
The GIST of Aligning Faces
Siqi Yang, Arnold Wiliem, Brian C. Lovell

School of Information Technology and Electrical Engineering
The University of Queensland

siqi.yang@uq.edu.au, a.wiliem@uq.edu.au, lovell@itee.uq.edu.au

Abstract—We propose a novel supervised initialization scheme
for cascaded face alignment by searching nearest neighbors based
on global image descriptors. Unlike existing schemes which resort
to additional large training data sets for learning features, our
method does not require additional training steps; thus making
our method low computational. Moreover, we found that it is
sufficient to use a simple low-dimensional global image descriptor
that is easy to extract. In particular, in this work we use the
GIST features as our global image descriptor. The proposed
initialization scheme outperforms existing initialization schemes
for face alignment and improves on the state-of-the-art methods
on two challenging datasets, 300-W and COFW.

I. INTRODUCTION

Localizing facial landmarks, popularly referred as the face
alignment problem, has been extensively studied in recent
years. Amongst various face alignment methods, the ones
adopting the cascaded regression approach [1]–[4] appear to
be more popular as they achieve state-of-the-art results with
extremely fast running times.

Unfortunately, it has been shown recently that methods uti-
lizing regression are quite sensitive to poor initialization [1]–
[4]. In earlier works, random initialization [2]–[4] and mean
shapes [1], [5] are used as the primary initialization schemes.
However, if the randomly chosen shape or mean shape ini-
tialization is far from the target shape, the final results of
cascaded regression can be far from the target shape as well.
As such, the regression will need more cascaded stages and/or
regressors.

To that end, recent works of Yang et al. [6], [7] em-
ployed head pose information and estimated landmark loca-
tion, respectively. More specifically, both works first extract
this additional information and then calculate the K nearest
neighbor set. The landmarks from this set will become the
initialization. The head pose information is extracted using
a Convolutional Network (ConvNet) [8] and the estimated
landmark location is calculated using a Regression Forest [7].
To extract these, both schemes need to be trained using a set of
labeled data. For instance, to train the ConvNet, one requires
a set of face images with head pose information as the ground
truth. Henceforth, we categorize these as learned feature based
supervised initialization.

It has been shown that the learned feature based supervised
initialization methods can reduce the randomness of the initial
shapes which will lead to significant improvement. Unfortu-
nately, these methods need additional training steps for feature
learning and could have high computational complexity. For
instance, the ConvNet training may require several days on
a couple of powerful Graphical Processing Units (GPUs) [9].
In this work, we explore a relatively novel avenue to design
a low-cost supervised initialization scheme which does not

Fig. 1. GIST features. The right column shows the global descriptor, GIST
features, of the images in the left column. GIST features are computed by
convolving the image with multiscale-oriented filters and are displayed by
splitting the images into 4 × 4 grid. The upper row shows that the face
pointing to the left has higher magnitude of GIST features in the left regions.

require such additional training for learning features and high
computational complexity.

To this end, we also use the K nearest neighbors idea
from [6], [7]. However, we propose to use the low-dimensional
GIST features proposed in [10]. More specifically, we show
that this global descriptor is able to provide relevant spatial
information for distinguishing faces in different poses. It is
noteworthy to mention that our approach only uses simple
descriptors which do not extract dense local descriptors as
employed in [4], [7], [11] that requires much higher compu-
tational complexity.

To demonstrate the efficacy and adaptability of our proposed
GIST initialization scheme, we employ our scheme on several
state-of-the-art cascaded regression methods [1]–[4]. From our
experiments in two challenging benchmarking datasets: (1)
300-W [12] and (2) COFW [3], we find that the proposed
method generally improves on the performance of the state-
of-the-art regression methods using random and mean shape
initialization. In addition, the proposed approach is on par with
head pose initialization which has extremely high computa-
tional complexity. The efficacy of our method can be observed
from the ability of the global descriptor to capture the pose
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information (refer to Fig. 1).
We list our contributions as follows:
• We propose a low-cost supervised initialization scheme

derived from GIST features, which can determine K
initial shapes for the initialization.

• We show that by using a simple global image descriptor
it is sufficient to encode information to select the best
shapes for the initialization.

• In our evaluation, we show that our proposed initial-
ization can improve on most recent state-of-the-art face
alignment methods using random and mean shape initial-
ization; suggesting that our method is generic for face
alignment methods.

II. RELATED WORK

Cascaded pose regression methods have gained much atten-
tion in recent years due to their excellent performance with
low computational footprint. Technically, these methods use
multiple cascaded stages of regressors. Given a set of reference
landmark points as an input, that is generally represented
by shape features, each regressor will use the features to
determine the most likely landmark deformation. With a series
of deformations produced from the cascaded regressors, the
methods can infer the most likely landmark deformation given
the initial landmark input. Li et al. [2] proposed a method
named Explicit Shape Regression (ESR) that extracts shape
indexed features from the given shape features and regresses
selected discriminative pixel features using random ferns.
The landmark deformations are predicted by learning shape
indexed features in each regressor. We categorize this method
as feature learning based methods. Despite their successes,
the method is shown to struggle under occlusions and large
shape variations. To this end, the Robust Cascaded Pose
Regression (RCPR) method proposed by Burgos-Artizzu et
al. [3] performs occlusion detection and landmark estimation
at the same time. Additionally, they propose a smart restart
scheme to avoid bad initializations.

