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Abstract—We propose a new approach to segmenting a hand
accurately from a single depth image. Given a depth image, we
extract first a rough hand region of interest (RoI) including
a hand and a part of an arm. Then, the RoI is partitioned
into triangles by using a constrained Delaunay triangulation
(CDT) approach from which hand segmentation proposals are
generated. Each segmentation proposal is evaluated by a shallow
convolutional neural network (CNN) which is trained as a re-
gression function to predict a confidence score for each proposal.
Finally, the segmentation proposal with the highest confidence
score is selected as our hand segmentation result. To evaluate the
effectiveness of our approach, we use a set of real data containing
more than 370,000 frames of hand depth images collected from
40 subjects with large variations in pose, orientation and sensing
distance. Compared with segmentation results achieved by a
random decision forest (RDF) based approach, our approach
achieves much higher accuracy.

I. INTRODUCTION

Hand segmentation is an important pre-processing step in
applications such as hand pose estimation [1, 2] and gesture
recognition [3]. Research on hand segmentation has a long
history. In early days, color images were taken as input and
skin color models [4–6] were used to locate hands. Although
these skin color based methods could get good results in
certain environments, they usually suffered from variabilities
in skin color, illumination and noisy backgrounds. Recently,
given the popularity of consumer depth sensors, a rough hand
region of interest (RoI) could be easily extracted from noisy
backgrounds by simply setting thresholds [7–11]. However, it
is difficult to precisely and consistently separate a hand from
the rough RoI for the following reasons: 1) There is no clear
boundary between a hand and a forearm on a depth map;
2) Large variations in hand postures and orientations make it
hard to separate hand consistently; 3) The low resolution of
a depth image captured by a consumer depth sensor imposes
additional challenges.

To address the above problem, many methods have been
proposed in the literature. Bergh et al. [12] and Oikonomidis
et al. [13] tried to leverage skin color to refine the hand
RoI extracted from a depth map. Combining skin color and
depth information could narrow the search area for hand and
decrease largely the effect of noisy backgrounds. However,
they will not be effective for arms without sleeve. Therefore,
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Ren et el. [3] and Qian et al. [14] required users to wear
black bands on their wrists. Some researchers tried to explore
geometric characteristics around the wrist and designed rules
to get finer hand segmentation on depth maps [15–18]. Kurakin
et al. [15] and Doliotis et al. [16] desired to cut off an arm
at wrist point and tried to identify the wrist area by finding
the thinnest part of the arm. Liang et al. [17] detected a
palm by finding the largest inscribed circle. Qin et al. [18]
first separated a hand RoI into two parts using thresholds and
detected their center points through distance transform, then
set the mid-perpendicular line of the segment connecting the
two center points as the cut line. These rules set constraints
on rotation angles of a hand because their effectiveness
was affected greatly by viewpoint variation. Furthermore,
clustering methods were also tried. Malassiotis et al. [19]
used a hierarchical clustering procedure to get a rough hand
RoI, which is then modeled by a mixture of two Gaussians.
Feng et al. [20] used a Gaussian mixture model (GMM) to
separate a rough hand RoI from human body, which is then
segmented into two classes by K-means clustering method.
These methods are not robust because they are sensitive to
model initialization. Given the success of random decision
forest (RDF) based approach for body parts segmentation [21]
and hand pose estimation [22], Tompson et al. [1] used RDF
to train a binary classifier for hand segmentation. However,
according to [23] where a similar RDF binary classifier is also
used for hand segmentation, the inferred boundary between
hand and arm is not accurate, therefore an error of several
centimeters between neighboring frames of depth images in a
video is observed.

