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Abstract—Vision based environmental monitoring using fixed
cameras generates large image collections, creating a bottleneck
in data analysis. In areas with limited background knowledge of
the monitored habitat, this bottleneck can often not be overcome
by traditional pattern recognition methods. A new change detec-
tion method to identify interesting events such as presence and
behavior of different species is proposed. The change detection
method uses the new Bi-Domain Feature Clustering (BDFC).
BDFC integrates the location of a feature vector in the feature
space as well as the location in the image into the clustering.
Firstly, BDFC is applied to a time dependent representation of
the image stream to identify regions of similar change. Secondly
it is applied to a time independent representation to group these
changes into categories. These categories can rapidly be assessed
by a human observer to bypass the time consuming inspection of
the whole data set. To make the posterior browsing of detected
changes more efficient, a relevance factor computed for each
category is proposed.

The approach is demonstrated with experimental runs, using
images from the Lofoten Vesterålen ocean observatory, showing
the potential to harvest changes of interest and novelties in large
image collections.

I. INTRODUCTION

Change detection is a commonly used approach to evaluate
images taken from a fixed position, and has already been
of great interest in a variety of scientific fields [1] such
as video surveillance (e. g. traffic) [2]–[5] and remote
sensing [6]–[16] (e. g. deforestation monitoring or monitoring
of destruction/construction in urban areas). In the context of
underwater imagery applications are still limited [17]–[22].
The two most common change detection approaches are
background subtraction (BS) and change vector analysis
(CVA). BS aims at building and maintaining a background
model of the investigated images and then thresholding the
difference between the background model and a target image.
Lots of efforts have been put into background maintenance
as well as in computing a suitable threshold for the pixel
differences. CVA methods basically compute the difference
image between two images before analyzing the vectors of
the difference image (so-called change vectors).
Whereas most change detection algorithms compute a binary
output by assigning each pixel to either true or false,
indicating that changes have occurred or not, some algorithms
subdivide the set of changed-pixels into various subclasses.

In [12] and [13] the authors introduce CVA algorithms
detecting and categorizing changes based on the length
and the direction of each change-vector, respectively. Other
change detection algorithms that do not fall within the two
categories described abov are for instance based on temporal
predictive models [23]–[25], significance tests [26] or slow
feature analysis [27]. However, all these methods require a
human observer to identify changes of interest in a threshold
image or a set of transformed images representing changes.

In recent years, a growing number of fixed long-term un-
derwater observatories (FUO, [28]–[30]) have been deployed
to monitor marine habitats. The FUO are in most cases
deployed in areas of particular interest, such as areas with
high biodiversity. The biological diversity and abundance of
species present at these sites represent considerable challenges
to a change detection approach:
(1) Prior knowledge about which species to find in the

monitored areas and/or how they behave is often limited
and can therefore not be used in the design of a change
detection method.

(2) As some species occur and/or move much more frequent
than other species, change detection in pixel values only
is not sufficient to detect relevant changes in the moni-
tored scene.

The contribution of this paper is to introduce a new approach
to detect various changes in an area with very limited a-
priori knowledge. The approach includes the concept of super-
pixel segmentation in feature space and the new Bi-Domain
Feature Clustering (BDFC). In contrast to existing methods,
this approach finds regions of similar change patterns, groups
all detected regions into categories and ranks the categories
according to a proposed relevance based on frequency and
pixel differences.

II. METHODS

The aim in the analysis of images from an FUO is the
identification of regions of interest as connected components
with similar change patterns. As similar changes and patterns
are expected at different time-points, the similarity of change
features at different time-points must be considered as well.
The proposed framework (Fig. 1) integrates these aspects by
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Fig. 1. Time dependent features and time independent features are extracted from an image sequence in Section II-B. Superpixel segmentation and the
new Bi-domain Feature Clustering (BDFC) are applied to each of the resulting feature maps in II-A. In Section II-C the change patterns are classified into
categories with semantic meaning and relevant change is discriminated from irrelevant change.

computing two feature representations (Section II-B). The
new clustering procedure (Section II-A) is used to cluster
the time dependent change features and the time independent
change features, respectively. Regions showing similar change
patterns are identified using the time dependent change
features. The regions are assigned to clusters of the time
independent features, which represent categories of change.

