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Abstract—Deriving semantic 3D models of man-made envi-
ronments hitherto has not reached the desired maturity which
makes human interaction obsolete. Man-made environments play
a central role in navigation, city planning, building management
systems, disaster management or augmented reality. They are
characterised by rich geometric and semantic structures. These
cause conceptual problems when learning generic models or when
developing automatic acquisition systems. The problems appear
to be caused by (1) the incoherence of the models for signal
analysis, (2) the type of interplay between discrete and continuous
geometric representations, (3) the inefficiency of the interaction
between crisp models, such as partonomies and taxonomies,
and soft models, mostly having a probabilistic nature, and (4)
the vagueness of the used notions in the envisaged application
domains. The paper wants to encourage the development and
learning of generative models, specifically for man-made objects,
to be able to understand, reason about, and explain interpreta-
tions.

I. INTRODUCTION

Deriving semantic 3D models of man-made environments
has gained interest since the beginning of image analysis, see
[1, 2] and the surveys for outdoor and indoor environments
in [3, 4]. Man-made environments play a central role in nav-
igation, city planning, building management systems, disaster
management or augmented reality.

Automatic methods for semantic building reconstruction
hitherto have not reached the desired maturity which makes
human interaction obsolete. In spite of great success in auto-
matically reconstructing the geometry of buildings it appears
that the rich geometric and semantic structures, which char-
acterize man-made objects, slows down progress. The paper
identifies successes and difficulties in using explicit models
for supporting the geometric and semantic reconstruction of
buildings. We want to encourage the development and learning
of generative models, specifically for man-made objects, be
able to understand, reason about, and explain interpretations
of man-made scenes, quite in the spirit of [5].

Based on experiences in our research group, we will discuss
typical tasks which we solved using structural descriptions
(image orientation, building reconstruction, and facade inter-
pretation), and embed the used methods in the stream of
concurrent solutions. We try to identify the attempts to learn
the underlying models and the achievements in object recog-
nition which on one had promise to support future methods
for interpreting images of man-made scenes. However, these
models — in our view — still contain conceptual problems when
learning generative models or when developing automatic
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acquisition systems. The problems appear to be caused by
(1) the incoherence of the models for signal analysis, (2) the
type of interplay between discrete and continuous geometric
representations, (3) the inefficiency of the interaction between
crisp models, such as partonomies and taxonomies, and soft
models, mostly having a probabilistic nature, and (4) the
vagueness of the used notions in the envisaged application
domains. A goal for future research should be to learn building
models, i.e., to learn geometric, structural and semantic models
which help understanding images of man-made scenes, and
to further develop methods to learn these highly structured
models.

We start with experiences with structural descriptions for
solving tasks related to man-made objects.

II. USING STRUCTURAL DESCRIPTIONS

In the following we discuss three basic problems, pose de-
termination, building reconstruction, and image interpretation
in the context of man-made scenes. Pose determination is rep-
resentative for the large class of parameter estimation problems
based on correspondences, where — depending on the number
of available image features — structural descriptions may be
of advantage. Building reconstruction is a representative for
the large class of problems where, besides a large number of
parameters, also the structure of the solution, especially the
number of parameters and possibly the constraints between
the parameters, is not known from the beginning. Finally,
image interpretation aims at a semantic description, thus
above parameters and structure also aims at finding the class
memberships of the objects and possibly the semantic relations
between the objects shown in the images. The discussion of
these tasks is triggered by own research and the solutions
known before and achieved later and gives insight into the
development during the last three decades w.r.t. the used
representations and reasoning methods.

A. Relational Matching using Edges for Pose Determination

Pose estimation requires correspondences between images
and a 3D model, which, when performed automatically, re-
quires adequate matching techniques. Matching a given model
with an image is based on a common representation. Thirty
years ago, due to limited computer power, representations
based on point or line type features dominated. Keypoints were
mainly used for image-to-image matching whereas model-to-
image matching mainly use image edges, even only straight
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edge segments, see e.g., [6, 7] and Fig. 1. The search for
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Fig. 1. Pose estimation based on straight line segments. Left Image edges.
Mid: One of the models given as 3D line segments. Right: Image with
projected model; from [7]. The matching is based on triplets of corresponding
lines, which allow to directly derive the pose parameters, which then are
checked for consistency with the other edges

correspondences was done incrementally, formalized as inter-
pretation tree by [8].

