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Abstract óT his paper discusses the re� nement of sparse and
noisy depth-maps to improve stereo measurements. Our method
functions as a post-� lter for stereo measurements, to remove
outliers and interpolate the depths of invalid pixels. Per-pixel
plane � tting is employed to estimate the normals of an object' s
surface in a depth-map. These normals provide information
regarding the interpolation of depth and the removal of outliers
by evaluating the directions of surfaces. In our experiments, our
method successfully reconstructed a dense and accurate geometry
from a sparse and noisy depth-map, even where several dozen
percent of pixels were outliers and only a few percent were
from the original correct geometry. This result indicates a novel
method of fast stereo measurement, because dense reconstruction
can be performed without stereo matching for all pixels.

I. INTRODUCTION

Visual perception of accurate scene geometry in real world
applications remains a key problem in computer vision. In par-
ticular, it is challenging to achieve perfect scene reconstruction
using a camera. In order to capture a complete and accurate

geometrical picture using stereo vision, scene reconstruction
must be able to determine the correct corresponding texture
regions for all pixels from different views.

Because such complete stereo matching constitutes a chal-
lenging problem, we study depth-map re� nement rather than
improving stereo matching. Depth-map re� nement aims to
correct a depth-map after stereo measurement, by considering
characteristics of the stereo measurement. This study discusses
a method for the depth-map re� nement of unreliable geometry
obtained by a stereo measurement, as illustrated in Figure 1.

Depth-map re� nement can be regarded as the denoising of
a depth-map by employing an RGB-image, i.e., denoising for
RGB-D images. There exists considerable research regarding
denoising for RGB-D images obtained by one-shot capturing
with an RGB-D camera [1]ñ [5]. Such studies consider RGB-D
cameras that can capture depth-maps almost correctly.

In this study, we consider the use of a standard camera,
which has a much higher resolution and is usable in the

Fig. 1. Overview of our method for accurate depth-map re� nement. Our method functions as a post-� lter for stereo measurement. The method assumes an
initial depth-map is given. This depth-map may include many outliers and invalid pixels, for which the depth cannot be measured. The proposed method
removes outliers, and interpolates invalid pixels by per-pixel plane � tting. By � tting planes at every pixel in detail, the proposed method can reconstruct
detailed shapes even if the input depth-map contains many outliers, as in this � gure. The complicated central region is enlarged in the upper right � gure to
illustrate the details. We remark that this result was obtained from a pair of images, and multi-view stereo methods, such as in [9], were not employed.
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daytime. However, depth maps obtained by stereo measure-
ment with a standard camera contain more noise and have
many outliers and invalid pixels, for which depth cannot be
measured.

The re� nement of such depth-maps can be seen as a kind of
global optimization, but it is not appropriate to apply standard
global optimization techniques such as belief propagation [6]
or graph-cut [7] and variational methods [8]. Global opti-
mization techniques improve a depth-map as a combinatorial
problem, involving � nding a combination of depth values at all
pixels satisfying minimum costs of the combined photometric
and smoothness errors. To determine the optimal combination,
global optimization techniques must store costs along all depth
values at every pixel in the processing stage. For high reso-
lution images, global optimization techniques face a memory
problem in storing costs for all pixels.

To alleviate such problems, we propose a method that does
not require global minimum costs to re� ne depth values at
every pixel. The idea is to consider characteristics of the
disparity error distribution of a stereo measurement to reduce
the computational load. Based on these characteristics, we
propose a method of repeated per-pixel plane � tting to re� ne
sparse and noisy depth-maps.

II. CHARACTERISTICS OF STEREO MEASUREMENTS

First, we examine the characteristics of stereo measurements
obtained from a preliminary experiment, in order to derive an
approach to depth-map re� nement.

A. Data set
For the investigation of characteristics, we use a data set

created by Strecha et al. [9]. This data set was developed to
evaluate methods for dense reconstruction using stereo vision,
and contains ground-truth data obtained by laser-scanning.

B. Characteristics of block matching
Figure 2 illustrates the distribution of the disparity error

obtained by block matching using normalized cross correlation
(NCC). In this result, the disparity error distribution obtained

Fig. 2. Disparity error distribution obtained using block matching for the
ì Initial Depth-Mapî in Figure 1. Histograms of observation counts according
to the disparity error are shown in linear scale in a), and also in logarithmic
scale in b) for clarity. Except for a tall peak at zero error, this distribution
is wide and thin. Stereo measurements of the correct depth (object surface)
under this distribution are schematically illustrated in c).

by block matching is not a normal distribution, and is wide
and thin except for a tall peak at zero error. This property
implies that for correctly matched blocks, the precision of the
depth falls within range of a few disparity errors. This result
indicates that stereo measurement points are apt to be outliers
when they fail in matching.

