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Abstract—In this paper, we propose a novel approach to
creating clean line drawing from a scribbled sketch automatically.
The main problem is determining which strokes of a scribbled
sketch should be merged. We use a machine learning approach
to solve this problem. Our method can automatically generate
training data by comparing scribbled sketches with manually
drawn line drawings without using annotations. In order to verify
the generated training data, we merged strokes and created clean
line drawings in accordance with the generated training data.
In addition, we trained a support vector machine to estimate
the pairs of strokes to be merged. Further, we verified that our
method can create line drawings using this estimator.

I. INTRODUCTION

Illustrations are widely used visual media that are de-
signed to attract viewers; examples include creatures in games
(Fig. 1a) and product mascots (Fig. 1b). Despite the high
demand for commercial applications, the development of il-
lustrations takes time because they are typically drawn by
hand. Therefore, automating some of the steps involved in the
drawing processes can reduce the burden on illustrators and
help them to focus on developing more creative processes.

Drawing an illustration consists of three steps: rough sketch-
ing, line drawing, and colorization (Fig. 2). First, an illustrator
briefly draws strokes to determine the position and shape of
objects (Fig. 2a). Strokes in the rough sketch (rough strokes)
are roughly drawn and contain visually unsuitable features
such as broken and overtraced strokes (Fig. 3a, 3b). Therefore,
rough strokes cannot be directly used in the finished work.
Second, strokes without unsuitable features are drawn based on
the rough strokes (Fig. 2b). Such line strokes are used to depict
the final illustration. Finally, the illustrator applies colors,
creating effects such as highlights and shadows (Fig. 2c).

Of the three steps above, we focus on generating a line
drawing from a rough sketch. This process is accomplished
by properly merging unsuitable strokes such as broken strokes
and overtraced strokes (Fig. 3a, 3b) into a single line (Fig. 3c¢).

(b) Product mascot (Hatsune
Miku, © Crypton Future Media,
Inc. 2007, licensed under a CC
BY-NC [2])

(a) Creature from game [1]

Fig. 1: Examples of illustrations.
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(a) rough sketch (b) line drawing (c) colorized image

Fig. 2: Three processes involved in drawing an illustration [3].
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(a) broken (b) overtraced (c) merged stroke

Fig. 3: Unsuitable features. (a) Broken: a stroke is separated
into several short strokes along the original stroke. (b) Over-
traced: several short, rough strokes construct a line stroke. (c)
Merged stroke: gaps and overlapped strokes are merged into
a single stroke in the line drawing.

The main approach is to use geometric features [4], [5], but
these methods are sensitive to the parameters used (threshold
values). It is difficult to determine the appropriate parameters
for each rough sketch, e.g., some parameters that work well for
rough sketches drawn by an illustrator may not work well for
others. Another approach is to use machine learning [6], but
this method requires manually annotated strokes for training,
which are tedious and time consuming to construct.

In this paper, we propose a novel approach to cluster
rough strokes and create a line drawing automatically. We
use machine learning similar to [6]; however, our method
can be trained without the use of manual annotations. Our
method has two phases, namely training and simplification
(Fig. 4). The training phase consists of two steps (Fig. 4a).
First, given combinations of a rough sketch and a line drawing
(Fig. 5), we detect correspondences from a rough sketch and
a line drawing, and we classify each pair of rough strokes
automatically (Fig. 4al). Second, we train an estimator, which
returns the connection type (class) from a pair of rough strokes
(Fig. 4a2). The simplification phase consists of three steps
(Fig. 4b) Given an input rough sketch, we first obtain two
strokes from the rough sketch, and predict how to merge
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Fig. 4: Proposed method

(a) rough sketch

(b) line drawing

Fig. 5: Combination of a rough sketch and a line drawing [7].

the strokes using the trained estimator (Fig. 4bl). Then, we
solve contradictions (defined in Sec. III-E) in the predicted
results (Fig. 4b2). Finally, we create a line drawing by merging
rough strokes according to the predicted results (Fig. 4b3).
The advantage of our approach is that we do not require any
manual tuning steps (parameters, annotations, etc.) because
we automatically train those steps using pairs. However, the
disadvantage is that we must collect combinations of a rough
sketch and a line drawing for the training step.