In this paper, we propose a new approach to segmenting a
hand accurately from a single depth image. Fig. 1 shows the
overview of our approach. Given an input depth image and a
hand joint location, a hand RoI is extracted first by using flood
fill method. Then, a constrained Delaunay triangulation (CDT)
approach is used to partition the hand RoI into triangles,
from which high quality hand segmentation proposals are
constructed. Each segmentation proposal is evaluated by a
shallow CNN which is trained as a regression function to
predict a confidence score for each proposal. Finally, the
segmentation proposal with the highest confidence score is
selected as our hand segmentation result. To the best of our
knowledge, this is the first work to leverage CDT partitioned
triangles to construct hand segmentation proposals in a depth
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Fig. 1. Overview of our approach: (1) Hand RoI extraction: a hand RoI is extracted from a depth image; (2) Proposal Generation: CDT is used to partition
the hand RoI into small triangles from which segmentation proposals are generated; (3) Best proposal selection: Each segmentation proposal is evaluated
by a scoring CNN with both the proposal and hand RoI as input, and the segmentation proposal with the highest confidence score is selected as our hand
segmentation result.

image. Using both segmentation proposal and hand RoI as
the input of the scoring CNN is more effective than using the
segmentation proposal only as input. To evaluate the effective-
ness of our approach, we use a set of real data containing more
than 370,000 frames of hand depth images collected from 40
subjects with large variations in pose, orientation and sensing
distance. Compared with segmentation results achieved by
an RDF based approach, our approach achieves much higher
accuracy.

The rest of this paper is organized as follows. Section II
presents the details of our approach. Section III reports exper-
imental results and findings. Finally, the paper is concluded in
Section IV.

II. OUR APPROACH

A. Hand RoI Extraction

Given a depth image, there are various methods to get a
hand RoI [7–11, 23]. Here, we take a hand joint estimated
from Kinect SDK as a seed point and use flood fill method to
grow a hand RoI from a square range around the hand joint.
In this paper, we focus our work on separating a hand from a
rough hand RoI.

B. CDT Based Proposal Generation

Zou et al. [24] showed that CDT worked well for estimating
skeletons of ribbon-like shapes. Triangles generated by CDT
on ribbon-like shapes will be distributed densely and symmet-
rically alongside their skeletons. Because a human arm has a
ribbon-like shape, we use CDT to partition a hand RoI and
generate segmentation proposals based on these triangles.

1) Constrained Delaunay Triangulation: Given a rough
hand RoI, its external contour is extracted and uniformly
sampled, as shown in Fig. 2(b). The sampled contour can
be described by a planar straight-line graph (PSLG), where
the vertices and edges are the contour pixels and contour
segments between adjacent contour pixels, respectively. Given
the PSLG, CDT can be constructed efficiently by using the
classic divide-and-conquer algorithm [25]. Since partial trian-
gles will be merged into polygons in the following steps, we
use a general term polygon to denote triangles and polygons.

(a) (b) (c) (d)

(1) (2) (3)
J-P

N-P

E-P E-P

J-P

N-P

Fig. 2. Merging triangles: (1) The external contour of a hand RoI is extracted
and uniformly sampled; (2) CDT of the hand RoI; (3) Partial triangles are
merged.

Similar to [24], an edge of a polygon is an external edge if
it is a contour segment; otherwise, it is an internal edge. As
shown in Fig. 2(c), a polygon with one, two, and more than
two internal edges is called an end-polygon (E-P), a normal-
polygon (N-P), and a junction-polygon (J-P), respectively.
Following observations can be made:

• E-P usually appears in the extreme parts of a shape, e.g.,
fingertips, ends of the arm or small protrusions on the
hand RoI;

• J-P usually presents at the center of parts with arched
contours, e.g., the palm of a hand;

• N-P exists almost everywhere and mostly shows at
ribbon-like/tube-shaped parts of a shape, e.g., an arm or
fingers.

Since N-Ps are densely and symmetrically distributed along
an arm, we are inspired to use each N-P to bisect the hand
RoI and get two segmentation proposals each time, as shown
in Fig. 3. Bisections using all the N-Ps (BNP) on a hand RoI
would generate dense segmentation proposals, among which
there are some high quality proposals that share high overlap
with the groundtruth segmentation, as shown in the first three
columns of Fig. 3. However, such complete bisections also
generate many undesirable proposals, e.g., bisection using N-
Ps on a finger, as shown in the last four columns of Fig.
3. Because only bisections around the real cut-line and wrist
matter, bisections based on N-Ps in the following three parts,
namely extreme parts mentioned above, center of a palm, and
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Fig. 3. Bisection using an N-P: Row (a) shows CDTs of hand RoIs with
target N-Ps highlighted in red; Row (b) and (c) show the bisection results.

fingers, will be filtered out as described as follows.
2) Merging Triangles: For N-Ps in extreme parts, some of

them could be filtered out by adopting the methods of merging
end regions in [24]. Besides, by using a simple rule that an
N-P shall be merged if its neighbors are both J-P, some of the
N-Ps in the palm could be filtered out. After merging step,
bisection using all the remaining N-Ps (BNPM) reduces many
undesirable proposals, yet high quality proposals are almost
unchanged.

