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Abstract—Multimedia education is playing a significant and
increasing role for education purposes, thus leading to a large
number of electronic documents. Plane geometry figures (PGFs),
as important components of these documents, are regarded as
very helpful information to most retrieval systems in the field
of mathematics education. However, the burdensome work of
annotation has become one of the chief obstacles to improve
the efficiency of retrieval systems. In this paper, we introduce
an active learning-based frame to select candidate instances for
training the classifiers in retrieval systems, which are an emerging
non-text-based information systems. In addition, an enhanced
uncertainty measure and the selection of specific features of PGFs
are proposed for our active learning algorithm. Comparative
experiment results indicate that the proposed method effectively
improves the performance of the PGF retrieval system and
reduces the burdensome annotation workload.

I. INTRODUCTION

In the field of mathematics education [1], graph-based
document retrieval is attracting more attention than traditional
keyword-based retrieval with substantial electronic documents.
In fact, graph-based document retrieval has gradually become
a topic of concern in a number of domains, such as in-
structional figures, architectural drawings, circuit diagrams,
engineering designs, chemical formulas, business charts and
trademarks, among others. However, the burdensome dataset
annotation is an obstacle to the performance improvement
of most machine learning-based algorithms in these retrieval
systems. Consequently, the means to select the effectual data
to be labeled for training has become a critical problem.
Plane geometry figures (PGFs) are very important compo-
nents of mathematics documents, as shown in Figure 1, the
retrieval of PGFs is an emerging non-text-based information
system in the mathematics education field. In this paper,
we focus on PGF retrieval and propose an active learning-
based frame to elaborately select candidate PGFs for training
the classifiers in our PGF retrieval system. Several methods
have been proposed to retrieve geometric contents directly
via PGFs rather than traditional keywords. In these retrieval
systems, shape features are adopted to achieve highly accurate
search results. However, finding distinguishable features and
efficient classifiers depends on exhaustive annotation and se-
lection of effectual instances. Manually constructing a training
database is an arduous task; it even results in a formidable
obstacle for further research. To obtain a desired training
dataset via active learning model, we are faced with at least

Fig. 1. Some examples of PGFs in a geometry textbook (Mathematics in
Action, Copyright c©1997-2015 Pearson Education Asia Limited).

three challenges: 1) The annotation of PGFs involves several
aspects for consideration, including the dominant elements,
graph structure, educational purposes, and related knowledge
points. 2) The limited types of geometry elements, such as
triangles, rectangles, and circles, result in a highly similar
PGF for human visual perception. Selecting the proper label
for these almost indistinguishable PGFs requires deliberation.
3) Relatively compact PGF structures, which involve various
complicated spatial relationships among geometric elements,
present deep-seated obstacles to the development of effective
classification methods for instance selection.

Our approach is based on an active learning-based model
combining with multi-label classification. An enhanced un-
certainty measure and the selection of specific features of
PGFs are proposed for our active learning algorithm. A multi-
class hierarchical label system rather than a simple label
set is adopted for multi-label classification. The experiments
demonstrate that the high-quality examples obtained with the
proposed approach significantly improve the efficiency of
training classifiers with relatively few annotations.

The rest of this paper is organized as follows: Section
2 discusses existing methods of PGF retrieval and active
learning. Section 3 introduces the framework of the proposed
approach. Section 4 describes the active learning-based selec-
tion algorithm in particular. Section 5 presents our experiments
and evaluation results. Section 6 concludes this paper.
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II. RELATED WORK

A. Shape-based Image Retrieval

Shape-based image retrieval has gradually attracted consid-
erable attention from many fields, such as electronic circuits
[2], floor plans [3], trademarks [4], symbols [5], sketch [6],
and document classification [7]. The graph recognition and
retrieval problem involve different shape descriptors based on
skeleton, boundary, local region, or whole image. Shape de-
scription techniques generally are categorized into two groups
[8]: contour-based [9] and region-based [10] shape descriptors,
which represent shapes based either on interior region or on
boundary. Several symbol retrieval systems are similar to PGF
retrieval. However, these symbol retrieval methods ignore the
information of basic primitives.

The PGF retrieval is a very efficient approach to search
related contents in the field of mathematics education. [11]
proposes a method to extract rectangles, parallelograms, and
trapezoids in PGFs. A PGF retrieval method based on bag
of shapes is described in [12]. Seo et al. [13] present a
method for diagram understanding method that identifies the
visual elements in a diagram while maximizing the agreement
between textual and visual data. Some techniques are available
for the detection of individual geometric shapes, including
triangle, rectangle, and circle. Most triangle detection methods
are applied in traffic sign detection [14]. Circles detectors [15]
are used for natural images and document graphs. Rectan-
gle detection methods are generally primitive-based [16] or
Hough/Radon transform-based techniques [17]. However, the
lack of spatial relation between basic primitives is common
among these methods.

