7 depicts the relative performance of the
proposed IRNBLS algorithm vis-a-vis the competing tracking
methods [19], [20], [24], [25] on the basis of SFDA, MODP,
MODA and ATA. Fig. 7 clearly shows that the IRNBLS
algorithm outperforms the competing tracking methods in [19],
[20], [25] and is comparable to the tracking method in [24].
Specifically, the SFDA and MODP measures of the IRNBLS
algorithm are marginally better than those of [24] whereas
the MODA and ATA measures are comparable. All the tests
were performed on machines with an Intel Core-2 Quad-
Core processor running at 2.4 GHz. The average processing
time per frame for a video sequence with significant dynamic
background was 1.43 seconds. The proposed method with the
current execution time can be applied for problems like event
analysis in surveillance and video motion capture [27].

V. CONCLUSION

In this paper, we proposed a color-, intensity- and region-
guided narrow-band level set-based method for tracking con-
tours of dynamic objects in a video sequence. The pro-
posed model essentially enhances the standard Chan-Vese
framework [17] with the addition of two new terms and is
called the Intensity- and Region-guided Narrow-Band Level
Set (IRNBLS) tracking algorithm. One of the terms captures
the variations in histogram information between successive
frames whereas the other term captures the region optimally
covered by the target contour. The curve evolution model is
restricted within a coarsely estimated rectangular region that
encloses the target object. Experimental results on standard
tracking datasets demonstrate that the proposed method can
track contours in a variety of videos very accurately. However,
there is scope to further extend the IRNBLS tracking algorithm
to videos that vary widely in their target velocity profiles.
Another direction of future research will be to extend the
proposed framework for detection of single and multiple

targets under more difficult imaging conditions like camera
motion and uneven illumination.
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