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Abstract—In this paper, we present a geometric algebra
approach for detection of geometric entities in images. Our
algorithm is grounded on two methodologies: representation of
geometric entities and perceptual properties using Conformal Ge-
ometric Algebra, and a voting scheme which is implemented using
a clustering algorithm. Our method is applied in a hierarchical
way, so that, we extract local and global information from images.
Experimental results show the application of our approach to
detection of circles, lines, complex structures of shape, and
symmetry axis. In addition, we show an FPGA implementation
that speed-up the execution time of the algorithm.

I. INTRODUCTION

Perceptual organization is the process of grouping features
arising from a common underlying cause [1], [2]. From a
computer science perspective, a set of tokens that share certain
property, is the support of a structure. This idea leads to
the developing of voting schemes, where according to some
criteria, each token cast a vote on certain structure; so that,
the winner of the voting process is a salient structure.

A popular voting scheme is Hough Transform, which
produce analytic representations of features, and the voting
procedure is implemented a s a counter in an accumulator
cell [3]–[5]. Another algorithm is called Tensor Voting, which
uses a tensor representation to represent features, and uses
a perceptual saliency function to codify Gestalt properties of
proximity, co-curvilinearity, and constancy of curvature [6]–
[8].

In this work, we use propose a generalization of voting
schemes, using Conformal Geometric Algebra. The role of
Geometric Algebra and Tensor Voting was for the first time
published in [9] and [10]; motivated by these works, we have
generalized the Tensor Voting framework to extract any kind of
geometric entities or geometric flags, so that we can formulate
complex perceptual saliency functions in terms of k-vectors
of Conformal Geometric Algebra. In addition, our method
can be applied in a hierarchical way, extracting multiple
geometric entities at each level; after this pre-processing,
machine learning methods can be also applied.

The organization of the paper is as follows: Section II
presents an introduction to Conformal Geometric Algebra, our
voting scheme is presented on Section III. Applications of
the method for detection of complex shapes and detection
of bilateral symmetry are presented in Sections IV and V,

respectively. Finally, conclusions and future work are stated
in Section VI.

II. CONFORMAL GEOMETRIC ALGEBRA

Geometric Algebra (GA) is a coordinate-free approach to
geometry based on the algebras of Grassmann and Clifford.
A specialized version, called Conformal Geometric Algebra
(CGA), allows an homogeneous representation of geometric
entities and their properties, by embedding an euclidean space
Rn in a higher dimensional vector space Rn+1,1. Here, we
summarize the construction of CGA, for a detailed study see
[11], [12].

Let Rn+1,1 be a real vector space, which is associ-
ated with geometric algebra Gn+1,1, then its vector bases
{e1, . . . , en, e+, e−} satisfy: e2+ = 1, e2− = −1, and e2i = 1,
for i = 1, . . . , n. In addition, the following properties are
satisfied: e+ · e− = 0, ei · e+ = 0, and ei · e− = 0, for
i = 1, . . . , n.

The set of all
(
n+2
k

)
elements produced by the geometric

product of k linear independent vectors span a vector space,
denoted by

∧k
V n+2. Each element of this space, is called k-

vector, denoted by 〈A〉k, where k indicates the grade. A linear
combination of k-vectors of mixed grade is called multivector,
expressed as follows:

A = 〈A〉0 + 〈A〉1 + · · ·+ 〈A〉n+2 . (1)

Next, we define two null basis: the point at infinity, e∞ =
e− + e+, and the origin, e0 = e−−e+

2 ; which satisfy: e20 =
e2∞ = 0, and e∞ · e0 = −1.