The method assumes that all images are in CIELUV [31]
color space. Moreover, we assume that the images are taken
with the same fixed camera at all time-points implying that all
the images have the same height H and the same width W .

The latter assumption allows us to write all images in the
processed image sequence as mappings with a common do-
main P = {(w, h) | 1 ≤ w ≤W, 1 ≤ h ≤ H}. Consequently,
the image taken at time-point t is a mapping It : P → R3

assigning to each pixel p a CIELUV color It (p). We denote
the L, u and v channels of It as I1

t , I2
t and I3

t , respectively.
To retain spatial information during feature extraction so

called feature maps are used in this paper. A feature map
is a mapping F : P → RN , assigning a feature vector to
each pixel and hence is a straightforward generalization of an
image. A feature map will always be denoted by FA indicating
that it is computed by a specific algorithm A (A ∈ {tmp,int}
Section II-B). Note that in this paper, features are extracted
from image sequences not single images.

A. Bi-domain Feature Clustering

Feature maps contain feature vectors and their positions in
the image domain, i. e. the pixel position where a feature vec-
tor is extracted. Traditional clustering algorithms (vector quan-
tization, hierarchical clustering [32], spectral clustering [33])
do not use the image domain as they are not primary designed
for image clustering. To increase the homogeneity in regions
of semantic meaning (Fig. 2), we include the image domain
into the cluster merging and propose the BDFC algorithm that

(i) performs a traditional clustering of the feature vectors to
compute an initial segmentation Ib

A of the feature map
and

(ii) performs a bi-domain merging of clusters that (unlike
hierarchical clustering) uses the image domain.

To reduce the influence of noise in the images, we apply super-
pixel segmentation [34] before applying the Bi-Domain Fea-
ture Clustering (BDFC). Superpixel segmentation computes an
image representation with a lower level of detail consisting of
so called superpixels (i. e. connected groups of pixels sharing
similar colors) [34]. Thereby, local redundancy is resolved
and the complexity of the subsequent BDFC is reduced.
However, we apply the approach in the high dimensional
feature representation using a straightforward generalization
of SLIC [34] to the concept of feature maps. Thus, the pixel
set P is segmented based on the change patterns of the pixels
and not based on pixel color.

Let FA be a feature map, M the number of superpixels and
M = {1, . . . ,M} the set of superpixel-indices. A superpixel
segmentation of FA is a tuple (Is

A, sA), where

• the index map Is
A : P → M assigns to each pixel p

the index of the superpixel containing p in the superpixel
map of feature representation A

• sA : M → RN assigns to each superpixel-index m the
centroid of the feature vectors FA(p) of the pixels p with
Is
A(p) = m.

The superpixel feature map, defined by F s
A = sA ◦ Is

A,
represents FA on a lower level of detail. The set of all feature
vectors in this map is given by F s

A(P) and its cardinality is
apparently limited to M .

BDFC computes a segmentation of the feature map F s
A. The

first step in (i) is training a hierarchically growing hyperbolic
self-organizing map (H2SOM [35]) with samples from the
set of feature vectors F s

A(P) (Parameters are addressed in
the Result section). A H2SOM is used in this study due to
the advantage of simultaneous clustering and dimensionality
reduction as well as its good performance even for high
dimensional data. However, other clustering algorithms for
vector quantization can in principle be applied as well. Let
UA =

{
u1
A, . . . , u

L
A

}
be the set of L prototypes computed

by the H2SOM and for 1 ≤ ` ≤ L let NA(`) be the set of
all neighbors of cluster ` in the H2SOM-topology. To compute
the initial segmentation to gain the index map Ib

A, each feature
vector in F s

A(P) is mapped to the index of its best matching
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Fig. 2. The BDFC is illustrated for the time independent feature representation. Features are extracted from an image sequence and clustered by a H2SOM [35].
Pixels belonging to one object (see the magnified starfish) are initially assigned to different clusters, as indicated by nine shades of purple/blue in the visualization
([36], [37], middle). White contours have been drawn between pixels of the starfish that belong to different clusters, to bring out the fragmentation of the
starfish. After cluster merging (right) based on proximities in the image and feature domain, most pixels of the starfish belong to one cluster.

prototype in the H2SOM clustering result:

Ib
A(p) = arg min

1≤`≤L

{∣∣F s
A(p)− u`A

∣∣} (1)

A visualization of the H2SOM result can be found in Figure 2.