3) Bisection Along Mid-line: Although many N-Ps in fin-
gers are still kept after above merging step, most of them can
be ignored during proposal generation as follows. As hand
RoIs are ribbon-like shapes, a mid-line of a hand RoI will go
through its arm and at most one finger. Based on this notion,
we firstly find two extreme E-Ps which have maximum or
minimum projection on the hand RoI’s mid-line, estimated by
PCA. Then we traverse from one E-P to the other, as shown
in the mid-image of Fig. 4. N-Ps on the traversed path are
reserved for further bisection to generate hand proposals. We
denote bisections using N-Ps along a mid-line after merging
step as BNPMM. By using this step, the number of proposals
could be largely reduced for cases that have multiple fingers.

C. Best Proposal Selection

After the above steps, tens of hand segmentation proposals
are generated. The segmentation problem becomes to select
a proposal that best matches the groundtruth segmentation.
By assigning a confidence score to quantify the matching de-
gree, we formulate the segmentation problem as a confidence
regression problem. A regression model needs to be trained
to predict a confidence score for each proposal. To reduce
computations, we use a shallow CNN as the regression model.

1) Regression Model Architecture: Fig. 5 illustrates the
network architecture. It takes a proposal and its corresponding
hand RoI as inputs. Then, one convolutional layer and a max
pooling layer are used to produce a feature map. The feature
map is fed into a 3-layer fully connected network to predict

EоP࢔࢏࢓

EоP࢞ࢇ࢓

Midline

Fig. 4. Get N-Ps along mid-line.

a confidence score. The following smooth L1 loss function is
used for training CNN:

smoothL1(x) =

{
0.5x2 if |x| < 1
|x| − 0.5 otherwise

(1)
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Fig. 5. Regression model for scoring proposals.

2) Training Parameter Setting: The network is trained
in a standard way using stochastic gradient descent (SGD).
Weights of all layers are initialized from zero-mean Gaussian
distribution with standard deviation 0.01. Biases are initialized
to 0. All layers use a per-layer learning rate of 1 for weights
and 2 for biases and a global learning rate of 0.01. During
training, we use inverse decay learning rate policy to gradually
lower the learning rate with increasing mini-batch iterations.
The inverse decay curve uses gamma of 0.001, power of 0.75.
The network’s momentum and parameter decay are set 0.9 and
0.0005 (on weights and biases), respectively.

3) Confidence Score Labeling: The groudtruth confidence
score for a proposal is set according to its similarity with the
groundtruth segmentation. The similarity between a proposal
and its corresponding groundtruth can be quantified by pixel
intersection over union (IU). Since our final goal is to find
a proposal that best matches the groundtruth segmentation,
we force the regression model to focus on learning scoring
strategies for proposals that have little difference with the
groundtruth. Similar to [26], proposals that have IUs lower
than 0.6 are treated as negative candidates. These proposals’
confidence scores are labeled as 0. The remaining proposals
share a large overlap with their corresponding groundtruth
and their confidence scores are labeled with a positive value.
Denote a proposal image as Ip, its corresponding groundtruth
segmentation as Igt, we design a piecewise linear function to
label groundtruth confidence score, Sp, for each proposal as
follows:

Sp =

{
IU(Ip, Igt) if IU(Ip, Igt) > 0.6
0 otherwise

(2)
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Fig. 6. Data recording and automatic groundtruth segmentation: (1) The
upper panel shows the GUI recording tool. The detected red band points are
highlighted with green color and a blue cut-line is estimated via PCA. To adapt
to various lighting conditions, threshold parameters can be modified online;
(2) The bottom panel shows some examples. Row (a) shows the mapping
from color to depth. Row (b) shows the extracted hand RoIs in depth images.
Row (c) shows the automatic segmentation groundtruth.