Based on work on the consistent labelling problem [9, 10]
and relation matching [11], we in the late nineteen eighties ex-
plored model-to-image matching for finding buildings (roofs)
in aerial images [12, 13], and more general relational descrip-
tions for pose estimation [14] or map-to-image matching based
on road networks [15, 16], see Fig. 2.

Given a wire frame model of the object and line segments
together with their mutual relations, such as connectivity
or parallelity, the task was to derive the six parameters of
the pose. Matching of the two relational descriptions using
heuristic search (A*) was based on a probabilistic model of the
projection. The matching costs were based on the mutual self-
information I(x;y) = —log(P(x)/P(z|y)).! The goal of the
search was to maximize the sum of the mutual self-information
of all matches and relations. The probabilities were learned
from training data. This simplifies the evaluation of missing
correspondences — often called wild cards in matching — by
setting I(x;y) = 0, since the missing match has no influence.
An example for detecting a road junction in an aerial image
is given in Fig. 2

Fig. 2. Image-to-model matching. Left: Road map as planar graph. Mid:
Search tree for image orientation. Right: Match with aerial image; from [16].
The model has 25 units (junctions, edges) (only the region around the road
intersection), the image has 21 units, the search tree has 52 nodes, determining
the orientation was tried six times, the software was written in POP-11, the
computing time was 227 seconds on a VAX 3200

Progress in pose estimation is based on more informative
features [17] or first estimating viewpoints using a regression
convolutional neural network and then using key points for fine
matching [18]. While both directions do not use an explicit
model of the scene, exploiting a hierarchical object model

IThe mutual self-information I(z;y) € (—o0,c0) depends on the prob-
abilities. The mutual entropy H(w;y) = By, ) (I(z;y)) > 0 is its
expectation and often called mutual information.

for efficient detection [19], see Fig. 3 and generalizations to
articulated objects are indispensable for locating persons in
general pose, see e.g., [20]. Progress is triggered by a 3D
recognition challenge [21].

Fig. 3. Hierarchical model for object detection, including a step for determin-
ing the orientation of the object. Left: Hierarchical model with three layers.
Mid: Given image. Right: Bounding box, class, and projected coarse model;
from [19]

B. Generic Building Models from Multiple Images using Con-
straint Programming

Reconstructing generic building models from images re-
quires an adequate representation of the structure. Structure
refers to the number of building parts, their relations w.r.t.
neighbourhood and geometry, and to constraints between the
parts, especially among parameters of the individual parts. In
a first step the reconstruction only aims at a rich geometric
description, and does not include an interpretation. This may
be fruitful in a later step, see [22].

Early work [6] fixed the structure and only allowed varia-
tions for parameters for parameter. The first work assuming
buildings to be represented as polyhedra is [2, 23]. Explicitely
deriving neighbourhood relations between building parts was
addressed by [24], see Fig. 4.
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Fig. 4. Deriving the topology of a complex building. Left: Aerial image. Mid:
Result of data driven segmentation. Right: Automatically derived symbolic
image description; from [24]

Based on these stimulating results and motivated by the
Avenches building extraction benchmark [25] we addressed
the reconstruction of complex buildings from multiple images,
see [26, 27]. Buildings are assumed to be hierarchically
decomposed, to consist of building parts and its projection
into the image yield corners, each being an aggregates of
a point and its neighbouring edges and faces. The building
parts are parametrized wire frames. The reconstruction method
employees the integration of a data-driven trigger phase and
a model-driven verification phase. In a first step, mutually
oriented images 3D vertices were reconstructed (see Fig.
5), based on keypoints and neighbouring 3D edges in an
prespecified area of interest, see [28, 29]. Based on the 3D ver-
tices, building parts were hypothesized and mutual topological
and geometrical constraints were exploited to reconstruct the
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Fig. 5. 3D reconstruction of complex buildings from multiple images.
Left: Four image sections. Mid left: Reconstructed 3D corners. Mid right:
Triggered building parts: five terminals, one connector with three faces (be-
longing to the blue junction). Right: Reconstructed building (roof) fulfilling
topological and geometrical constraints; from [27]

complete building. The method was implemented as constraint
satisfaction program (in constraint logic programming, see
[30, 31]), and allowed for occlusions (wild cards, see above)
and incrementally for the prediction of new corners. The
verification step included a prior on the different buildings
and viewing directions, which exploited the shortest coding of
the expected feature adjacency graph, see [32, 33].