To take the proximity of cluster indices in Ib
A into account

during the cluster merging procedure in step (ii), let

Ω`A =
{
p ∈ P

∣∣Ib
A(p) = `

}
(2)

for every cluster index `. Let r ∈ R with r ≥ 1 (r = 10
in this study). We call two pixels p, q close, if and only if
d∞(p, q) ≤ r. With

Ω`,kA =
{

(p, q) ∈ P2
∣∣p ∈ Ω`A, q ∈ ΩkA, d∞(p, q) ≤ r

}
we define the image proximity of two clusters ` and k by

φA(`, k) =

∑
(p,q)∈Ω`,k

A
1− d∞(p,q)

r∣∣Ω`A∣∣+
∣∣ΩkA∣∣ . (3)

Note that the choice of the parameter r is not crucial for
the cluster merging, but the restriction of the sum in the
denominator of φA(`, k) increases the computation speed of
φA(`, k). We use the parameter n ∈ N to control the number
of clusters merged in the merging process. In this paper, we
set the parameter to n = 5. We define three conditions to be
fulfilled so two clusters with indices ` and k are merged:
(A) ` is neighbor of k in the H2SOM grid-topology,

i. e. ` ∈ NA(k)
(B) the Euclidean distance d2(u`A, u

k
A) is one of the lowest n

distances d2(u`A, ·).
(C) the image proximity φA(`, k) is one of the highest n

image proximities φA(`, ·)
The clusters are merged iteratively, as described in algorithm 1,
until no clusters satisfy (A), (B) and (C). A visualization of
the final result of the BDFC-algorithm is shown in Figure 2.

B. Feature extraction

Let (I1, . . . , IT ) be an image sequence and let the mean
image I = 1/T · (I1 + · · ·+ IT ) model the background of
the scene. To compute change features, we compute a
new representation Jt from each image It, encoding the

while found clusters to merge == true do
found clusters to merge = false

for 1 ≤ k < l ≤ L do
if (A) and (B) and (C) then

found clusters to merge = true

ukA =
|Ωk|·uk

A+|Ωl|·u`
A

|Ωk|+|Ωl|
NA(k) = NA(k) ∪NA(`)
Ib
A(p) = k ∀p ∈ Ωl

end
end

end
Algorithm 1: Clusters are merged until no pair of clusters
exists that satisfies the conditions (A), (B) and (C). When
cluster l is merged to cluster k, ukA is set to the weighted
mean of the cluster centers. Moreover cluster k absorbs all
neighbors of l in the H2SOM-topology as well as all pixels
former associated to l.

pixel differences to the mean image: Jt (p) =
∣∣I (p)− It (p)

∣∣
(∀p ∈ P, 1 ≤ t ≤ T ). To account for external effects having
impact on the whole image (e. g. change in lighting) we
standardize each channel Jct (c ∈ {1, 2, 3}) of an image Jt,
i. e. we define J̃ct (p) to be the standard score of Jct (p).
To compute the change features representing the temporal
development of change at a given position, we consider the
temporal sequence at position p in channel c, defined by
J̃c(p) =

(
J̃c1(p), . . . , J̃cT (p)

)
.

To separate trend (i. e. long term signal change) from fluc-
tuation (i. e. short term signal change) we apply wavelet
transformation [38] using a Daubechies filter [38]. With WT

and WF the trend and the fluctuation computed by the
wavelet transformation and _ the concatenation of vectors
(i. e. (x1, x2)_(y1, y2) = (x1, x2, y1, y2)), we define the
feature map Ftmp by

Ftmp(p) = WT

(
J̃1(p)

)_
WF

(
J̃1(p)

)
_ WT

(
J̃2(p)

)_
WF

(
J̃2(p)

)
(4)

_ WT

(
J̃3(p)

)_
WF

(
J̃3(p)

)
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Fig. 3. Connected components of a cluster using the example of a specific
cluster `: Non-black color indicates pixels assigned to cluster `. Cluster `
consists of 4 connected components as indicated by the colors white (w),
green (g), blue (b) and red (r).