C. Relation between normals and RGB-images
In RGB-D images, color is strongly correlated with the

normal of a plane. It follows that the possibility of two pixels
in an RGB-D image lying on the same plane, i.e., the same
object surface, is high when they have a similar color. In a
previous study, in order to construct a cost function for stereo
matching by considering surface directions, Bleyer et al. [10]
evaluated whether two pixels lie on the same plane via the
similarity between the two colors. As a similar concept, Yoon
et al. [11] proposed an adaptive support weight that computes
the likelihood of lying on the same plane through a bilateral-
weight-like computation.

From these studies, we consider the following bilateral
weight function:

W (x; y; σr ; σs) = Wr(x; y; σr)Ws(x; y; σs);

Wr(x; y; σr) =
1

Nr
exp

(
− j Ixy − Iij j 2

2σ2
r

)
;

Ws(x; y; σs) =
1

Ns
exp

(
− (x− i)2 + (y − j)2

2σ2
s

)
;

where (i; j) represents the coordinates of the center pixel,
(x; y) describe the coordinates of a surrounding pixel, I is
an RGB-image, Iij ; Ixy are RGB vectors at the correspond-
ing coordinates, Nr ; Ns are constants for normalization, and
σr ; σs are parameters for smoothness.1 The weight function
Wr computes the similarity between the center pixel and the
surrounding pixels. The weight function Ws computes weights
according to distance. This bilateral weight function computes
the likelihood of whether two pixels lie on the same plane.

D. Approach to depth-map re� nement
It follows from the characteristics of block matching that

the precision of a depth measurement is very high when the
matching is correct. When the matching is incorrect, the depth
value has a high possibility of becoming an outlier. We assume
that a depth-map can be re� ned accurately if incorrect pixels
can be removed, and following removal the invalid pixels can
be interpolated using a plane reconstructed from correct pixels,
because the correctly matched pixels have a highly precise
depth.

Our depth-map re� nement method involves the removal of
outliers, with plane reconstruction per-pixel. Invalid pixels are
interpolated by plane reconstruction, by employing bilateral
weights that provide information regarding whether pixels lie

1The computational cost for a bilateral weight function is proportional to
the value σs. For this reason, applying this function in image processing
limits the window size for large σs. To solve this problem, many constant
time bilateral � lters have recently been proposed. In this study, we employ a
domain transform � lter [12] to apply large σs.
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on corresponding planes. Outliers are detected by evaluating
the distance from the reconstructed planes.

III. DEPTH-MAP REFINEMENT INCLUDING INVALID
PIXELS

A. Per-pixel plane estimation considering invalid pixels
First, we will describe the relation between a depth-map and

per-pixel planes. The equation for a plane in three dimensions
is described as ax + by + cz + d = 0. A three dimensional
point (x, y, z)T is projected to a camera as u = x/z, v = y/z,
and ζ = 1/z, where (u, v) are normalized image coordinates
and ζ is the inverse depth. If fu, fv represent the focal length
and (cu, cv)T is a principal point, then the relation between
the image coordinates (i, j) and normalized image coordinates
(u, v) is described by i = fuu + cu and j = fvv + cv . To
obtain a relation between the normalized image coordinates
(u, v), the inverse depth ζ, and a plane, we substitute (u, v)
into ax+by+cz+d = 0. By simplifying the relation regarding
the inverse depth ζ, this becomes

ζ = αu+ βv + γ, (1)

where α = −a/d, β = −b/d, and γ = −c/d. The parameters
α,β, γ characterize a normal of plane. When a unit normal
n = (nx, ny, nz)T is employed, the plane equation becomes
nxx + nyy + nzz + l = 0, where n2

x + n2
y + n2

z = 1, r =√
a2 + b2 + c2, nx = a/r, ny = b/r, nz = c/r, and l = d/r.

By comparing the plane equation with α,β, γ, the following
relation can be obtained for the normal of a plane:

nx = −α/ρ, ny = −β/ρ, nz = −γ/ρ, (2)

where ρ =
√
α2 + β2 + γ2.