The set of all null vectors in Rn+1,1 is called the null cone,
and its intersection with an hyperplane with normal e∞, and
containing point e0, is a surface called horosphere, defined as:

Nne = {xc ∈ Rn+1,1 : x2c = 0, xc · e∞ = −1} . (2)

So that, all points that lie on the horosphere are called
conformal points, represented by:

xc = xe +
x2e
2
e∞ + e0 , (3)

where, xe ∈ Rn. In addition, three unit pseudoscalars are
defined as Ie for Gn, E, which represents the Minkowski
plane, and I for Gn+1,1:

Ie = e1e2 . . . en;E = e∞ ∧ e0; I = Ie ∧ E . (4)
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TABLE I
REPRESENTATION OF GEOMETRIC ENTITIES IN CGA Gn+1,1 .

Entity IPNS OPNS
Point (pc) pe + 0.5p2ee∞ + e0

∧n+1
i=1 Si

Pair of Points (PP )
∧n
i=1 Si pc1 ∧ pc2

Hypersphere (S) cc − 0.5ρ2e∞
∧n+1
i=1 pci

Hyperplane (π) ne + dHe∞ e∞
∧n
i=1 pci

A. Representation of Geometric Entities

A geometric entity is defined by a set of points that satisfy
a geometric constraint. Let x ∈ G1p,q be a vector, and let Xk ∈
Gkp,q be a k-blade; then, all vectors that satisfy x ·Xk = 0, lie
on the geometric entity that Xk represents. This set of vectors
is called inner product null space (IPNS), denoted by NI(Xk),
thus:

NI(Xk) = {x ∈ G1p,q : x · Xk = 0} . (5)

Similarly, we define an outer product null space (OPNS),
denoted by NO(Xk), as follows:

NO(Xk) = {x ∈ G1p,q : x ∧ Xk = 0} . (6)

Inner and outer null spaces have a dual relationship, which
is summarized in the following equation:

(x ∧ Xk)∗ = (x ∧ Xk) · I−1 = x · X∗k (7)

where I−1 is the inverse of the pseudoscalar of Gp,q .
Table I summarizes the representation of geometric entities

in CGA Gn+1,1; where ρ and cc represents the radius and cen-
ter of a hypersphere in conformal representation, ne represents
the normal of a hyperplane, and dH its Hesse distance.

B. Conformal Transformations

A transformation of a geometric figure is said to be con-
formal if it preserves the angles of the figure. To characterize
orthogonal transformations, it is convenient to introduce the
concept of versor [13]. A versor, G, is any multivector of
a geometric algebra that can be factorized into a geometric
product:

G = v1v2 . . . vk, k ≤ n (8)

of vectors vi ∈ Rp,q . In CGA, a conformal transformation is
applied as a sandwiching product:

O′ = G OG̃, (9)

where O ∈ Rn+1,1 is any object listed in Table I, and G is a
versor. Table II shows the group of transformations available
in CGA Gn+1,1.

III. CONFORMAL GEOMETRIC ALGEBRA VOTING SCHEME

In this section, we introduce a framework for automatic
perceptual organization. The essential components of our
approach are summarized in two methodologies: To represent
information using CGA, and a voting process which is imple-
mented using a clustering algorithm.

TABLE II
GROUP OF TRANSFORMATIONS IN CGA Gn+1,1 .

Transformation Expression
Inversion S = cc − 0.5ρ2e∞
Reflection L = n+ de∞
Translation T = 1 + dne∞

Rotation R = cos
(
θ
2

)
− sin

(
θ
2

)
l

Transversion K = 1 + de0
Conformal G = KTR

A. Representation of Information Using CGA

Let Rn be a real n-dimensional vector space; then, a token,
denoted by t, and a geometric structure, denoted by F , are
represented as multivectors of CGA Gn+1,1. The possible
combinations between tokens and geometric structures can
constitute flags [12]. Then, a token t on a geometric structure
F satisfies: F · t = 0. Consequently, for a set of tokens
{t1, t2, · · · , tN}, the flag, F , that satisfy F · ti = 0, for
i = 1, 2, . . . , N define a minimum for:

1

N

N∑
i=1

W (a1, · · · , am, ti)
(F · ti)2

|F |2
, (10)

where W is a function that maps a set of parameters
{a1, · · · , am, ti} to a scalar value. We call W a perceptual
saliency function, since it is used to codify perceptual proper-
ties.