Note that Ftmp is based of time dependent feature vectors.
To compute change features that describe time invariant
change patterns, let σ be the permutation arranging the se-
quence J̃c(p) in descending order to Ĵc· :

Ĵc· =
(
J̃cσ(1)(p), . . . , J̃

c
σ(T )(p)

)
(5)

Again we use wavelet transformation and define the feature
map Fint by

Fint(p) = WT

(
Ĵ1
· (p)

)_
WF

(
Ĵ1
· (p)

)
_ WT

(
Ĵ2
· (p)

)_
WF

(
Ĵ2
· (p)

)
(6)

_ WT

(
Ĵ3
· (p)

)_
WF

(
Ĵ3
· (p)

)
C. Detecting relevant changes

To find relevant changes in the image sequence, regions
that share a particular change pattern are computed. These
regions are classified into categories and since a relevance
index is assigned to each of the categories they can be sorted,
permitting a rapid manual posterior browsing. Finally, the
time-points where changes occur are determined for every
region.

To find regions that show similar change features, we apply
BDFC to Ftmp (Figure 1) to compute merged clusters with
centers Utmp =

{
u1

tmp, . . . , u
L
tmp

}
and an index map Ib

tmp. For a
cluster ` (1 ≤ ` ≤ L) the set Ω`tmp =

{
p ∈ P

∣∣Ib
tmp(p) = `

}
is

composed of pixels showing similar change patterns, i. e. be-
longing to the same merged cluster. As shown for one example
cluster in Figure 3, a set Ω`tmp consists of a number n` of
connected components, referred to as R` =

{
R`1, . . . , R

`
n`

}
.

Note that R =
⋃

1≤`≤LR` is a segmentation of Ib
tmp into

regions.
Next, the regions computed from the time dependent feature
representation are assigned to groups of changes at different

time points, supposed to be caused by the same kind of event
(like passing of one specific species). The groups are computed
from the time independent feature representation and referred
to as change categories. We apply BDFC to Fint (Figure 1) to
compute merged clusters with centers Uint =

{
u1

int, . . . , u
K
int

}
and an index map Ib

int. Each cluster of the (time independent)
cluster indices k (1 ≤ k ≤ K) defines one change category
denoted by Ck and each region R ∈ R is assigned to a
category κ(R) by

κ(R) = arg max
1≤k≤K

∣∣{p ∈ R ∣∣Ib
int(p) = k

}∣∣ . (7)

Having regions and categories defined, an index is assigned to
every category that estimates the degree of importance for a
change. Without knowledge about the experts’ preferences, we
define the relevance based on frequency and pixel differences.
With the mass center of the categories defined by

m =
1

|R|
∑

1≤k≤K

|{R ∈ R |κ(R) = k }| · ukint (8)

the relevance r(Ck) of a category Ck is defined by

r(Ck) = d2(m,ukint).

This allows us to rank the categories Ck according to the
computed relevance. To further facilitate the non-automatic
posterior browsing, we propose additional filters like the
region size

∣∣R`i ∣∣ and the length of the prototype u`tmp. The
set of regions satisfying both filters will be denoted by R̃ ⊆ R.

Finally, all time-points where changes occur are computed
for every region R ∈ R̃. To do so, we define a measure
encoding how well a border of a region matches a contour in
the image It taken at time-point t: Let B be the set of pixels
defining the border of R. For p ∈ B, we denote with ip, op the
(well-defined) pixels in the 8-connected neighborhood from p
that lie on the line through p perpendicular to B. Note that
one of the pixels ip and op is inside R and one is outside R.
We define the coherence of B to It by

dB,t =
1

|B|
∑
p∈B

d1(It(ip), It(op)) (9)

In order to find all time-points where changes occur in the
region R, we compute a threshold τ from the sequence
dB,1, . . . , dB,T . Let σR be the permutation that brings the
sequence dB,1, . . . , dB,T in ascending order, i. e.

dB,σR(t) ≤ dB,σR(t+1) ∀1 ≤ t ≤ T − 1. (10)