Before describing plane reconstruction, we will introduce
some notation. When “g” is an image, we denote the value of
the pixel at the image coordinates (i, j) as “gij .” In addition,
we denote the image domain as “Ω.” Using these notations,
we define the maps uij = (i− cu)/fu and vij = (j − cv)/fv
of normalized image coordinates.

Next, we describe the estimation of a plane from a depth-
map. The parameters α,β, γ can be estimated by linear
regression, as described by (1). When points lie on an image
domain Ω, the parameters α,β, γ are obtained by minimizing
the following cost:

E =
∑

i,j∈Ω

(ζij − (αuij + βvij + γ))2 . (3)

By minimizing (3), α,β, γ are given as
(

α
β

)
=

(
u2 uv
uv v2

)−1(
ζu
ζv

)
,

γ = ζ̄ − αū− βv̄,

(4)

where the statistical values are

u =
∑

i,j∈Ω uij

|Ω| , v =
∑

i,j∈Ω vij

|Ω| ,

u2 =
∑

i,j∈Ω u2
ij

|Ω| , v2 =
∑

i,j∈Ω v2
ij

|Ω| ,

uv =
∑

i,j∈Ω uijvij
|Ω| , ζ =

∑
i,j∈Ω ζij
|Ω| ,

ζu =
∑

i,j∈Ω ζijuij

|Ω| , ζv =
∑

i,j∈Ω ζijvij
|Ω| ,

and |Ω| is the number of pixels in the domain Ω. This
minimization result does not consider invalid pixels of an
inverse depth-map ζ. To deal with invalid pixels, we employ
a binary weight map w:

wij =

{
1 (ζij is a valid pixel),
0 (ζij is an invalid pixel).

(5)

Using the binary weight map w, the statistical values become

u =
∑

i,j∈Ω wijuij∑
i,j∈Ω wij

, v =
∑

i,j∈Ω wijvij∑
i,j∈Ω wij

,

u2 =
∑

i,j∈Ω wiju
2
ij∑

i,j∈Ω wij
, v2 =

∑
i,j∈Ω wijv

2
ij∑

i,j∈Ω wij
,

uv =
∑

i,j∈Ω wijuijvij∑
i,j∈Ω wij

, ζ =
∑

i,j∈Ω wijζij∑
i,j∈Ω wij

,

ζu =
∑

i,j∈Ω wijζijuij∑
i,j∈Ω wij

, ζv =
∑

i,j∈Ω wijζijvij∑
i,j∈Ω wij

.

Finally, we describe per-pixel plane estimation for the
reconstruction of depth and normals at each pixel. In order
to expand the plane estimation at every pixel, our method
employs convolution rather than summation:

f ∗ gij =
∫∫

Ω
f(x, y)g(i− x, j − y)dxdy, (6)

where f is a kernel (convolution matrix, or mask). When a
Gaussian function is employed as a kernel, this convolution
is equivalent to a Gaussian filter. Using convolution, the
statistical values at coordinates (i, j) become

uij = f∗(wijuij)
wij

, vij = f∗(wijvij)
wij

,

u2
ij =

f∗(wiju
2
ij)

wij
, v2ij =

f∗(wijv
2
ij)

wij
,

uvij = f∗(wijuijvij)
wij

, ζij = f∗(wijζij)
wij

,

ζuij = f∗(wijζijuij)
wij

, ζvij = f∗(wijζijvij)
wij

,

(7)

where wij = f ∗ (wij) + ϵ and ϵ is a small constant used to
avoid division by zero. Because the results of convolution have
a locality depending on the size of the kernel, the parameters
α,β, γ are given by

(
αij

βij

)
=

(
u2
ij + λ uvij
uvij v2ij + λ

)−1(
ζuij

ζvij

)
,

γij = ζij − αijuij − βijvij ,

(8)

where λ is a stabilizing parameter for this linear equation. To
obtain smoothed results, our method applies a smoothing filter
to these results:

αij = f ∗ αij , βij = f ∗ βij , γij = f ∗ γij . (9)

Finally, we obtain an inverse depth-map and a normal map by
per-pixel plane estimation:

ζ̂ij = αijuij + βijvij + γij ,

nij = −
(αij ,βij , γij)T√
αij

2 + βij
2
+ γij

2
, (10)

where ζ̂ is an inverse depth-map including the interpolation
of invalid pixels, and n is a normal map derived using plane
estimation.
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B. Implicit segmentation for guiding depth for invalid pixels
In order to guide depth and normals for invalid pixels, our

method reconstructs a plane for the interpolation of invalid
pixels. To reconstruct such a plane, it is necessary to gather
points supporting the plane. In a depth-map, the gathering of
points corresponds to the segmentation of the map. If this
segmentation is correct, with each segment belonging to one
plane, then the plane reconstruction becomes accurate.