Equation (10) is the key to generalize voting schemes, since
the inner product relates a set of tokens with a geometric
structure via an incidence relationship; moreover, each product
is limited by a function W , which introduce perceptual re-
strictions on F . Thus, we have to design flags and perceptual
saliency functions according to the kind of information that
we want to extract.

For example, for detection of circles and lines, we can use
the incidence relationship of point-line flag and point-sphere
flags:

L · p = 0, (11)
S · p = 0. (12)

In this case, given a set of points, we can compute L or S
can be from subsets of 3 points, using the OPNS representation
of Table I. Alternatively, we can map each pair of points to
a line equidistant to both points, and the intersection of each
pair of lines is the center of a circle.

The perceptual saliency for circles or lines, is assigned using
the decay function of the Tensor Voting algorithm [8]:

W (s, ρ, c, σ) = exp

(
−s

2 + cρ2

σ2

)
, (13)

where c controls the degree of decay with curvature, σ
determine the neighbourhood size of the voting, s represents
the arc length, and ρ the degree of curvature of the circle, see
Figure 1.

On the other hand, for detecting bilateral symmetry, we can
use the conformal representation of a line to represent the
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Fig. 1. Saliency assignment. For each geometric structure, a saliency field is
constructed using (13).

symmetry axis, and for computing it, we can use a pair of
circles, lines, or points, as follows:

For each pair of points, its symmetry axis is:

li = − ui
|pie|

e1 −
vi
|pie|

+
|pie|

2
e∞, (14)

where the first point is the origin of the coordinate system,
(ui, vi) are the coordinates of the second point, and |pie| =√
u2i + v2i .
In addition, for each pair of circles, its symmetry axis is:

L = [(S1 ∧ S2)∗ ∧ e∞]∗, (15)

where Si and Sj are two different circles with equal radius.
On the other hand, for each pair of parallel lines li and lj ,

the symmetry axis is given by:

Ld = Td li T̃d, (16)

where d = |(li ∧ lj)∗|ni, ni is the normal of the lines, and T
is a translator of CGA G3,1.

For lines that intersect with each other, we have two
symmetry axis:

Lθ = Rθ li R̃θ, (17)

where R is a rotor of CGA G3,1, and θ is the angle between
the lines, computed as follows:

θ1 = arctan

(
|li ∧ lj |
|li · lj |

)
, θ2 = θ1 +

π

2
. (18)

Finally, the perceptual saliency of a symmetry axis can be
assigned using the following equation:

W (l,D) =
∑
pic∈D

exp

[
(l pic l̃) · pjc

σ2

]
, (19)

where D = {p1c, ..., pkc}, is the set of conformal points that
support the symmetry axis, l is the symmetry axis applied
as a versor transformation on a point pic, pjc is the nearest
neighbour to point l pic l̃, and σ is a parameter that sets the
size of the neighbourhood in which we search for point pjc.

B. Communication of information

This stage has two parts: a local voting process, which
extracts salient geometric entities supported in a local neigh-
bourhood, and a global voting process, which clusters the
output obtained by the local voting process.

1) Local Voting: Given a perceptual saliency function W ,
and a set of tokens T = {t1, t2, · · · , tN}, the local voting step
consist in: selecting a token, t0 ∈ T , defining a subset, T0, that
contains all tokens in the neighbourhood of t0, and computing
the geometric structure, F , that minimizes (10) for the tokens
in subset T0. To find F , we apply a voting methodology to
take the outliers out, and compute F using the rest of the
tokens.

The voting procedure is performed as follows: Let t0 be the
selected token, then each token on its neighbourhood casts a
vote in the form of a perceptually salient geometric element.

Definition 1. A perceptually salient geometric element, is a
set of points together with a function, that assigns a scalar
value to each element of the set.