Generating highly structured city models requires a quite
generic building model, with a variable number of parts. The
models we used are limited. They use restricted prespecified
parametrized building parts, and thus cannot be used for
larger areas. Though constraint logic programming appeared
to be useful, the statistical knowledge only influenced the
heuristics of the search and in a prespecified manner was
used in the final evaluation. The parts need to be learned
together with their relations and the reconstruction should
exploit the learned statistics: Neither was the likelihood of
the extracted features exploited as e.g., in [34], nor was any
knowledge about illumination (sun angle, albedo) used. This
would allow an integration of forward and backward modelling
using computer graphics, see the example in Fig. 3.

There is a dichotomy: whether it is more favourable to aim
at less simple parts with complex relations or to try to find
more expressive complex parts with more restricted relations,
with the inherent question how to deal with curved surfaces
then. The extreme, representing the surface as mesh up to now
appears to be the most flexible and successful approach. This
circumvents the problem of structuring, which then needs to
be addressed in a second step, see the next section.

Later work on building reconstruction exploited regularities
of roof tops based on the straight skeleton [35] or aimed at
watertight reconstruction for outdoor [36] or indoor scenes
from LiDAR data [37]. We can observe intensive research
in reconstructing large city areas based on terrestrial and
aerial images using classical pipelines, which are developed in
the context of reconstructing scenes from publically available
images. This research is motivated by the difficulty in defining
building parts as basic units, which are useful for larger
areas, the high costs for directly acquiring terrestrial and aerial
LiDAR data, and the need to provide textured scenes and hence
avoids semantic structural descriptions; for pose estimation
techniques for very large number of images see [38, 39]; for
dense surface reconstruction see [40, 41, 42]. 3D surfaces of
high fidelity and sufficient density, however, are an ideal basis

for deriving semantically rich building descriptions, the topic
of the next section.

C. Image Interpretation with Graphical Models

Deriving maps from images (including range images, e.g.,
LiDAR measurements) — a central task of photogrammetric
research — by means of automatic image interpretation tech-
niques still is in a premature state.

We addressed the problem of image interpretation for gen-
erating structured scene descriptions using building facades
as exemplary domain. Facades show a wide variety in parts
(doors, windows, balconies), structure (repetitions, symmetry,
alignment) and appearance (local shadows, reflections, vegeta-
tion). Due to their mostly two-dimensional character modelling
regularities is simpler than when dealing with general 3D
building structures. We investigated two approaches: data
driven semantic image segmentation using graphical models,
especially conditional random fields (CRFs) [43, 44], and
model driven facade reconstruction using marked point pro-
cesses (MPPs) [45, 46]. We only discuss the model-driven
approach.

The model driven reconstruction [45, 46] starts from recti-
fied images, assuming the scale to be known. The model is a
marked point process where facades consist of facade elements
(doors, windows, balconies) represented as rectangles. The
interpretation uses a reversible jump Markov chain Monte
Carlo (rfjMCMC) hypothesis and test paradigm. The geometric
properties of the elements and their spatial relations are learned
from training data. The data term of the energy function
depends on a probabilistic object related classification; see
Fig. 6. For the bottom example, observe the wrong heights of
the windows, the confusion of windows and balconies and the
detection of windows, where the ground truth does not indicate
them; these errors can be explained by a too weak prior on the
neighbourhood relations and the lack of long range interactions
between the facade elements. The empirical evaluation of the
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Fig. 6. Facade reconstruction based on a marked point process for facade
elements (image, ground truth, reconstruction), CPU-time appr. one hour. from
[45]

method leads to confusion tables, which contain estimated
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conditional probabilities, for which confidence intervals can
be given. In order to arrive at reasonable intervals in case the
empirical probability is 0 or 1, a weak Dirichlet prior for the
multinomial distribution of these empirical probabilities can
be used, see Table 1.