In the place of segmentation, our method employs joint
filtering. In the previous section, we demonstrated that a
plane can be reconstructed by applying any filter to a depth-
map. Joint filtering computes the weights of its kernel by
considering the similarities of the color, intensity, or texture of
a guide image. For example, the result of joint filtering applied
to a depth-map is the weighted average of the depth values
of neighboring pixels with similar colors. Thus, the statistical
values in a region with similar pixels can be computed by joint
filtering. Nevertheless, the region is not clearly segmented. For
this reason, we refer to this statistical computation as implicit-
segmentation.

We employ a joint bilateral filter, which is defined using
bilateral weights as

f(I,σr,σs) ∗ gij =
∫∫

Ω
W (x, y,σr,σs)g(i− x, j − y)dxdy.

C. Outlier removal with incremental thresholding
Our method removes outliers from an input depth-map by

incremental thresholding against the distance from the recon-
structed planes following per-pixel plane estimation. Outliers
are removed by updating a binary weight map w:

wij =

{
1 (|zij − ẑij | ≤ θ σij cosφij),

0 (|zij − ẑij | > θ σij cosφij),
(11)

where
cosφij = −nij ·

(uij , vij , 1)T√
u2
ij + v2ij + 1

.

Here, zij(= 1/ζij) is the depth from an input depth-map,
ẑij(= 1/ζ̂ij) is the depth from a corrected inverse depth-map
by per-pixel plane estimation, θ is the control variable for
incremental thresholding, and σij represents the uncertainness
of the depth zij . The uncertainness σij is derived from the
depth uncertainty of a stereo measurement by discretization
of the image domain. Furthermore, when the inverse depth ζij
is invalid, the uncertainness σij is set to 0, for consistency
of the algorithm. The control variable θ is updated at each
iteration by

θ ← τθ, (12)

while the range of the value of θ is 1 ≤ θ. The parameter τ is
set as 0 < τ < 1. Our method removes outliers by alternately
repeating per-pixel plane estimation and thresholding, while
decreasing the variable θ.

D. Summary of algorithm
A summary of our method is presented in Algorithm 1.

Algorithm 1 Per-pixel Plane Fitting
Input: ζ, w, σ, I , σr, σs, θ, τ , ϵ, λ

ζ is an incomplete inverse depth-map.
w is a binary weight map.
σ is a map of depth uncertainness.
I is a color (or monochrome) image.
σr,σs, θ, τ , ϵ, λ are parameters.

Output: ζ̂, n
ζ̂ is a corrected inverse depth-map.
n is a normal map.

1: procedure PERPIXELPLANEFITTING(ζ, w,σ, I)
2: while θ > 1 do
3: Compute u, v, u2, v2, uv, ζ, ζu, ζv

with f(I,σr,σs) and ϵ by (7).
4: Compute α,β, γ with λ by (8).
5: Compute α,β, γ with f(I,σr,σs) by (9).
6: Compute ζ̂,n by (10).
7: Update w with θ and σ by (11).
8: θ ← τθ
9: end while

10: return ζ̂,n
11: end procedure

IV. EXPERIMENTS AND DISCUSSION

This paper discusses the refinement of depth-maps gen-
erated by stereo vision. The performance of a depth-map
refinement is evaluated in terms of improvements in the
accuracy.

A. Experimental method
First, we conduct a performance evaluation experiment

to evaluate two aspects of the performance: noise-tolerance
and interpolation. We generate an initial depth-map from
ground-truth data as follows. For the noise-tolerance perfor-
mance, we introduce noises to the depth-map, considering
the characteristics of stereo measurement described in II-B.
For the interpolation performance, we remove pixels from
the generated depth-map. Second, we conduct an experiment
regarding the depth-map refinement from stereo measurement
using block-matching.