II. RELATED WORKS

Barla et al. [4] used e-lines for grouping strokes. A e-line
is defined as a stroke that has no self-intersection. In their
study, they group strokes if there exists a e-line that covers all
strokes in the group in the range of £/2.

Liu et al. [8] used closures to group strokes, where a
closure is defined as an area surrounded by strokes. Using
three geometric features of stroke pairs, namely proximity,
continuity, and parallelism, they determine whether a stroke
pair should be merged. To improve the accuracy, they change
the threshold value according to the size of the closure.

Orbay et al. [6] used machine learning to group strokes.
They predict the connectivity of stroke pairs using a neural

/
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(a) input

(b) “Broken” (c) “Overtraced” (d) “Independent”

Fig. 6: Classes for stroke pairs.

network. First, they compute three features, namely the re-
moteness, misalignment, and discontinuity for each pair of
strokes. Second, they train a neural network, where the inputs
are the three aforementioned stroke pair features, and the out-
put is the connectivity of the pair. Training data are manually
clustered sketches. In this step, features are normalized by the
length (the number of strokes) of the shortest path between
strokes. This normalization reduces the distance between the
same cluster’s strokes over the given distance. Finally, they
compute features for stroke pairs of unclustered sketches, and
cluster them using the trained neural network.

III. PROPOSED METHOD

In Sec. III-A, we explain the data format of the input illus-
trations and preprocessing, while in Sec. III-B, we define the
classes of stroke pairs. In Sec. III-C and Sec. III-D, we show
how to train a class estimator from pairs of rough sketches
and line drawings (Fig. 4a). In Sec. III-E and Sec. III-F, we
show how to simplify a rough sketch using the trained class
estimator and obtain a line drawing (Fig. 4b).

A. Data Format

In our proposed method, we assume that both rough
sketches and line drawings are vector graphics; this means that
each stroke in the input images is a sequence of 2D points. If
the input images are raster graphics, the images are vectorized
in advance (e.g. by [9]). In this study, we used vector graphics
consisting of cubic Bezier curves. We converted a cubic Bezier
curve to a sequence of 2D points by sampling points with a
constant interval (1 px).

In addition, we assume that each stroke is smooth. If a stroke
has n bending points, we divide the stroke into n + 1 short
strokes. A bending point is defined as the point at which the
curvature of the stroke exceeds a constant threshold, which is
fixed as 1.0 in this study.

B. Stroke Pairs Class

To simplify a rough sketch, we focus each stroke pair
(two rough strokes) in the input rough sketch. Given two
input rough strokes, we define three classes, namely “Broken,”
“Overtraced,” and “Independent,” as shown in Fig. 6. “Broken”
means that the two strokes should be connected as a single
stroke by filling the gap (Fig. 6b). “Overtraced” means that
the two strokes should be merged by mixing overlapping
sections smoothly (Fig. 6¢). “Independent” means that the two
strokes should not be connected (Fig. 6d). As discussed later in
Sec. III-D, we train an estimator that takes two rough strokes
as inputs and predicts one of the three classes.
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Fig. 7: Corresponding stroke and points. Dash: rough stroke.
Solid: line stroke. Blue: focused rough stroke (ith rough
stroke). Red: corresponding stroke ((i)th line stroke) / cor-
responding points (g-"), where n € N (4))

C. Generating Training Data

Next, we explain how to create training data correspon-
dences (Fig. 4al). Given a line drawing and a rough sketch
without any manual annotations, we find the correspondences
of the line strokes and rough strokes. We denote the ith rough
stroke as a sequence of 2D points: {p?, € R*jm =1,2,...}.
In the same manner, we define the uth line stroke as: {q} €
R2|n = 1,2,...}. First, we find a corresponding stroke for
each rough stroke (Fig. 7a). A stroke corresponding to the
ith rough stroke is defined as a line stroke that is the nearest
to the ith rough stroke. Therefore, if the #(i)th line stroke
corresponds to the ith rough stroke, @(7) is defined as:

u(i) = argmin d(i, u) (1)
d(i,w) is the distance from the ith rough stroke to the uth line
stroke, which is defined as:

d(i,u) =) _min|p;, — g o)