TABLE I
Top: Confusion matrix for the facade type ‘city houses’ (with classes,
background, window and balcony); Bottom: Corresponding 99%-confidence
regions in % for the probabilities using a weak Dirichlet prior D(cx) with,
e.g., a = [1,0.01,0.01] for the first row. This yields more reasonable
intervals for cases where the empirical probability is 0 or 1; from [45]

prediction
bg win balc
= bg 0 5 0
2 win | 6 146 0
T bale | 0 3 40
background window balcony

0.11 <16.7 < 65.3
1.03 <393 < 9.04
0.00 < 0.02 < 1.27

34.5 < 83.1 < 99.9
90.9 < 96.1 < 99.0
0.81 < 6.84 < 19.8

0.00 < 0.17 < 9.56
0.00 < 0.01 < 0.36
80.1 < 93.1 < 99.2

We observed the typical strengths and weaknesses of data
driven and model driven methods. Data driven methods are
fast, can adapt locally to the image information and are
versatile. This refers not only to locally connected Markov
random fields (MRF), which, latest since grab-cut [47], pushed
research in semantic segmentation, see the review [48]. This
also holds for (1) fully connected MRFs, e.g., [49, 50, 51],
which, due to their special assumption on the potentials, easily
achieve real time [52] while still being competitive, (2) for
autocontext models, which aim at sequentially gathering new
context by using features of previous interpretations, see e.g.,
[53, 54, 55], but even more also (3) for convolutional neural
networks, e.g., [56, 57, 58]. The techniques have also been
applied successfully to semantically segmenting point clouds,
e.g., [99, 60, 61]. Graphical models may be linked to logical
programming via Markov logical networks [62]. They allow
for a mixture of crisp and soft formulas [63]. They are used for
event and face recognition in image sequence analysis [64, 65],
for text understanding [66], for the interpretation of images of
chemical structures [67], and for scene interpretation [68].

Model driven methods allow to explicitly model long range
constraints. This in a first place holds for models based on
grammars [69] and marked point processes [70]. Grammars
are regularly for city modeling [71, 72, 73, 74, 75] or for
roof extraction [76]. They allow learning, as for indoor scenes
[74], for facades [77, 78, 79], for building layouts [80], or
for architectural styles [81]. In image interpretation marked
point processes are used for building extraction [70], for road
network extraction [82], or more geometric feature extraction
[83]. The generality of these models requires costly sampling
methods for (approximately) finding optimal interpretations,
which, however, allow for parallelization [84].

The integration of data and model driven methods has
always been the key to successful interpretations. Early ap-
proaches, such as [85], used perceptual grouping techniques
for providing candidate regions for object detection, here

detecting buildings in aerial images. The same flavour can
be found in recent work on simultaneous segmentation and
detection [86], where the region proposals are refined after
classification in order to obtain more accurate region bound-
aries.

A probably first integration of Markov logical networks
and stochastical grammars for interpreting facades from point
clouds is described in [87], see Fig. 7. The partonomy of

p1: facade — floorArray

p1: facade — columnArray

ps: facade — facadePart facade

pa: floorArray — groundFloor floorArray

;U

— similar(a, b)

Ai: sameWidth(a,

)
Ao: sameHeight(a, b) — similar(a, b)
A3: sameHorizontalAlignment(a, b) — similar(a, b)
: similar(a. b), similar(b, ¢) — similar(a, c)

Fig. 7. Fagade model with stochastical grammar and Markov logical network.
Upper left: An instance of the grammar. Upper right: Some probabilistic
rules of the grammar. Lower left: Some probabilistic relations of the Markov
logic network; from [87]
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Fig. 8. Interpretation of point clouds of facades with stochastic grammars and
Markov logical networks. Top row: Image of facade. Second row: Point cloud
with holes. Third row: Data driven interpretation of point cloud; windows:
green), doors: pink, facade: white. Last row: Model driven interpretation.
Observe the predictive power of the model; from [87]

the facade is represented in stochastic attributed grammatical
rules, which capture the geometric properties and relations be-
tween the parts, see Fig. 7, upper right. Additional constraints
are represented as predicates, which due to the diversity of
the training data are give a probability. Relations between
these predicates establish the Markov logic network, see Fig.
7, lower left. The interpretation of the point cloud starts
with detecting basic parts of the fagade. Deficiencies such as
missing parts, or wrong alignments are then corrected using
the prior mode, see Fig. 8.
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III. SOME CURRENT PROBLEMS

This section discusses a few problems which regularly
appear when developing methods for automatic interpretation
of man made scenes. They address the choices we have when
modelling the imaging process with the goal to solve the
inverse problem, namely to recover scene information from
images. Specifically, they refer to the model of the image
signal, the relation between discrete and continuous geometry,
the integration of crisp and soft prior knowledge, and the type
of uncertainty of events and their meaning.