With
m = arg max

1≤t≤T−1
dB,σR(t+1) − dB,σR(t), and (11)

τ =
dB,σR(m) + dB,σR(m+1)

2
(12)

we say change occurs at time-point T , if and only if dB,t > τ .
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Fig. 4. Changes identified by the algorithm. Left: Grouped changes identified by the algorithm data set 1. The most relevant category and the second most
relevant category are shown on top and bottom, respectively. Right: Changes identified by the algorithm for data set 2. All changes within the eight most
relevant categories are copied into the background image. Bounding boxes are drawn in different colors indicating different categories, (yellow = medusahead,
red = big crab, magenta = starfish, etc.).

III. RESULTS

We evaluate our method on images of the Lofoten-
Vesterålen (LoVe) ocean observatory [30]. LoVe is a fixed
marine observatory monitoring a coral reef in the Norwegian
Sea (N 68◦ 54.474′, E 15◦ 23.145′). The observatory that was
deployed in October 2013 takes one image every 60 minutes.
All images are available online at http://love.statoil.com/. In
the present paper, we evaluate the results of the algorithm
applied to 6 data sets. Each data set is a sequence of 24
images (one day). We use the same parameter settings for
each data set: The superpixel segmentation was performed
setting the weight factor (Section II-A) to 8 and the number
of superpixels to M = 12800 corresponding to a superpixel-
size of 80 pixels in average. For the H2SOM clustering, the
H2SOM with 3 rings and spread factor 8 was trained with
a random set of 0.25 · M samples. The tolerance and the
radius used during cluster merging (Section II-A) were set
to 5 and 10, respectively. For the wavelet transformation in
the feature extraction (Section II-B), we use Daubechies Filter
of length 6. See Section IV for more information on the
wavelet transformation. As proposed in Section II-C, we apply
additional filters to the categorized regions: A region R`i of
pixels mapped to the cluster center u`tmp is considered in the
evaluation if and only if (i) the size of the region is at least
400 pixels and (ii)

∣∣u`tmp

∣∣ ≥ 0.2 ·max1≤l≤L
∣∣ultmp

∣∣.
As an example Figure 4 shows changes identified by the
algorithm in 2 of the six data sets.

Figure 5 shows the precision of the algorithm in 6 data
sets, each represented by one graph: Each of the N changes
identified by the algorithm was evaluated manually either as
relevant or irrelevant. For 1 ≤ n ≤ N we denote by t(n)
the number of true positives, i. e. the number of changes
within the n most relevant changes that are labeled manually
as relevant. The precision is computed as P (n) = t(n)/n and

Fig. 5. Each graph shows the evaluation of the methods result when applied to
one of the 6 datasets. With N the number of changes found by the method in
one dataset and with n < N , the precision (i. e. the fraction of true positives
in the n most relevant changes) is plotted against n/N .

plotted against n/N . Note that the recall of the method was
not computed, as manual detection of all relevant changes is
not feasible due to the high abundance of changes in the given
image sequences and the absence of a ground truth. However,
most regions of the visual field are considered in the graphs
and the method assigns a high relevance factor to most true
positives. This indicates that most changes of interest belong to
the most relevant changes identified by the proposed method.

IV. DISCUSSION AND CONCLUSION

In this paper we have presented a change detection method
including the new BDFC algorithm, which shows the po-
tential to be used in various future image processing tasks.
The change detection method categorizes and orders various
changes present within a fixed image frame by their relevance.
Thereby, the method enables the identification of a variety
of different changes such as presence and movements of
species within images from a fixed position over time. The
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feature extraction method has some range of adaptability and
provides perspectives for future work. A possible approach
is to adapt the change detection to focus on specific species
by applying the feature extraction to feature maps instead of
images. Another approach is to switch to a multiresolution
based wavelet approach in the feature extraction to account for
changes that happen slowly overtime (e. g. a change of color
of a sessile species). However, this paper has shown that the
methods detects movements from unknown species in areas
with limited prior knowledge. With this ability, the method
has the potential to be used in a variety of image detection
scenarios without considerable individual adjustments.