B. Active Learning

Settles [18] provides a general introduction to active learn-
ing and a review of several active learning algorithms. Tong
and Koller [19] propose an active learning algorithm, called
SIMPLE, with SVMs, which uses the current SVM classifier
to query the instance closest to the decision hyperplane (in
kernel space). Zhang et al. [20] propose a novel online semi-
supervised active learning framework for object classification
in traffic scene surveillance, which combines the online, active,
and semi-supervised learning. An active learning method [21]
automatically balances between the exploitation and the ex-
ploration trade-off, and measures the effect of a new example
on the current model by deriving model changes of Gaussian
process models in closed form. Liang and Grauman [22]
explore active learning strategies for training relative attribute-
ranking functions and introduces a novel criterion that requests
a partial ordering for a set of examples. These methods
mainly adopt uncertainty sampling as active learning strategy
to choose the instance with the most uncertainty to label.
Although this strategy works well in many conditions, it only
focuses on the informativeness of a candidate instance over
the current classifier and ignores the relationship between the
candidate instance and the remaining unlabeled instances.

Fig. 2. The proposed framework for PGF retrieval system.

III. FRAMEWORK OF THE PGF RETRIEVAL

As shown in Figure 2, the proposed model mainly consists
of two modules, namely, classification and matching. The clas-
sification of PGFs involves preprocessing, feature extraction,
and multi-label training of a classifier. An effective multi-
label learning method and supporting features are explored
and adopted. The model is trained with ground truth and
then used to assign suitable labels automatically for all the
PGFs in the database offline. For a query PGF, through online
prediction of its labels, the relative candidate PGFs can be
filtered according to at least one common label shared by
the PGFs based on the multi-label classification results. To
quickly respond to the PGF query in the first workflow, the
PGF matching is performed. PGFs are retrieved among the
candidate PGFs rather than in the entire database. Elaborate
features are used to accurately compare the query PGF and
every candidate PGF. These various features are extracted by
different descriptors, and all these descriptors are represented
as a unified form of vectors. The differences of the feature
vectors are calculated using cosine similarity. Additional de-
tails about the classification part of our system can be found
in [23].

In PGF retrieval fields, a large quantity of unlabeled data
exists. If we manually construct a training database, then the
annotation task can be arduous or even impossible for further
research. Active learning is helpful to select the most repre-
sentative or informative unlabeled examples for labeling and
training. Therefore, in our improved system, an active learning
model is adopted to automatically obtain additional effectual
training data for classification. Several special problems should
be considered when we combine active learning with the
PGFs, including the selections of sample uncertainty measures,
batch selection strategies, and domain-specific factors.
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IV. ACTIVE LEARNING-BASED MODEL

A. Feature Selection of Active Learning

In order to analyze PGFs, following features need to be
considered: basic geometric primitive feature, dual-primitive
structure binary feature, main primitive feature, global feature,
boundary feature, and Zernike moments feature. Some of them
are firstly introduced in [12], and global feature, boundary
feature, and Zernike moments feature are adopted in the multi-
label classification [23].

We select basic geometric primitive feature (FVprimitive),
dual-primitive structure binary feature (FVstructure), and
boundary feature (FVboundary) as the active learning features
according to their characteristics in describing PGFs, which
are explained as following:

• A PGF is composed of several basic geometric prim-
itives, including triangles, circles, rectangles, parallel-
ogram, trapezoid, line segments, and arcs, denoted as
{S1, S2, . . . , Sk}. In our work, the basic geometric prim-
itives are the most fundamental elements; they reveal
the intrinsic properties of PGFs. Therefore, they can be
used to effectively distinguish between PGFs and other
geometric figures. FVprimitive is built in term frequency-
inverse document frequency form:

FVprimitive(i, j) = tf(i, j) ∗ idf(j)

=
n(i, j)∑
k n(i, k)

∗ log( N

df(j)
)

(1)

where one PGF is a document, and each primitive Sj is a
term. For an image Ii, N is the total number of I, n(i, j)
is the number of term Sj in Ii, and df(j) is the number
of images that contain term Sj .

