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Abstract—Most Wide Area Motion Imagery (WAMI) based
trackers use motion based cueing for detecting and tracking
moving objects. The results are very high false alarm rates
in urban environments with tall structures due to parallax
effects. This paper proposes an accurate moving object detection
method using a precise orthorectification approach for ground
stabilization combined with accurate multiview depth maps
to reduce the number of false positives induced by parallax
effects by 90 percent. Proposed hybrid moving vehicle detection
approach for large scale aerial urban imagery is based on
fusion of motion detection mask obtained from median-based
background subtraction and tall structures height mask provided
by image depth map information. Using buildings mask enables
us to improve the object level detection accuracy in terms of
F-measure by 57 percent from 22.2% to 79.2%.

I. INTRODUCTION

Automatic moving object detection is often a critical low-
level task for many video analysis and tracking applications
particularly when applied for large scale aerial imagery. Mov-
ing pixels can be further processed for different purposes
including urban traffic monitoring [1], [2], object classification
[3], registration and tracking [4]-[6].

Background subtraction methods are the most popular mov-
ing object detection methods. However, reliable background
subtraction based moving object detection depends on sev-
eral parameters such as illumination compensation, shadow
detection, background dynamics and the background model
learning rate. In aerial imagery, background modeling is par-
ticularly challenging due to small and low resolution targets,
camera vibration which results in alignment errors and cause
significant drifts in the pixel values close to sharp edges, and
strong parallax effects [7]-[11].

Various techniques have been proposed to model the back-
ground including probabilistic mixture of Gaussian approach
[12], Kalman filter [13], Wallflower [14] and simple median
filtering [15]-[17]. Recently context-aware methods [18], [19]
are presented that incorporate scene context like tall structure
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height mask or road network to reduce false detections and
improve system robustness.

In this work, we used spatiotemporal median-based back-
ground modeling due to its simplicity, computational efficiency
and robustness to noise [1], [15]. Median filtering performs as
well as more complicated techniques (i.e., GMM) and avoids
creating unrealistic pixel values by blending pixel values [20].
The main contribution of this paper is high precision moving
object detection to perform persistent tracking of moving vehi-
cles. Our proposed hybrid moving vehicle detection system for
aerial imagery consists of four main steps. In the first step, we
applied our state of the art registration algorithm, MU BA4S,
to orthorectify image sequences into a global reference system
and to produce dense 3D point clouds [21], [22]. Then, depth
or height maps are computed by projecting the 3D points into
each camera view. In the third step, motion detection masks are
obtained using median-based background subtraction. Finally,
we fused building masks information extracted from depth
maps with motion detection masks information to identify
moving objects on the ground from motion induced by parallax
effects of tall buildings and reject the false motion responses.
We evaluated the performance of our motion detection method
using pixel-level and object-level evaluation methods. Figure 1
presents our proposed hybrid moving vehicle detection system
pipeline.

Section 2 briefly reviews our fast image registration ap-
proach. Hybrid motion detection system using depth map
information is discussed in Section 3. Finally, experimental
results and conclusion are presented in Section 4 and 5,
respectively. II. REGISTRATION

Videos in aerial imagery are captured on a moving airborne
platform. Detection of moving objects, e.g. vehicles, in a
scene which is observed by a camera that by itself has large
movement and big jitters can be extremely challenging. To
address this problem, images from camera planes are orthorec-
tified (registered) in a global reference system to maintain
the relative movement between the moving platform and the
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Fig. 1: Hybrid aerial video-based moving vehicle detection and tracking system pipeline using 4D (x, y, t, depth) filtering optimized for
wide area motion imagery of urban scenes with significant parallax effects and small targets. Major modules that are essential for accurate

motion detection include the University of Missouri (MU) BA4S [21],

scene fixed. We used our fast MU BA4S registration technique
in order to orthorectify aerial video and produce the images
depth map. We assume that a scene and its dominant ground
plane 7 is observed by an aerial camera C. A 3D scene
point X = [z y 2|7 lying on this plane 7 is imaged as
x by camera C. The imaged point x can be projected back
(orthorectified) onto the ground plane 7w as "x by applying a
planar homography transformation.

In MU BA4S the registration has been carried out by
applying a homography transformation between each image
plane and the ground dominant plane of the scene. Such
homography transformations are analytically obtained using
camera parameters, i.e. their rotation matrices and translation
vectors. First the noisy camera parameters (referred to as
metadata) obtained from platform sensors (i.e. IMU and GPS)
are refined by a fast Structure-from-Motion algorithm (BA4S)
proposed in [21], [22]. After the refinement process, the
homography transformation between the ground plane 7 and
the image plane of camera C' is computed as follows:

CHﬂ- =K [I‘l I t] (1)

r; and ry being the first and second columns of the rotation
matrix from the world’s to the camera local coordinate system,
t is the corresponding translation vector, and K is the camera
calibration matrix. As a result, a 2D homogeneous image
point X from camera C' can be projected back (orthorectified)
onto the ground plane 7 using the following homography
transformation:

2

where "H, is the inverse of the homography “H, in Eq 1.
Such a homography transformation is valid to transform all
points between the image and ground plane, provided that their
corresponding 3D point lies on the ground plane. Otherwise
applying this homography transformation for points off the
ground plane would cause a phenomenon known as parallax
(see [8], [23] for more details).
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[22], video-based 3D reconstruction (VB3D) and orthorectification.