ACKNOWLEDGMENT

Financial support was given by Statoil ASA, Research and
Technology, Norway

REFERENCES

[1] R. Radke, S. Andra, O. Al-Kofahi, and B. Roysam, “Image change
detection algorithms: a systematic survey,” Image Processing, IEEE
Transactions on, vol. 14, no. 3, pp. 294–307, March 2005.

[2] C. Su and A. Amer, “A real-time adaptive thresholding for video change
detection,” in Image Processing, 2006 IEEE International Conference
on, Oct 2006, pp. 157–160.

[3] J. K. Suhr, H. G. Jung, G. Li, and J. Kim, “Mixture of gaussians-based
background subtraction for bayer-pattern image sequences,” Circuits and
Systems for Video Technology, IEEE Transactions on, vol. 21, no. 3, pp.
365–370, March 2011.

[4] B. Yin, J. Zhang, and Z. Wang, “Background segmentation of dynamic
scenes based on dual model,” Computer Vision, IET, vol. 8, no. 6, pp.
545–555, 2014.

[5] A. Ferone and L. Maddalena, “Neural background subtraction for pan-
tilt-zoom cameras,” Systems, Man, and Cybernetics: Systems, IEEE
Transactions on, vol. 44, no. 5, pp. 571–579, May 2014.

[6] J. Morisette and S. Khorram, “An introduction to using generalized linear
models to enhance satellite-based change detection,” in Geoscience and
Remote Sensing, 1997. IGARSS ’97. Remote Sensing - A Scientific Vision
for Sustainable Development., 1997 IEEE International, vol. 4, Aug
1997, pp. 1769–1771 vol.4.

[7] M. J. Carlotto, “Detection and analysis of change in remotely sensed
imagery with application to wide area surveillance,” Image Processing,
IEEE Transactions on, vol. 6, no. 1, pp. 189–202, Jan 1997.

[8] C. Clifton, “Change detection in overhead imagery using neural
networks,” Applied Intelligence, vol. 18, no. 2, pp. 215–234, 2003.
[Online]. Available: http://dx.doi.org/10.1023/A%3A1021942526896

[9] T. Yamamoto, H. Hanaizumi, and S. Chino, “A change detection method
for remotely sensed multispectral and multitemporal images using 3-d
segmentation,” Geoscience and Remote Sensing, IEEE Transactions on,
vol. 39, no. 5, pp. 976–985, May 2001.

[10] F. Bovolo, L. Bruzzone, and M. Marconcini, “A novel approach to
unsupervised change detection based on a semisupervised svm and a
similarity measure,” Geoscience and Remote Sensing, IEEE Transactions
on, vol. 46, no. 7, pp. 2070–2082, July 2008.

[11] T. Celik and K.-K. Ma, “Unsupervised change detection for satellite
images using dual-tree complex wavelet transform,” Geoscience and
Remote Sensing, IEEE Transactions on, vol. 48, no. 3, pp. 1199–1210,
March 2010.

[12] F. Bovolo and L. Bruzzone, “A theoretical framework for unsupervised
change detection based on change vector analysis in the polar domain,”
Geoscience and Remote Sensing, IEEE Transactions on, vol. 45, no. 1,
pp. 218–236, Jan 2007.

[13] F. Bovolo, S. Marchesi, and L. Bruzzone, “A framework for automatic
and unsupervised detection of multiple changes in multitemporal im-
ages,” Geoscience and Remote Sensing, IEEE Transactions on, vol. 50,
no. 6, pp. 2196–2212, June 2012.

[14] L. Bruzzone and D. Prieto, “Automatic analysis of the difference image
for unsupervised change detection,” Geoscience and Remote Sensing,
IEEE Transactions on, vol. 38, no. 3, pp. 1171–1182, May 2000.

[15] ——, “An adaptive semiparametric and context-based approach to
unsupervised change detection in multitemporal remote-sensing images,”
Image Processing, IEEE Transactions on, vol. 11, no. 4, pp. 452–466,
Apr 2002.

[16] L. Bruzzone and F. Bovolo, “A novel circular approach to change
detection in pair of images extracted from image time series,” in
Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE
International, July 2014, pp. 1140–1143.