By creating a distance map d*(p) from the wuth line stroke, we
can compute d(i,u) efficiently [10]. We need to compute the
distance map only once for each line stroke, because d“(p)
does not depend on rough strokes. In addition, we use the K-
nearest heuristic in order to reduce the number of line strokes
to compute d(i,u). We compute the distance between the line
strokes and the centers of mass of the rough strokes. We use
the K -nearest line strokes to compute d(i,u). In this study,
we use K = 5.

Second, we compute the point-wise correspondences
(Fig. 7b). For each rough stroke, the corresponding line stroke
is found using Eq. 1. Then, for each point in the rough stroke,
we find the corresponding points from the corresponding line
stroke. Considering the ith rough stroke, the identifiers of the
corresponding points, N (7), are defined as:

p, — g

N(i) = {argmin ‘ m = 1,2,...} 3)

Finally, we classify the rough stroke pairs into three classes
(“Broken,” “Overtraced,” and “Independent”). In order to
reduce the number of pairs, we use pairs whose distance is
less than a constant value d, which is fixed as 25 in this study.

If two rough strokes are placed far apart, it is likely that
they correspond to different line strokes. We classify a stroke
pair (i, 7) according to the corresponding stroke (u(i),u(j))
and identifiers (N (2), N'(j)). If the two strokes correspond to
different line strokes (@(i) # @(j)), we classify the pair as
“Independent” (Fig. 8a). Otherwise, if the points correspond-
ing to the two strokes do not intersect (N (i) NN (5) = ¢), we
classify the pair as “Broken” (Fig. 8b). If the points intersect
(N(i) N N(j§) # ¢), we classify the pair as “Overtraced”
(Fig. 8c).

D. Training the Estimator

In the previous process, we created training data, which is
a set of rough stroke pairs with classes. We train an estimator
that predicts a class from a pair of rough strokes (Fig. 4a2).
We employed a standard support vector machine (SVM) [11]
with a radial basis function (RBF) kernel.

The input for the SVM is a 32-dimensional feature vector,
which is computed from the two rough strokes as follows.
First, to make the vector position-, rotation-, and scale-
invariant, we regularize the coordinates of each point of the
rough strokes. Let us define g = (g,,9,)" as the center of
mass of the longer stroke, and g’ = (g, g,;)T for the shorter
stroke. Each point p in the stroke is mapped to p, which is
denoted as:

p= %_%)@m.m>

lg =g’ \—(95 —9y) 92— 9

Second, we select eight points from each stroke at even
intervals. Finally, the z and y coordinates of the 16 selected
points are concatenated in order to form a 32-dimensional
vector.

E. Prediction

First, the class of each pair of rough strokes is predicted by
the estimator (Fig. 4b1). There may exist some contradictions
among the outputs of the estimator. A contradiction is defined
as a state in which it is not possible to satisfy all of the
predicted classes. For example, if we predict classes for three
stroke pairs, (A4, B), (B,C), and (C, A), where the results
are “Broken,” “Overtraced,” and “Independent,” respectively
(Fig. 9a), these results have a contradiction. If we merge A,
B, and C into a single line stroke, the stroke ({A, B,C}) is
in conflict with the “Independent” class of (C, A). (Fig. 9b).
If we keep C' as a single stroke, and merge only A and B, the
resultant ({A, B}, {C?}) is in conflict with the “Overtraced”
class of (B, C) (Fig. 9¢).