In this paper, we conducted our experiments on ABQ aerial
imagery which were collected by TransparentSky [24] over
downtown Albuquerque, NM. Figure 2 shows samples of raw
and georegistered ultra high resolution images (6400 x 4400).
However, we worked on a cropped 2k x 2k region of interest
for which the ground-truth are provided by our collaborator at
Kitware (Fig. 2(BR)).

III. SPATIOTEMPORAL MEDIAN MOTION ANALYSIS WITH
3D DEPTH FILTERING

Fast and accurate moving object detection provides primary
useful information for a number of video analysis tasks. Back-
ground subtraction methods are the most popular methods to
estimate the foreground moving objects [25], [26]. Moreover,
one of the most commonly used non-recursive technique to
obtain the background model is using spatiotemporal median
information of a few frames [17], [27]. The most significant
features of median background modeling over other complex
methods are simplicity, computational efficiency and robust-
ness to noise.

A. Spatiotemporal Median for Moving Blob Extraction

Median computation methods can be grouped as sorting-
based or histogram-based approaches. Although the time com-
plexity of histogram based method is much less, but it requires
a 3D array of size w x h x b, where w X h is the size of
the image and b is the number of histogram bins. Since we
are working on high resolution large scale WAMI images,
memory allocation for such histogram tensor is not feasible.
Considering a 3 dimensional kernel with size m xn x7T" around
pixel centered at (x,y), the spatiotemporal median value for
that pixel is obtained by

Msp(z,y) = I(x 4+ Az, y + Ay, t + At)

3)
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Fig. 2: Top row shows original ultra-high resolution images (6600 x 4400) collected from an airborne WAMI platform flying over downtown
Albuquerque, NM. Bottom row shows corresponding registered images (12000 x 12000) using the MU BAA4S orthrectification module, an
extremely fast bundle adjustment algorithm that avoids RANSAC iterations, and uses less than 12 minutes for 1071 images [21], [22].

which means that for every T frames — considering also a
m X n kernel for spatial median computation within an image
— we compute a median background image BGsedian, and
then perform background subtraction to estimate the moving
foreground image F'G(k) = I(k) — BGuredian(k). Every
pixel of estimated foreground is classified as moving versus
stationary by thresholding the foreground image. However, as
can be seen in the third row of Figure 5, prominent areas
of moving object detection masks are undesirable motion
responses that are caused by parallax effects of tall structures
due to camera viewpoint changes. We proposed to reject such
false alarms by building mask filtering. We fuse tall structures
height information with estimated moving objects detection
mask to suppress undesirable parallax effects.

B. Depth Map Filtering and Detection Refinement

The output of MU BA4S bundle adjustment includes refined
camera parameters and a sparse 3D point cloud [21], [22],
[28]. Sparse point clouds can be improved to produce dense
point clouds using different multi-view stereo algorithms like
PMVS [29] or probabilistic volume method described in
[30]. The dense 3D point clouds are then used to produce
depth or height maps by projecting the 3D points into each
camera view. For each 3D point [z y z]t, its corresponding 2D
projection [p, p,]" is given by equation (4), where K R, and ¢
are respectively the camera calibration, rotation and translation
matrices (Fig. 3). If several points projection have the same
coordinates [p, p,]’, the visible point is the one with the
minimum depth s.
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Fig. 3: Projection of a 3D scene onto a 2D camera plane. The
calibration matrix K is dependent on the focal length f. R and t
respectively account for the camera orientation and translation.

Then same homography that was applied to original image
can be used for the height mask to obtain the estimated height
of every pixel in the orthorectified image, as shown in Figure
4. This information can be used later to identify the moving
objects on the ground from motion of tall structure due to
viewpoint changes.

IV. EXPERIMENTAL RESULTS

In this Section we elaborate and evaluate our proposed
vehicle moving object detection results for ABQ aerial urban
imagery which were collected by TransparentSky [24] using
an aircraft with on-board IMU and GPS sensors flying 1.5
km above ground level of downtown Albuquerque, NM on
September 3, 2013. Imaging was done at frame rate of 4Hz
and 2.6 km orbit radius. Figure 2 shows samples of raw ultra
high resolution images (6400 x 4400) with nominal ground
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Fig. 4: Estimated height map of the orthorectified image.

resolution of 25cm and the corresponding registered images
using MU BA4S registration approach which processes the
total sequence of 1071 images in very short amount of time
(less than 12 minutes). For evaluation, we carried out the
experiments on the first 200, 2000 x 2000 cropped frames
from location (4761, 5800) upper left corner in the 12K x 12K
orthorectified images for which the ground-truth are provided
by Kitware (Fig. 5). Later, we produced the detection mask for
full 1071 images to perform persistent multi-target tracking.