A. Physical and Phenomenological Signal Models

The basic steps for image orientation and building recon-
struction, as the examples showed, often use methods for
edge and contour detection, which essentially depend on the
assumed image model. A classical model for the observed
intensities g(4) in an image starts from the photon counts IN ()
at each pixel in k channels: the two k-vectors g(i) oc N ().
This basic assumption leads to several problems, when fol-
lowing classical image processing procedures:

o How to exploit colour theory for non-RGB imagery?
Colour theory models are a phenomenological and model
visual perception of colours and its peculiarities, such
as colour definition or colour constancy, or it models
colour printing. For the majority of images available it
may be useful: however, the analysis of images with
more than three colours, even of hyperspectral images, the
basic physical model appears to be the appropriate start.
Improvements of classifiers using other than the original
RGB signal result from reduced correlations, which are
preferred by models which treat features as uncorrelated.
Models, which take the — in principle arbitrary — distri-
bution of the three colours into account, would not gain
from colour transformations.

« Image intensities, being proportional to photon counts,
are positive values. Representing a spatial intensity g(7)
as a sum of basis functions which are not non-negative, as
when applying Fourier or Wavelet analysis, appears to be
physically meaningless. Nevertheless, spectral methods
have shown to be very successful.

« Since perception is logarithmic, a simple way out would
be to work with the logarithms of the the intensities, as
proposed by [88], who motivates it by the logarithmic
perception of intensity.> The representation of the pos-
itive function then would be similar to the exponential
family of densities, see [89] and the generalisation in
[90], e.g., when assuming a continuous image domain,
fi(z) =log(g(z)) = [ G(u) exp(2mizu)du, where G(u)
is the Fourier transform of g(x).

o The statistical model of the observed intensities, being
proportional to the photon counts, is a Poisson dis-
tribution. Then the variance of the intensity increases
linearly with the intensity, omitting thermal noise and

2[88] in addition allow for affine transformations of the logarithm of the
intensity.

non-linearities of the sensor. Using a simple box-filter
for smoothing implicitly assumes the intensities to have
the same variance in the chosen neighbourhood, which
does not hold. Checking the gradient magnitude for
detecting edges, which is a classification task, should
take the variance, i.e., the intensity level into account.
Alternatively, the signal could be variance normalized,
in the most simple case using a square root point trans-
formation fs(x) = 1/g(x), since the normalized signal
fs(x) then has constant noise variance, see [91, 92].
Many algorithms for keypoint detection could gain from
such a transformation, leading to less keypoints in bright
and more keypoints in dark areas of the image. This type
of transformation also is motivated by the sensitivity of
visual perception to image coding, see [93].
It would be desirable to have an integrating model for intensity
signals in order to allow for efficient statistical, physical and
(spatial) spectral analysis. A scale analysis of the factors
resulting from non-negative signal factorization may play a
guiding role.

B. Discrete and Continuous Geometry

Recovering man-made objects aims at some geometric de-
scription of the object’s boundary, which usually is represented
as an aggregation of continuous surface regions in 3D. The
expected image of such a piecewise surface is a partitioning
of the image region with piecewise boundaries, where not all
intensity edges necessarily need to have two distinct regions
as neighbours. The observed image grid as observed 3D point
clouds are discrete. Hence, the reconstruction of the continu-
ous 3D surface regions and their boundaries consists (1) of the
topologically consistent identification of these boundaries and
(2) the geometrically consistent determination of the form of
the surfaces and the boundaries. An example where boundaries
may not be detectable due to lighting conditions and may lead
to violations of the image model as is given in Fig. 9.

Fig. 9. Topological relations for polyhedra and their ideal and real (extracted)
images. Left: Image of a vertical edge appearing with zero gradient (St.
Michaelis church, Hamburg). The following: Example image and entity
relation diagram with range of multiplicities. Mid left: Polyhedral boundary;
edges (E) may must have two neighbouring regions (R) in 3D. Mid: Ideal
image of polyhedral boundary, admitting zero gradient edges; edges may
have 1 to 2 neighbouring regions in the ideal image. Right: Real image
from partitioning; edges (E) must have two neighbouring regions (R) in
the partitioning. In all cases edges have two neighbouring (end) points (P).
Obviously, the ideal image does not follow the winged-edge representation

The recovery of a consistent boundary description is un-
derconstrained, unless the point density (of the grid or the
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point cloud) is sufficiently high and the boundary lines fulfil
certain regularities, see e.g., the sampling theorem for recov-
ering region boundaries [94], architectural models [95], not
necessarily based on triangular meshes [96, 97].