We solve these contradictions before the merging step
(Fig. 4b2). In order to solve contradictions, we use a greedy
method to determine the prediction results that should be
ignored. We divide rough strokes (1,2,...,IN) into sets
(S1,82,...) that satisfy the predicted results as much as
possible. Note that N is the total number of rough strokes,
and S; is a set of strokes that satisfies | JS; = {1,2,..., N}
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(a) “Independent”

(b) “Broken”

(c) “Overtraced”

Fig. 8: Classification of stroke pairs according to correspondence (left: rough strokes, right: line strokes).
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Fig. 9: Contradiction in the prediction results.

with §; NS = ¢. In order to find such sets, we minimize the
cost I/, which is defined as:

2>

(1,7)€L

> 60 9) (5)

(3,5)EL

where L is a set of stroke pairs predicted to be “Broken” or
“Overtraced,” and £ is a set of stroke pairs predicted to be
“Independent.” §(i, j) returns 1 if two strokes ¢ and j belong
to the same set; it returns 0 otherwise. We minimize E by
performing the following steps.

1) Initialize clusters as S; = {1}, Sa = {2}, , SN =
(V5.
2) Find a pair of clusters (S, that minimize

i S
AE(S;,S;)=1LN (S xS;)|—|L
3) Finish the process if AE(S“S ) >
4) Merge S; and S;.

5) Back to 2).

Finally, we remove the prediction result for each pair (3, j)
such that (i,7) € LA(i,5) =0or (i,5) € LAS(i,5) = 1.

)
0.

F. Merging strokes

After the contradictions are solved, we merge the rough
strokes (Fig. 4b3). First, we merge the stroke pairs that are pre-
dicted to be “Overtraced.” We merge an “Overtraced” pair by
interpolating the overlapping section. For simplicity, we denote

the stroke pair as {p1,po,...,pn} and {p,ps5,..., P }.
The overlapping section is defined as the range [s,?] and

D

pm -
(a)
Fig. 10: Overlapping section
B Ps pm=p: B Ps Pm =Pt
%/ , - o
P =p, Pr " p, Py Pr m
(a) condition 1 (b) condition 2
b1 D1

q 7 / / ) —

p1 Py Pmr =Py Py Py Pm =Py

(c¢) condition 3 (d) condition 4

(e) condition 5

Fig. 11: Examples of undesired candidates (captions show
unsatisfied contradiction).

[s',t'], where s,t € [1,m] and ', ¢’ € [1,m']. The overlapping
section must satisfy the following criteria:

D |s—t|=1|¢ -1

2) Two points of ps,p:,pl,,p} are the end points of
strokes, and the other two points are not the end points.

3) If ps is the end point of a stroke, p’, is not the end
point (¢,t" also have the same relation).

4) Two line segments, ps — p’, and p, — p},, do not cross.

5) Minimize Lo ([lps — pl || + [pe — Pl [])-

Fig. 10 shows overlapping sections that satisfy the above five
conditions. Fig. 11 shows undesired candidates of overlapping
sections. We merge “Overtraced” pairs in ascending order
of |€—L‘|(||pS —pl|| + |lpt — pi||). If the overlapping section
is shorter than any stroke of the stroke pair (Fig. 12a), we
compute new points by mixing two strokes. The mixing
weights are changed according to the square of the distance
from the end points of strokes (Fig. 12b, 12c). The new points
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Fig. 12: Merging the “Overtraced” pair (the overlapping sec-
tion is shorter than any of the two strokes).
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Fig. 13: Merging the “Overtraced” pair (the overlapping sec-

tion is the same as one of the two strokes).
q1,92;- - -,q|s—t|+1 are defined as:

(1 —u)?piys—1 +u’ply oy
(1 —u)?+u?

q; = (6)
where p, and p’, are the end points of strokes, and v is defined
as Iijfl' If the overlapping section is as long as one of the
two strokes (Fig. 13a), we simply remove the shorter stroke
(Fig. 13b).