We model the background using median of seventeen im-
ages (eight frames before and eight frames after the target
image), and perform background subtraction to estimate the
moving foreground objects. Every pixel is classified as moving
versus stationary by thresholding the estimated foreground
image. Contrast enhancement and morphology operations are
applied to improve the motion detection results and to filter
out the spurious noises caused by illumination changes. Ap-
proximately 90.2% of the motion responses are induced by
parallax effects of tall structures which significantly degrade
the precision of the motion detection results. The low average
precision of 12.9% is reported for the first 200 frames of
Albuquerque sequence. In order to suppress false alarms due
to parallax effects, we generate building masks by thresholding
the image height maps. Any pixel with depth value above 20
meters belongs to tall structure areas. Detected Building areas
are filtered out from motion masks to reject the motion detec-
tion of tall structures due to camera viewpoint changes (blue
masks in figure 5, third row). Final moving vehicle detection
masks of the region within yellow box are shown in forth row
and superimposed on the original image for visual evaluation
(last row, Fig. 5).

A. Evaluation Methodology

The general requirement for moving detection algorithms
is providing reasonable precision in terms of the number of
true detected objects as well as high recall in objects contour
detection [7]. In this work, we improved the precision of
the motion detection results while maintaining high recall by
fusing median motion mask information and building mask
information. The performance of motion detection results are
evaluated after each stage of the fusion by computing the

TABLE I: Average Moving Object Detection Performance Results

Object Level Evaluation Pixel Level Evaluation
# Objects Pixel Area
Average | Median | Median+Depth || Median | Median+Depth
GT 7,980 7,980 18,412 18,412
Detection 50,090 7,128 127,890 12,150
TP 6,442 6,024 9,644 8,940
FP | 43,648 1,104 || 118,250 3,210
FN 1,538 1,956 8,769 9,472
Precision(%) 12.9 83.9 7.56 73.2
Recall(%) 80.1 75.1 52.8 48.8
Freasure(%) 22.2 79.2 13.2 58.4
spatial precision and recall (pixel-level evaluation) as
Ne @i n D; TP
Precision = zl:lj\‘, : d = TP &)
YiAlDi TP+ |FP
NG n D TP
oent] - SM81GiN D TP ©
Yialel TP+ IFN]

where G; is the moving object bounding box presents in
Ground Truth and D; is the segmented moving object obtained
by motion detection algorithm. Np is the cardinality of the
detected objects. Figure 6 reports the computed measures for
first 200 frames from Albuquerque sequence. The average
precision of 73.2% and recall of 48.8% is reported.

Since the ultimate goal of the proposed motion detection
system is to perform persistent tracking of moving vehicles,
we have evaluated detection performance using object level
measures as well. Associations of the detected moving blobs
to ground truth objects is performed using a bidirectional
correspondence analysis described in [31], [32] that handles
not only one-to-one matches but also merge and fragmentation
cases. Average precision of 83.9% and recall of 75.1% is
achieved. Table I reports the average of computed statistics
for 200 frames. Figure 6 presents the performance evaluation
results using pixel-level and object-level methods. It can be
seen that precision has been drastically increased while recall
remained almost the same using both evaluation methods.

V. CONCLUSION

We have developed a multi-component framework that fuses
motion information with estimated 3D structure to reliably
detect moving objects in aerial imagery of urban scenes.
Moving object detection in wide-area aerial imagery is very
challenging since fast camera motion prevents direct use of
background subtraction methods and strong parallax induced
by tall structures in the scene causes excessive false detections.
The proposed framework first orthorectifies the images using
our fast SfM method. Then, it extracts the motion blobs us-
ing robust 3D median-based background subtraction. Finally,
it suppresses the false detections caused by parallax using
projected depth map information obtained from our fast StM
followed by a dense 3D point clouds algorithm. The proposed
framework has been tested on ABQ aerial urban imagery. We
were able to improve the object level detection accuracy in
terms of F-measure by 57 percent from 22.2% to 79.2%. These
detection results are very promising for subsequent persistent
object tracking in aerial imagery.
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Fig. 5: Nlustration of motion detection results: First row shows the registered 2k x 2k cropped frames (57, 123, 182) from Albuquerque aerial
imagery. Second row shows the height mask for the corresponding frames. Third row presents the motion detection masks obtained from
median background subtraction and the building masks in blue. The final motion detection results are shown in forth row and superimposed

on the original image (region within yellow box) for visual evaluation.
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Fig. 6: Performance evaluation of our proposed fused motion detection method
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