• The strong spatial correlation of the three main shape
types (i.e., triangle, circle, and rectangle) may be over-
lapping or tangent (inside, outside), including sharing
ending points. Based on our previous work [12], 41
strong-correlated compound shapes are selected as the
dual-primitive structures, as shown in Figure 3. The dual-

Fig. 3. Local structure samples.

primitive structure binary feature (FVstructure) is built as
their frequency histogram (scaled to 0∼1).

• The boundary of one PGF image is extracted by using
the envelope extraction method [24] and converted into
a curvature description. All curvatures are then aligned
from the curvature peak index bin and then scaled into
the longest curvature length. Besides, we use three other
curvature metrics: mean, standard deviation, and peak
number. And the boundary features are clustered, the
cluster number is then recorded as a binary feature. The
boundary feature is expressed as

FVboundary =
[
curvature,mean, std,

peakNum, clusterNum
] (2)

B. Active Learning Algorithm

An active learner is established based on adaptive active
learning, as shown in Figure 4. In this model,we adopt the
similar approach used in [25] that combines a most uncertainty
measure and an information density measure together. Com-
pared to those methods mentioned in Section 2, the proposed
method can select the candidate instance that is not only
most uncertain to classify based on the current classifier, but
also very informative about the remaining unlabeled instances.
Some definitions we used are listed as following:

Fig. 4. Workflow of our active learning-based selection procedure.

• ALLS. The set of labeled instances already known to an
active learner.

• ALUS. The set of unlabeled instances where an active
learner queries the classification of an instance.

• ALUSx. The set of unlabeled instances after removing an
instance x from ALUS, such that ALUSx = ALUS −
{x}.

• ALSS. The set of instances, labeled with label “1”, that
an active learner recommends.

• LS. The label set and LS = {±1}; for y ∈ LS, y = 1
means that an image is a suitable PGF with enough
uncertainty, and y = −1 indicates that it is an unfit
or extraordinary geometric figure, such as an analytic
geometric figure.

• θALLS . The classification model trained over ALLS.
• f . The uncertainty measure. It is defined as the condi-

tional entropy of the label variable Y given the candidate
instance x in probabilistic classification models:
f(x) = H(Y |x, θALLS)

= −
∑
y∈LS

P (y|x, θALLS) logP (y|x, θALLS) (3)
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• d. The information density measure. It is defined as
the mutual information between the candidate instance
and the remaining unlabeled instances. For a candidate
instance x ∈ ALUS, the information density measure,
based on the mutual information, is defined as

d(x) = I(x,ALUSx) = H(x)−H(x|ALUSx) (4)
where the entropy terms are computed in a Gaussian Pro-
cess framework with multivariate Gaussian distributions.
The Gaussian kernel function is adopted

k(x, x′) = exp
(
− ||x− x

′||2

τ2

)
(5)

and σ2
x = k(x, x). Then the entropy term and the

conditional entropy term

H(x) =
1

2
ln(2πeσ2

x) (6)

H(x|ALUSx) =
1

2
ln(2πeσ2

x|ALUSx
) (7)

The information density measure defined in Equation 4
is computed by

d(x) =
1

2
ln
( σ2

x

σ2
x|ALUSx

)
(8)

• hβ . The adaptive combination of the uncertainty measure
and the information density measure

hβ(x) = f(x)βd(x)1−β (9)
where 0 ≤ β ≤ 1 denotes a tradeoff controlling parameter
over the two terms. The algorithm adaptively uses the β
value from a set of pre-defined candidate values, such
as B = [0.1, 0.2, . . . , 0.9, 1]. For each different β value
of B, it can select one instance to compose a set S.
Then we try to select the best β value by minimizing the
expected classification error on the unlabeled instances,
which means selecting the most informative instance from
S.

• B. The tradeoff controlling parameter β candidate values
set.

• S. The instances that are selected with the corresponding
β values of B.

The main steps of the algorithm are listed as the following:
1. Initialize ALLS by certain labeled instances with a positive

or negative label (±1), which are selected according to
manual annotation results. And ALUS is initialized with
unlabeled instances. B = [0.1, 0.2, . . . , 1];

2. At the start of each trial, the active learner already holds a
probabilistic classifier θALLS that is trained using features
(FVprimitive, FVstructure, FVboundary) and labels of the
current training set ALLS;

3. Consider each unlabeled instance x ∈ ALUS:
(1) calculate f(x) according to Equation 3;
(2) calculate d(x) according to Equation 4;
(3) calculate hβ(x) with different β ∈ B according to