Second, we merge stroke pairs that are predicted to be
“Broken.” We interpolate the gap between the nearest end
points of strokes with a cubic Bezier curve [12] (Fig. 14).
The cubic Bezier curve b(t) is defined as:

b(t) = (1—t)*p+3t(1—t)’c+3t3(1—t)c' +t3p'(t € [0,1])

where p, ¢, ¢/, p’ are control points. We use the end points of
the strokes as p and p’. Then, we compute ¢ and ¢’ using the
following conditions:

1) ¢— p is parallel to the tangent vector of the stroke at p
¢’ — p’ (the same for p’ and c’).
2) lle=pl =l -pll=3lp—p'I.
Similar to the case with the “Overtraced” pairs, we merge
“Broken” pairs in ascending order of the distance between the
end points of the strokes (||p — p’|)).

IV. EXPERIMENTS

We conducted two experiments: simplification using correct
classes and simplification using predicted classes. The dataset
for the experiments was provided by MUGENUP Inc. [7].
This dataset consists of 10 combinations of a rough sketch
(Fig. 15a) and a line drawing (Fig. 15b). All of the illustrations
are vector images, and were drawn by a professional illustrator.

o—0—0
pol
(a) input (b) interpolation

(c) result

Fig. 14: Merging the “Broken” pair.

(a) rough sketches (b) line drawings

Fig. 15: Dataset [7].

Fig. 16: Results of merging.

A. Simplification using Training Data

In this experiment, we tested both parts of our method,
generating training data and merging strokes. We generated
training data using the combination of a rough sketch and a
line drawing, and we merged the strokes of the same rough
sketch using generated training data. In this experiment, we
skipped two steps: training the estimator (Fig. 4a2) and using
the estimator for prediction (Fig. 4bl). In other words, the
results show how our method would behave if the prediction
step works perfectly. This experiment is useful for separately
evaluating the prediction part and other parts.

Fig. 16 shows the results of merging. Complex regions
such as the eye and hair can be merged properly (Fig. 17).
On the other hand, U-structures such as ovals (Fig. 18a) and
wings (Fig. 18b) were not successfully merged during the
merging process. The U-structures were broken because of
the ambiguity of the overlapping section. Given a U-structure,
there are two candidates for the overlapping section (Fig. 19).
In our method, we always choose pattern « (Fig. 19b), and
we merge all of the strokes. In this manner, the U-structures
are broken. It is difficult to correctly decide between patterns
« and 3, and this remains our future work.
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Fig. 17: Complex regions (left: input, right: result).
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Fig. 18: U-structures (left: input, right: result).
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Fig. 19: Overlapping section of U-structure.
TABLE I: Percentage of pairs removed by solving contradic-

tions step (I, B, and O stand for “Independent,” “Broken,” and
“Overtraced”).

Predicted
1 B, O
Training 1 13.5% | 40.7%
Data B,O | 488% | 153%

B. Simplification using Predicted Classes

In this experiment, we merged strokes under two conditions:
using prediction results before solving contradictions and
using results after solving contradictions. We split the dataset
into nine training combinations and one test combination.
The training data consists of 72076 “Independent” pairs, 8715
“Broken” pairs, and 32692 “Overtraced” pairs.

TABLE I shows the percentage of pairs that were removed
by solving contradictions. The contradiction-solving step re-
moved more incorrect pairs than correct pairs. Fig. 20 shows
the results of the merging step. If we merge the strokes
using the SVM outputs before solving contradictions, most
of the rough strokes are merged, and the shapes of the objects
are significantly changed. After solving contradictions, the
merged pairs were regulated and the shapes of the objects were
retained. On the other hand, we successfully merged strokes
that were used to construct broken strokes or overtraced
strokes in several regions.

V. CONCLUSION

In this study, we proposed a method to convert a rough
sketch into a line drawing using a machine learning ap-

tions

Fig. 20: Merged rough sketch obtained using predicted classes.

proach. Our method has two advantages. First, in the training
phase, our method generates training data automatically from
combinations of a rough sketch and a line drawing. We
evaluated this step using generated training data as the input
of the merging step. In most cases, our method created good
line drawings. Second, after obtaining a prediction using the
estimator, our method solved contradictions by removing a
portion of the predicted classes. We performed tests to verify
that this step was more likely to remove incorrect pairs than
correct pairs, and the line drawings that were created using
the contradiction-solving step were better than those created
without the step.
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