III. EXPERIMENT

A. Experimental Setup

1) Dataset: Tompson et al. [1] have released a subset of
data for hand segmentation in NYU Hand Pose Dataset. It con-
tains 6,735 depth frames with per-pixel labeled groundtruth.
As it is collected from only one subject with limited number
of frames, it can hardly cover the grand variation of hand
configurations. Thus, we decide to collect a larger data set
that covers variations in pose, orientation and sensing distance
from different subjects.

a) Data Collection: The data set is collected from 40
subjects with 20 males and 20 females using Kinect V2
sensor. To enrich variations in pose and orientation, subjects
are encouraged to change their postures and arm orientations
as much as they can in both seated and standing scenarios.
Besides, they can move freely at a distance from 1 to 3
meters to the Kinect V2 camera. In total, 371,564 depth
images are collected. To estimate groundtruth segmentation,
a subject needs to wear a red band on his/her wrist during
data collection.

b) Groundtruth Labelling: The red band is robustly
detected by setting adaptive thresholds in Y CbCr color space
during data recording. Then, a cut-line is modeled as a straight
line passing through the center of the detected red band points
with its direction estimated by the first component of PCA of
the red band. By mapping the detected red points from color
image to the corresponding depth image, a cut line on the
depth map can be calculated in the same way.

According to joint locations from Kinect SDK, a hand RoI is
generated using flood fill method and a rough arm orientation
can be estimated. Then, RoI is bisected using the above cut-
line into two parts. Finally, a groundtruth hand segmentation
can be chosen from the bisected two parts by using the rough
arm orientation. The dataset is built by the rough hand RoIs
and their corresponding groundtruth hand segmentations. Fig.
6 illustrates how data recording and automatic groundtruth
segmentation work.

2) Data Normalization: Translation and scale normaliza-
tion of hand RoIs in depth maps benefit the segmentation
performance and can be easily implemented. By setting the
gravity of the hand RoI or the hand joint location as the center
point of a captured hand RoI image, translation invariance is
achieved. As a camera can be modeled by a usual pinhole,
an object’s size s in the image is inversely proportional to its
sensing distance d to the camera. Thus, the scales of all hand
RoIs can be mapped to the same scale level by multiplying
a scale factor d

dref
, where d is the above center point’s depth

and dref is a predefined reference distance. Therefore, hand
RoIs’ scales are also depth invariant. In this paper, dref is set
as 1500mm. After translation and scale normalization, a hand
RoI image is cropped to a square size of 120 × 120 while
keeping the above center point as the center of the square.
Besides, gray-scales of hand RoI pixels are linearly mapped
to a range from 0 to 150 according to depth.

3) Comparison Method: As RDF is a popular algorithm
that has achieved promising segmentation results in various
scenarios [1, 21, 22, 27], we compare our approach with an
RDF-based hand segmentation approach [1]. As described in
[1], the RDF consists of 4 trees with the maximum height
of 25. At each node in a tree, 10,000 weak learners is
sampled. Since hand RoIs’ scales are normalized and being
depth invariant. At a given pixel (u, v) on normalized hand
RoI image I , each node in the decision tree evaluates

I (u+ δu, v + δv)− I (u, v) > dt . (3)

To train offset parameters (δu, δv) and threshold dt, we
generate 100 vectors for offset candidates, and 100 scale values
for threshold candidates on each node. Through comparison
experiments of using different values for offset range from a
discrete set, this classifier performs best with offset range of
40 pixels. Threshold range is set from 0 to 150.

To refine segmentation results from RDF, a post-processing
step including median filtering and largest blob detection is
implemented in this study.

B. Experimental Results

We adopt Fβ=0.3 [28], IU [29] and F1 to evaluate the
performance of hand segmentation at pixel level.

1) Quality of Proposals: To evaluate the quality of gen-
erated proposals, two aspects are checked: 1) how similar a
hand RoI’s proposals are with its groundtruth; 2) how many
proposals are generated for a depth image. For similarity, we
could use the upper bound of IUs between a hand RoI’s
proposals and its groundtruth. Let IUup represent IU upper
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Fig. 7. Histograms of proposal generation success rate.

TABLE I
COMPARISON OF MEAN IU UPPER BOUND AND NUMBER OF PROPOSALS

OF PROPOSAL GENERATION METHODS.