B. Evaluation criteria
The performance of our method is evaluated in terms of

completeness, indicating the rate of pixels with correct depth
values, defined by

completeness =

∑
i,j∈Ω Cij

|Ω| , (13)

where Cij is the pixel-wise correctness, which is defined by

Cij =

{
1 (|ẑij − Zij | < ∆1),

0 (|ẑij − Zij | ≥ ∆1),
(14)

where ẑij is the estimated depth, Zij is the true value of depth,
and ∆1 is the uncertainness of the stereo measurement, which
indicates the range of depth with a 1 pixel disparity.
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C. Experimental conditions
1) Data set: Similarly to the preliminary experiment, this

experiment employs a data set created by Strecha et al. [9].
The considered images are views 6 and 7 in the Fountain-P11
scene in the data set.

2) Stereo algorithm: In the second experiment, we em-
ployed a simple stereo algorithm, which is a block match-
ing method using NCC. Moreover, we did not employ the
commonly-used techniques of sub-pixel refinement and a left-
right consistency check.

3) Parameters: The block size of the NCC was 9 × 9,
and the image size was 3072 × 2048. The parameters for our
method are θ = 30.0, τ = 0.975, σr = 25/255, σs = 1024,
ϵ = 10−10, and λ = 10−6. The parameter θ is an initial value.
These parameters were obtained experimentally.2

D. Performance evaluation experiment
Our first experiment investigates the refinement perfor-

mance. The following procedure is repeated by varying the
rate of outliers and density of valid pixels:

1) Generate a depth-map from ground-truth data, with the
addition of noise of a depth corresponding to a one pixel
disparity using a normal distribution.

2) Replace pixels with a depth generated by a uniform
distribution at a constant rate to randomly generate
outliers.

3) Randomly remove pixels at a constant rate to create
invalid pixels.

4) Apply our method to refine the depth-map.
5) Evaluate completeness of the refined depth-map against

outliers and sparseness.
To describe the results, this paper uses the following values:

Outlier rate =
Num. of outliers

Num. of all pixels
,

Sampled density =
Num. of sampled pixels

Num. of all pixels
.

Figure 3 presents examples of results for this experiment.
Input geometries and reconstructed shapes are illustrated in
this figure. Figure 4 presents the results of the performance
evaluation for various sampled densities and outlier rates. It
is a remarkable result that our method refined a shape with
around 80% completeness when the outlier rate was 0% and
sampled density was 0.5%. Even if the outlier rate of an input
initial depth-map is over 50%, our method can reconstruct a
dense geometry when the density of the geometry is over a
few percent.

E. Depth-map refinement from stereo measurement
Next, we evaluate the recovering performance of our method

for a depth-map obtained from a stereo measurement. The
following procedure is repeated by varying the rates of outliers
and the density of valid pixels.

2For large σs, the other parameters were not sensitive. The computational
time required for the refinement of a depth-map was approximately 10 minutes
using a Core-i7 PC.

1) Generate a depth-map by applying NCC based block
matching.

2) Remove pixels by threshold processing of NCC.
3) Remove pixels randomly at a constant rate.
4) Apply our method to refine the depth-map.
5) Evaluate the completeness of the recovered depth-map

against outliers and density.
Figure 5 presents performance curves. Before applying our
method, this experiment performed threshold processing of
NCC to alter the outlier rate. Fig. 1 presents the result
obtained using all stereo measurements (the sampled density
is 100%) without an NCC threshold (threshold is 0.0). These
performance curves exhibit a similar trend as the performance
curves from the first experiment, which used depth-maps
generated from ground-truth data with added noise. Moreover,
our method is able to reconstruct a dense and accurate geom-
etry with 80% completeness from density of a few percent,
even if depth-maps generated from a stereo measurement are
used. This indicates a strong possibility of a novel stereo
measurement method involving generating an accurate depth-
map without stereo matching for all pixels. Because stereo
matching involves many outliers and invalid pixels (e.g., pixels
removed by NCC thresholding), our depth-map refinement
method is suitable for stereo measurements, because it allows
the inclusion of outliers and invalid pixels.
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Fig. 3. Re� nement examples for depth-maps generated from ground-truth data by adding noise and removing pixels.

V. CONCLUSION

This paper has proposed a depth-map re� nement method
that is suitable for stereo vision. Our method re� nes a depth-
map by per-pixel plane-� tting, to remove outliers by evaluating
the distance of a measurement point from a plane and consid-
ering the characteristics of stereo measurements. Our method
successfully reconstructed a dense and accurate geometry from
a noisy depth-map, in which the outlier rate was over 50%. A
future study will include the evaluation of the reconstruction
performance for many other depth-maps.
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