Moreover, grid-based methods, such as Markov random
fields, do not allow to include prior knowledge about the
straightness of boundaries. Therefore, algorithms for finding
consistent polygonal boundaries mostly contain ad hoc rules,
cannot include statistical prior information about the observed
points, and — due to the occurrence of structural errors — are
difficult to be evaluated.

This touches the integration of bottom-up and top-down
procedures, discussed above: geometric entities, such as poly-
gons or polygon networks, being mid-level structures, require
a statistically coherent modelling of both, their appearance —
for bottom-up hypothesis building — as well as their geomet-
ric and neighbourhood relations — for top-down prediction;
this appears like bi-directional search in the solution space.
Reducing the costs for sampling from large energy models,
such as with MCMC, is described in [98].

C. Crisp and Soft Prior Knowledge

Handling both, crisp and soft prior knowledge, as prior
is essential (not only) for interpreting images of man-made
scenes. Taxonomies and partonomies of objects and spatial
relations, such as parallelity, play a central role in semantic
modelling, see the discussion of the role of semantics for
games in [99]. The uncertainty of observations and models
and the success of probabilistic models is ubiquitous.

It is less clear how those parts of the model, which are
certain (in a probabilistic sense), are handled in a principled
manner: i.e., explicitly. Geometric relations in multi-view
analysis usually are hard coded; algebraic methods, such as
Grobner bases, though a research topic on its own, increasingly
are used to derive solutions, but are not integrated into systems,
where the task is not fixed. Attempts to use algebraic methods
for more generic tasks, have been intensively discussed in the
late eighties, see [100, 101]. Methods which detect regularities
and use them for the enhancement of 2D and 3D objects,
such as in [102, 103], have to face the the inconsistency of
individual hypothesis tests or the explosion of computational
complexity — prior to finding bases for the constraints, which
then can be applied.

Partonomies and taxonomies are increasingly used for
improving categorization [104, 105]. Following [106], the
simultaneous classification of a category and a subcategory
is significantly better than the individual classification. Ex-
plicitly classifying image galleries, i.e., ensembles of images,
into a given taxonomy (derived from Wikipedia) is adressed
by [107]. The images in the data base IMAGENET [108]
are organized in a semantic hierarchy (WordNet), supporting
benchmarking of classifiers which can exploit this knowledge.
Since ImageNet is based on the ontology of WordNet it
would be desirable to have the concepts around ‘building’ for
interpreting outdoor and indoor images included in ImageNet.
Since WordNet is focussed on function of notions and does

not include any concepts for geometric or material the link
between semantic, geometric, and radiometric models still
remains to be established, e.g., for the domains ‘building’ and
‘road’, possibly exploiting grammars, marked point processes,
or Markov logic networks, see the example above.

In this context two questions arise. First, what are the
adequate methods to learn the models, i.e., the geometric
and semantic relations? Learning the structure and the pa-
rameters of probabilistic logic, where clauses are attached
with a probability, may be based on measuring the success
of data base queries [109, 63]. Learning structures can use
the development in kernel methods, which allow to address
all types of structures: multi-label, with taxonomies, label-
sequence-learning, sequence of operations alignment, natural
language parsing, see [110].

Second, what are efficient interpretation processes? There
exist several methods to derive statistically interpretations
based on crisp and uncertain information, e.g., using prob-
abilistic logic programming, statistical relational learning, or
Markov logic, see the overview in [63] and the Dagstuhl
Seminar on Logic and Probability for Scene Interpretation; see
[111]. Attempts to increase efficiency use a reduced language
e.g., [112], or apply sampling techniques, e.g., [113, 114].
Except for a few examples, e.g., [115, 87], see above, the
techniques are not yet exploited for analysing images, espe-
cially of man-made objects.

D. Uncertainty and Vagueness

Decision making using classifiers always has assumed that
data, models, and decisions are uncertain. However, the pro-
cess and the result of classifiers often do not reflect this
uncertainty.

First, many classifiers only report the most likely class for
each object in a ‘winner takes all’ habit. This does not support
the need of a user to know the uncertainty of the decision.
Even giving a confusion matrix, often is not sufficient, as the
estimated conditional probabilities are estimates, and hence are
uncertain. Giving confidence regions as in Table I, would be a
first remedy. Results of [116, 117] indicate, that import vector
machines [118] yield more reliable posterior probabilities than
the output of support vector machines, when transforming their
output into probabilities [119]. Since the output of classifiers
often is used for generating the potentials of Markov random
fields, their quality may have a decisive impact.