Using CGA, a perceptually salient geometric element is
represented by:

F̄ = {pc : pc · F = 0}, W : Rm → R, (20)

where pc and F are a point and a geometric element, re-
spectively, in conformal representation; whereas F̄ is a set of
conformal points, and W is a function that assigns a scalar
value to each element of set F̄ . Therefore, F codifies the
geometric structure of an object, while the function W codifies
its perceptual saliency.

Thus, the voting consists in mapping each token on the
neighbourhood of t0 to a perceptually salient geometric ele-
ment. In the voting space, each geometric structure F is a point
that has associated a perceptual saliency value or density. Then
we use DBSCAN algorithm [14] to separate votes, and cluster
those that has similar geometric structure (e.g. hyperplanes
with the same normal and Hesse distance, or hyperspheres
with the same center and radius).

Next, we compute the perceptual saliency of each cluster:

W̄ =
∑
i

Wi. (21)

where Wi is the perceptual saliency of each geometric element
in the cluster. Finally, we select clusters that surpasses a
threshold value, or the cluster with highest perceptual saliency.

In contrast with the Tensor Voting algorithm, which extracts
only the feature with maximum support, the use of a clustering
technique in our algorithm allow us to extract several features
at the same time.

2) Global Voting: The local voting process delivers a set
of salient geometric structures for each token. Let Ō =
{O1, · · · , On} be the output of the local voting process, where
each element Oi is a salient geometric structure; then, the
global voting process consists in grouping similar geometric
structures using DBSCAN algorithm. Thus, Ō is partitioned
into subsets Ō1, · · · , Ōq , where each Ōi is a cluster of
geometric entities obtained by DBSCAN. Next, we compute
the perceptual saliency of each cluster using Equation 21, and
select clusters that surpasses a threshold value.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Synthetic images (a, b, c, d) and the results obtained by our method
(e, f, g, h)

IV. APPLICATION FOR EXTRACTION OF CIRCLES AND
LINES IN IMAGES

The goal of this application is to find a representation of the
contour of objects in images; hence, the input to our algorithm
is an edge image. In addition, our method considers an image
as a vector space R2, and each edge pixel is represented as a
conformal point of CGA G3,1. The output is a set of perceptual
structures, i.e. circles and lines, associated with a saliency
value. These structures are represented as elements of CGA
G3,1, according to Table I.

Figure 2 shows four images for which we have applied our
voting scheme. Input images contain incomplete data (Figure
2a), noisy data1 (Figure 2b), an image with illusory contours
(Figure 2c), and an image with noise and an incomplete
geometric entity (Figure 2d). Output of our algorithm is shown
in Figures 2e, 2f, 2g, and 2h, where in each case, as opposite
to any current algorithms, our method recovers simultaneously
the equations of the circles and lines that are perceptually
salient.

Figure 3 shows a set of images that contain real objects,
the input images were taken from image databases [15], and
[16]. For each input image we apply a pre-processing step,
which consist in a Canny edge detector [17], and a mean filter;
after that, we use our algorithm to extract salient geometric
structures. The second row of Figure 3 shows the output of the
local voting step, while the third row show the output of our
algorithm for each image; salient structures has been super-
imposed to the edge images obtained after the pre-processing
step.Unfortunately, we have not found a standard procedure
yet to adjust the parameters of the DBSCAN algorithm and
the threshold values for the local and global voting steps, and
they were setup separately for each image.

The set of images contains objects which contours describe
non-linear curves. Experimental results show that our algo-
rithm makes a non-uniform sampling with circles and lines, in
order to describe this objects; note that each geometric entity
obtained by our algorithm is a local descriptor of shape, and

1each pixel has a 0.09 probability of being an erroneous site.

Fig. 4. Experimental results for local stage. Input images in the first column,
the output obtained by the PC implementation in the second column, and the
output obtained by the FPGA in the third one.

the total output describes the object by a sort of an expansion
of spherical wavelets [12].