Equation 9.
4. Initialize S as an empty set;
5. Consider each β ∈ B:

(1) select an instance x = argmaxx∈ALUS hβ(x);

(2) add x into S, S = S ∪ {x}.
6. Consider each x ∈ S, try each possible label, y ∈ LS, with

probability P (y|x, θALLS), and add the instance-label pair
(x, y) to the training set ALLS,

ALLS+ = ALLS ∪ {(x, y)} (10)
(1) re-train a new classifier θALLS+ over ALLS+;
(2) measure the prediction loss of the new classifier on

all unlabeled instances. Calculate the expected loss of
the instance x as a weighted sum of the prediction
loss obtained using all possible labels y under the
distribution P (y|x, θALLS);

(3) select the instance x∗ from S according to
x∗ = argmax

x∈S

∑
y∈LS

P (y|x, θALLS)( ∑
x∈ALUS

(
1− P (ŷ|x, θALLS+)

))
(11)

where ŷ is the predicted label for instance x.
7. The instance x∗ is chosen as the recommended instance;
8. We label the instance x∗ with a label y∗ (±1). Then,

(x∗, y∗) is added to ALLS, and x∗ is removed from
ALUS. If y∗ = 1, then x∗ is added to ALSS. If
|ALSS| < M (a threshold), then the procedure iterates
to step 2; otherwise the procedure exits.

V. EXPERIMENT

Because no authorized database for PGF evaluation is
available, we have established two PGF databases, PKU-PGF-
A and PKU-PGF-B. PKU-PGF-A contains 267 labeled PGFs
extracted from digital PDF documents. The size ranges from
60 × 96 to 400 × 96, as shown in Figure 5(a). PKU-PGF-B
contains 1,030 unlabeled images collected from math-learning
websites. Apart from normal PGFs, it also includes several
special geometric figures, as shown in Figure 5(b).

To demonstrate the performance of our active learning-
based method, we first compare the predictive results based
on two different training sets, ALSS (images selected by the
active learner from PKU-PGF-B) and RSS (images selected
randomly from PKU-PGF-B), in the multi-label classification
experiment with Mulan [26]. Then, we evaluate PGF retrieval
quality, namely, precision and mean average precision (MAP)
against recall between ALSS and RSS. Lastly, the annotation
workload reduction experiment is conducted.

Our experiments are conducted on a computer with a
3.2GHz Intel Core i5 CPU and a 16 GB memory using
MATLAB R2014b and Eclipse.

(a) (b)

Fig. 5. Some examples in PKU-PGF-A and PKU-PGF-B.
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TABLE I
COMPARISON RESULTS OF PREDICTIVE PERFORMANCE BASED ON ALSS VS. RSS

Example-Based Label-Based
Recall F1 Accuracy Micro-Recall Micro-F1 Macro-Precision Macro-Recall Macro-F1

RSS50 0.5617 0.4508 0.3590 0.6108 0.5259 0.4398 0.5025 0.4241
ALSS50 0.5658 0.4885 0.4081 0.5918 0.5297 0.4489 0.5805 0.4720
RSS100 0.6108 0.4724 0.3745 0.6614 0.5641 0.4805 0.5752 0.4651
ALSS100 0.7050 0.5307 0.4196 0.7532 0.5554 0.4724 0.7188 0.4768
RSS200 0.4608 0.4908 0.4175 0.4842 0.5730 0.4818 0.3528 0.3792
ALSS200 0.6446 0.5460 0.4492 0.6804 0.5636 0.4576 0.6378 0.4687
RSS300 0.3933 0.4152 0.3488 0.4114 0.5179 0.3782 0.3102 0.3337
ALSS300 0.7296 0.5441 0.4354 0.7753 0.5652 0.5424 0.7435 0.5001
RSS400 0.3700 0.4367 0.3650 0.3829 0.5193 0.3226 0.2368 0.2563
ALSS400 0.6383 0.5440 0.4533 0.6646 0.5512 0.3661 0.6202 0.4364
RSSave 0.4793 0.4532 0.3730 0.5101 0.5400 0.4206 0.3955 0.3717
ALSSave 0.6567 0.5307 0.4331 0.6931 0.5530 0.4575 0.6602 0.4708

(a) (b) (c)

Fig. 6. Precision and MAP curve: (a) ALSS300 vs. RSS300; (b) ALSS400 vs. RSS400; (c) ALSS400 vs. ALL1030.