BNP BNPM BNPMM BNPMMO
mean np 93.4 71.9 60.9 30.5

mean IUup 0.9459 0.9448 0.9437 0.9423

bound and np represent the number of generated proposals of
a hand RoI, we have

IUup = argmax {IUi}, i = 0, 1, 2, · · · , np . (4)

If we know the arm orientation of a hand RoI, we can further
filter out half proposals by reserving one proposal that nears
the hand part at each bisection. This strategy is referred to
as BNPMMO. Here, we use a vector from the wrist joint to
hand joint to represent the arm orientation. Results are shown
in Fig. 7 and Table I.

Fig. 7 shows that our proposal generation methods can
generate high quality proposals that has high-overlap with
groundtruth segmentations. Success rate for IU upper bound
threshold at 0.85, 0.9, and 0.95 are around 96%, 86% and 47%,
respectively. On average, IU upper bounds of our proposal
generation method are around 0.94.

Table I verifies the effectiveness of our proposed methods
in filtering out redundant proposals. For our dataset, adding a
merging step (BNPM) can reduce 20 redundant proposals on
average with a slight decrease of IU upper bound. By searching
N-Ps on a hand RoI’s mid-line and only using these N-Ps
for bisection (BNPMM), 10 more redundant proposals can be
reduced on average. If we can know the arm orientation of a
hand RoI, we can filter out half of the proposals (BNPMMO).
Here, by roughly estimating the arm orientation using wrist
and hand joint locations given by Kinect SDK, we lower the
number of proposals to 30 on average. However, if the arm
orientation is wrongly estimated, using BNPMMO will lose all
high quality proposals. The other proposal generation methods,
namely BNT, BNPM, BNPMM are not affected by this issue.

2) Segmentation Performance: Recorded data of 40 sub-
jects are randomly partitioned into 30, 2 and 8 for training,
validation and testing, respectively. Before training our regres-
sion model, inputs need to be resized to 64 × 64. To verify
the effectiveness of adding a hand RoI as input (referred to
as CDT-CC64 hereinafter), we train a comparison regression
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Fig. 8. Success rate curves of different hand segmentation methods.

TABLE II
COMPARISON OF IU AND F MEASURE OF SEGMENTATION METHODS

Ours(CDT-CC64) Ours(CDT-CS64) RDF-MB
IU 0.9085 0.8998 0.8175

Precision 0.9628 0.9588 0.9584
Recall 0.9416 0.9360 0.8476
Fβ=0.3 0.961 0.9569 0.9482

F1 0.952 0.9473 0.8996

model with the same architecture except that only a proposal
is used as the input (referred to as CDT-CS64 hereinafter).
For RDF training, we randomly sample 10% pixels of each
hand RoI. Let RDF-MB denote an RDF based segmentation
approach with a post processing consisting of median filtering
and blob detection. By calculating IU on each hand RoI, the
success rate curve is drawn in Fig. 8 according to different
IU thresholds. Table II shows IU and F score measure on
whole pixels of test dataset. Furthermore, example results of
CDT-CC64 and RDF-MB are shown in Fig. 9. It is observed
that our approach achieves better performance in both F score
measure and IU evaluation metric. One weakness of the RDF-
based method is that its classification results for pixels near the
classification boundary are not reliable, which has also been
confirmed in [23]. Since our proposals are generated through
bisections of some thin polygons, pixels in these proposals are
connected and compact, therefore there is no “boundary pixel”
issue suffered by RDF.

Adding a hand RoI as input helps. Compared with taking
a single proposal as input, regression model gives better
segmentation prediction by adding its hand RoI as input. We
think this empowers the regression model to see the difference
between a proposal and its hand RoI, which is meaningful
auxiliary information.

IV. CONCLUSION

In this paper, we have proposed a novel approach for hand
segmentation on depth images. Experimental results demon-
strate that our approach could get quite accurate hand segmen-
tation in various poses, orientations and sensing distances. Yet,
our approach has a limitation in efficiency as it needs to predict
a confidence score for each proposal independently. Since
proposals have overlaps, we plan to improve our approach’s
efficiency by sharing computations in overlaps in the future.
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