The uncertainty of semantic segmentation cannot be repre-
sented with confusion tables, as the space of segmentations is
far too large, why indicating the uncertainty of the boundaries
appears a reasonable approach, see e.g., [120, 121] both using
deep convolutional network.

Second, many classifiers assume that each object belongs to
one of the presumed classes, possibly a rejection class. This
has been found to be over-simplistic. Images with complex
content may belong to different classes, e.g., a natural scene
may simultaneously be classified as mountain area and beach
area, if ingredients (key features) for both classes can be
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detected, and the designer of the classifier intends such an
overlap of classes, see [34, 122] and the review [123].

Third, the classes themselves are difficult to separate, e.g.,
the two classes low vegetation and high vegetation in the
‘Large Scale Point Cloud Classification benchmark’.> This
type of uncertainty in the definition of classes was the mo-
tivation for developing fuzzy models [124, 125], where each
object may belong to a class according to some membership
value. The heavy debate on the relation between fuzzy theory
and probability theory is reflected and resolved in the key
paper by Dubois and Prade [126]: The semantic distinction
between the vagueness/fuzziness of the notion of an event and
the uncertainty/likelihood of the existence or appearance of an
event indicates the two notions to be orthogonal; integrating
both concepts, while keeping their key properties, such as
[127, 125, 128], still seems to have no canonical solution.

Anyhow, when taking into account the necessity to handle
non-unique ground truth in benchmarks [129], to deal with
occlusions,?, and to take vaguely defined classes into account,
when evaluating classifiers (see [130]), then the number of
papers addressing fuzzy logic on international conferences
such as ICPR, ECCYV, and ICCYV, being below 0.5 % on an
average, appears to be very low.

IV. A FUTURE FOR LEARNING BUILDING MODELS

The paper has addressed various aspects of interpreting
images of man-made structures, especially of buildings. It
focused on methods, which reflect the underlying models of
the imaging, analysis and interpretation processes and which
hence allow the user of such a system to make decisions, thus
to understand the image content in an appropriate manner.
The problems, mentioned in the last section, all are caused by
insufficiencies or incompatibilities of simultaneously applied
models. The tools to solve or overcome these problems appear
to be available.

We discussed the dichotomy of discriminative and genera-
tive models, both having their advantages. Generative model
are efficient in obtaining quantitatively good results, while
generative models are powerful in elucidating structured se-
mantics. The dichotomy is best seen in semantic segmentation:
The partitioning of image into relevant regions requires a
process which is at the same time data and model driven. This
motivates the structuring of the interpretation/understanding
task as in Fig. 10.

All processes can gain from the interaction of recogni-
tion, reconstruction and re-organization, proposed in [22].
Generative models also are directly amenable to incremental
learning. On the other hand the speed of current neural network
classification and regression tools, which does in no way
correspond to the generally long training times, contrasts to
the fast training times of explicit semantic models, such as
grammars of marked point processes, which are often much
slower in reasoning. Attempts to use neural network priors for

3See http://www.semantic3d.net
4See e.g., the annotation rules in the PASCAL http://host.robots.ox.ac.uk/
pascal/VOC/voc2008/guidelines.html.
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Fig. 10. Metamodel for interpretion and understanding of image data (left
ellipse). Preknowledge (right ellipse), e.g., in the form of grammars or marked
point processes (MPP), are necessary, in order to capture the envisaged
meaning of the interpretation. Intermediate structures (mid ellipse) may be
represented and analysed e.g., by Markov random fields (MRF), conditional
random fields (CRF) or Markov logic networks (MLN). These structures
are simultaneously predicted from the preknowledge and from the data by —
possibly semantic — segmentation. The parameters of all processes (indicated
with upright letters and arrows) are trained using techniques from machine
learning (ML). The control of the complete process is an open problem

one-shot learning, such as [131], are promising. The flexibility
of multi-layer neural networks also needs to be compared with
the rich representation of the scattering transform [132, 133],
which code higher moments of the underlying signal, and have
been applied in face recognition [134], used for graphs [135],
and enriched by rotation invariant kernels [136].

The trend to have very large and rich bodies of image data
for benchmarking can be interpreted as extensionally defining
what an image is, instead of intentionally modelling images by
power spectra, higher order characteristics, or random fields.

A future for learning highly structured models may be based
the available basic technology which not yet is exploited for
establishing rich geometric and semantic building models.
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