[17] R. D. Macleod and R. G. Congalton, “A quantitative comparison of
change-detection algorithms for monitoring eelgrass from remotely
sensed data,” Photogrammetric Engineering and Remote Sensing,
vol. 64, no. 3, pp. 207–216, 1998.

[18] O. Delaunoy, N. Gracias, and R. Garcia, “Towards detecting changes
in underwater image sequences,” in OCEANS 2008 - MTS/IEEE Kobe
Techno-Ocean, April 2008, pp. 1–8.

[19] K. Lebart, C. Smith, E. Trucco, and D. Lane, “Automatic indexing
of underwater survey video: algorithm and benchmarking method,”
Oceanic Engineering, IEEE Journal of, vol. 28, no. 4, pp. 673–686,
Oct 2003.

[20] K. Lebart, E. Trucco, and D. Lane, “Real-time automatic sea-floor
change detection from video,” in OCEANS 2000 MTS/IEEE Conference
and Exhibition, vol. 2, 2000, pp. 1337–1343 vol.2.

[21] M. Johnson-Roberson, O. Pizarro, and S. Williams, “Saliency ranking
for benthic survey using underwater images,” in Control Automation
Robotics Vision (ICARCV), 2010 11th International Conference on, Dec
2010, pp. 459–466.

[22] E. Vahtme, T. Kutser, J. Kotta, and M. Prnoja, “Detecting patterns and
changes in a complex benthic environment of the baltic sea,” Journal
of Applied Remote Sensing, vol. 5, no. 1, pp. 053 559–053 559–18,
2011. [Online]. Available: http://dx.doi.org/10.1117/1.3653271

[23] S. Kesler and A. Elfishawy, “Adaptive change detection in image
sequence,” in Acoustics, Speech, and Signal Processing, 1990. ICASSP-
90., 1990 International Conference on, Apr 1990, pp. 2189–2192 vol.4.

[24] Z.-S. Jain and Y. Chau, “Optimum multisensor data fusion for image
change detection,” Systems, Man and Cybernetics, IEEE Transactions
on, vol. 25, no. 9, pp. 1340–1347, Sep 1995.

[25] Toyama et al., “Wallflower: principles and practice of background
maintenance,” in Computer Vision, 1999. The Proceedings of the Seventh
IEEE International Conference on, vol. 1, 1999, pp. 255–261 vol.1.

[26] M. J. Black, D. J. Fleet, and Y. Yacoob, “Robustly estimating changes in
image appearance,” Computer Vision and Image Understanding, vol. 78,
no. 1, pp. 8–31, 2000.

[27] C. Wu, B. Du, and L. Zhang, “Slow feature analysis for change
detection in multispectral imagery,” Geoscience and Remote Sensing,
IEEE Transactions on, vol. 52, no. 5, pp. 2858–2874, May 2014.

[28] Vardaro et al., “A Southeast Atlantic deep-ocean observatory: first ex-
periences and results,” Limnology and Oceanography: Methods, vol. 11,
pp. 304–315, 2013.

[29] O. N. Canada. (2014) NEPTUNE in the NE Pacific. [Online]. Available:
http://oceannetworks.ca/installations/observatories/neptune-ne-pacific/

[30] O. R. Godø, S. Johnson, and T. Torkelsen, “The love ocean observatory
is in operation,” Marine Technology Society Journal, vol. 48(2), 2014.

[31] J. Schanda, Colorimetry: understanding the CIE system. John Wiley
& Sons, 2007.

[32] F. Murtagh, “A survey of recent advances in hierarchical clustering
algorithms,” The Computer Journal, vol. 26, no. 4, pp. 354–359, 1983.

[33] Y. Yang, Z. Ma, Y. Yang, F. Nie, and H. T. Shen, “Multitask spectral
clustering by exploring intertask correlation,” IEEE Transactions on
Cybernetics, vol. 45, no. 5, pp. 1083–1094, May 2015.

[34] Achanta et al., “Slic superpixels compared to state-of-the-art superpixel
methods,” Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 34, no. 11, pp. 2274–2282, Nov 2012.

[35] J. Ontrup and H. Ritter, “A hierarchically growing hyperbolic self-
organizing map for rapid structuring of large data sets,” in Proceedings
of the 5th Workshop on Self-Organizing Maps, Paris (France), 2005.
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