A. Multi-label Classification Experiment

1) Multi-label Set and Evaluation Metrics: We consider the
dominant primitives and their spatial relationship in PGFs as
labels to form the multi-label set, MLS = {circle, triangle,
quadrangle, others, intersection relation, inclusion relation}.
Different classes are generated by diverse label values. Then,
two types of metrics are adopted to evaluate the multi-
label classification, namely, example-based metrics and label-
based metrics, which include recall, precision, F measure, etc.
Specific formulas can be found in [27].

2) Multi-label Learning Results: We separately set ALSS
and RSS as a training set to compare their multi-label
classification predictive performance on the test set T ⊂ PKU-
PGF-A. In our experiment,
• |ALSS50| = 50, |ALSS100| = 100, |ALSS200| = 200,
|ALSS300| = 300, |ALSS400| = 400;

• |RSS50| = 50, |RSS100| = 100, |RSS200| = 200,
|RSS300| = 300, |RSS400| = 400;

• |T | = 200.
The results are shown in Table I, ALSS achieves superior
predictive performance than RSS under all the considered
metrics according to the overall results and average values,
ALSSave and RSSave. Especially, the predictive performance
of ALSS is obviously superior than RSS on each considered
metric with scales 300 and 400. The metric values of ALSS50,
ALSS100, and ALSS200 are not very stable, which indicates
that their scales are insufficient to stably predict the multi-label

classification of T . We can find that RSS has better results
than ALSS with the scales 100 and 200 in metrics, Micro-F
measure and Macro-Precision. It may be caused by the results,
small amounts of positives (true positives and false positives)
and high proportion of true positives in positives, that RSS
predicts. This results in higher Macro-Precision of RSS than
ALSS, which also has impact on Micro-F measure. However,
ALSS100 and ALSS200 still outperform RSS on the same
scale in most metrics, such as recall, F measure, accuracy,
Micro-recall, Macro-recall, and Macro-F measure. And given
that the multi-label classification results work as a filter to
obtain PGF candidates, which we have mentioned in Section
3, we pay more attention on recall, Micro-recall, and Macro-
recall metrics. The predictive performances under these three
metrics show that ALSS outperforms RSS. As for RSS, its
predictive metric values on T are unstable in spite of varying
scale. Therefore, ALSS is obviously more effective than RSS
as the training set.

B. PGF Retrieval Experiment

On the basis of the above multi-label classification results,
PGFs are retrieved among candidate PGFs rather than in the
entire database for a query PGF. For PGF matching, basic
geometric primitive feature, dual-primitive structure binary
feature, main primitive feature, and global feature are used
to form the feature vectors of PGFs. ALSS300 and ALSS400,
which have stable predictive performance, are separately se-
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lected as the training set to compare PGF retrieval quality
with RSS on the same scale over the test set T , as we have
collected the ground-truth similarity scores for PKU-PGF-A.
As shown in Figure 6(a) and 6(b), the precision (red line) and
MAP (blue line) curve against recall of ALSS (solid line)
both outperform RSS (dash line) with the scales 300 and 400.
These retrieval results exhibit the competitive performance of
ALSS, which implies that a large number of relevant PGFs
have been ranked before irrelevant ones.

C. Annotation Workload Reduction Experiment

Further more, we labeled all 1030 unlabeled images in
PKU-PGF-B, thus getting a new training set, ALL1030,
|ALL1030| = 1030. We compare PGF retrieval quality be-
tween ALL1030 and ALSS400. According to the results shown
in Figure 6(c), we can find that the retrieval performance
of ALSS400 (solid line) is better than ALL1030’s (dash
line). Therefore, the active learning method with 400 labeled
instances obtains better PGF retrieval quality than the perfor-
mance of the original classifier with 1030 labeled instances.
It is obvious that our active learning-based frame contributes
to reduce the annotation workload.

According to all the above experiment results, the active
learning-based selection procedure effectively improves the
selection of training instances for multi-label learning and PGF
retrieval. Moreover, this procedure practically helps reduce the
annotation workload. And it is an effective way to build PGF
databases for training classifiers.

VI. CONCLUSION AND FUTURE WORK

We focus on the approach combining active learning and
multi-label classification to improve the efficiency of PGF
retrieval with a feature descriptor and enhance the selection of
training instances simultaneously. Besides, it contributes to re-
duce the burdensome work of annotation. Although the current
database is limited, the comparative experiment continues to
illustrate the effectiveness of the proposed model. This method
also provides an effective means to extend graph databases.
In the future, we will explore more different methods of
uncertainty measure for unlabeled samples to improve the
function and performance of active learning.
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