A. Speeding-up the algorithm in a Field-Programmable Gate
Array (FPGA)

An FPGA is a reprogrammable device that can adopt the
functionality of a digital circuit. They can process a large
amount of data with a low power consumption, and allows
the use of pipelines and parallelism to accelerate computations
over batches of data.

In our voting algorithm, the must computational expensive
process is the local voting step. For testing the speed-up and
accuracy that can be obtained when implementing in an FPGA,
the local voting process for detecting circles was implemented
in a ZC706 evaluation board featured with the Xilinx FPGA
Zynq 7000 based on an APSoC architecture running at 100
MHz.

The output obtained in the FPGA implementation has sub-
pixel accuracy, and is three to four times faster than the PC
implementation, see Table III. Results for a set of images is
shown in Figure 4.

TABLE III
EXECUTION TIMES FOR PC AND FPGA IMPLEMENTATIONS [MS]

Platform Apple Pear Avocado Lemon Peach
PC 1826 10627 1914 14309 3861

FPGA 317 4130 351 4200 930

V. APPLICATION FOR DETECTION OF BILATERAL
SYMMETRY

Using the CGA voting scheme as building blocks, we have
designed a three-level architecture for detection of bilateral
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Fig. 3. Images that contain real objects and the results obtained by our method

Fig. 5. Three-level architecture for extraction of symmetry axis.

symmetry in images. Figure 5 shows an overview of the
architecture. The goal of the first two levels at the right side of
the architecture is to extract symmetry axis with local support,
for doing this, we apply a local and global voting procedure
using Equations 14 and 19; the output is add to a set L̄. On
the other hand, the left side of the architecture extracts salient
circles and lines. The third-level maps circles and lines to
symmetry axis using Equations 15 to 19, and add them to the
set L̄; then we apply a global voting procedure. The result is
a set of symmetry axis with local and global support.

For the experiments, we applied our voting scheme in

images that contain real objects, as well as synthetic images;
we used the benchmark proposed by [18], which contains a
set of 30 test images, divided in 4 categories: synthetic vs. real
images, and images with a single vs. multiple reflection axis.
For each input image we apply a pre-processing step, which
consist in a Canny edge detector [17] and a mean filter; after
that, we use our algorithm for detection of bilateral symmetry.
The output is shown in Figure 6, where the detected symmetry
axis are superimposed to the input image.

To evaluate our algorithm, we calculate the precision and
recall rates:

P =
TP

TP + FP
, R =

TP

TP + FN
; (22)

where TP , FP and FN are the number of true positives, false
positives, and false negatives, respectively. Figure 7 shows a
comparison between precision and recall rates obtained by our
voting scheme and the bilateral symmetry detection algorithms
of Loy and Eklund [19], Mo and Draper [20], and Kondra et
al. [21]. Our algorithm has a similar performance to these
methods, and is slightly better than three of them.

VI. CONCLUSIONS AND FUTURE WORK

This paper is introducing a generalization of voting schemes
using the concept of inner products with respect to a flag.
Considering the Equation (10), we see that we can design
suitable flags for detection of complex structures involving
transformation as well; in addition, we use functions to apply
constraints on the flag, according to perceptual properties.
Moreover, our voting scheme can be used to design a multi-
level architecture, as is shown in the applications sections.
Finally, the principles of Gestalt cannot be easily put into
mathematics, this paper is a successful attempt to do so, and
we have introduced the use of geometric algebra to model
perceptual properties, like symmetry, as well as geometric
structures; we hope this effort will lead to future developments
in this direction.

Future works should focus on the design of new perceptual
saliency functions and flags, the implementation of new stages
of the architecture for high-level tasks, and the integration of
other information channels like color, movement, disparity, etc.
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Fig. 6. Detection of bilateral symmetry using our voting method.

Fig. 7. Recall and precision rates for symmetry axis detection.
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