Different from feature learning based methods [2], [3], the
Supervised Descent Method (SDM) proposed by Xiong et
al. [1], models the problem as a general Non-linear Least
Square (NLS) optimization problem. In contrast to the fea-
ture learning methods, SDM directly regresses the landmark
deformations by applying linear regression on the non-linear
SIFT descriptors [13]. Following the structure of SDM, Zhu et
al. [4] builds the face alignment framework based on coarse-
to-fine shape searching (CFSS).

Clearly from the above discussions, these methods require
initialization. Unequivocally, as shown in [4], [6], [7], the
initialization step is indeed an important step for these methods
as good initialization positively affects the alignment accuracy.
Currently, there are two known initialization schemes: unsu-
pervised and supervised schemes.

The unsupervised scheme does not require additional train-
ing steps nor a training dataset. Two popular schemes are:
(1) random initialization and (2) mean shape initialization.
Methods utilizing random initialization such as [2]–[4] simply
randomly select the initial shapes from the available shapes in
the training data. However, this scheme may lead a final result
far from the target. In the other hand, mean shape initialization

TABLE I
METHODS AND THEIR PROPERTIES

Methods ESR [2] RCPR [3] SDM [1] CFSS [4]
Initialization random random mean pose random
Features pixel diff pixel diff SIFT SIFT
Regressor random ferns random ferns linear linear

may suffer from the local minimum problem in the case of bad
initializations [4]. Unfortunately, both initialization schemes
are not reliable as they might produce initial shapes that are
far away from the target ground truth shapes. To suppress the
effects from bad initializations, Burgos-Artizzu et al. [3] and
Yang et al. [14] adopt smart restarts techniques. Unfortunately,
the initialization performed from each restart is still random.
Hence, this does not fully address the issues caused by the
random initialization.

Based on the assumption that a more reliable initialization
would achieve better performance, several works propose
supervised initialization. The initialization scheme of Yang et
al. [6] is based on head pose information. Specifically, they
train a convolutional network (ConvNet) model [8] for au-
tomatically extracting the head pose information. Yang et
al. [7] propose an initialization scheme that uses the estimated
landmark locations and their reliability is provided by the
local based Regression Forest method. Both methods need
ground truth information of facial landmarks for training and
the training is enormously expensive. The above mentioned
supervised initialization schemes are learned feature based
methods.

In our work, our aim is to develop an extremely low com-
putational supervised initialization scheme which utilizes non-
learned features and has similar reliability to learned feature
based initialization. This will give us two advantages: (1) to
avoid issues suffered by the current unsupervised initialization
schemes such as random and mean shape initializations and (2)
to avoid computational and expensive additional training issues
suffered by the learned feature based supervised initialization
schemes. Perhaps the closest approach to our proposal is the
approach proposed by Hasan et al. [11] which utilize non-
learned based features. Unfortunately, their work uses a patch-
level descriptors. More specifically, they extract HOG features
from overlapping patches on the image grid which would
significantly increase the computational time. In contrast, we
use global image descriptors that are much simpler to compute.

III. METHOD

In this section, we first briefly present the general framework
of the recent cascaded face alignment methods. Then we
discuss the details of our proposed initialization scheme and
how it can be used to improve the cascaded pose regression
methods.

A. General Cascaded Face Alignment

As mentioned above, our method can be used by virtually
all cascaded regression methods, such as ESR [2], RCPR [3],
SDM [1] and CFSS [4]. These methods share a similar
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framework of cascaded pose regression, as summarized in
Algorithm 1.

Let shape s ∈ R2n be a series of coordinates of n land-
marks s = [x1, y1, · · · , xn, yn]. In general, the cascaded pose
regression starts from an initial shape s0 ∈ R2n and applies
a cascade of T regressors, R1...T , to refine the shape until the
last stage of the regression. Each regressor Rt can be designed
using various methods such as random ferns [2], [3], random
forest [15] and linear regression [1], [4]. At the t-th iteration,
features f t are extracted from the image I ∈ Rw×h based
on the shape estimated at the previous iteration st−1. Such
features are denoted as shape-indexed features. Each regressor
Rt takes shape indexed features as input and determines an
update, 4s ∈ R2n.

The current shape of the t-th iteration st is determined by
adding the shape deformation 4s to the estimated shape from
the previous iteration st−1 via:
st = st−1 +4s.

Algorithm 1 Cascaded Pose Regression (CPR)
Require: Image I , initial shape s0

Ensure: Estimated pose sT

1: for t = 1 to T do
2: Compute the shape indexed features f t from I based

on st−1

3: Apply regressor Rt and get 4s
4: Update the current pose st

5: end for

Our proposed initialization scheme automatically deter-
mines the initial shape, s0; thus, could be used by most
existing cascaded pose regression approaches.

B. Initial Shape Determination Problem
The goal of face alignment is to refine the estimated shape

sT as close as possible to the ground truth shape s∗. More
specifically, the differences between the estimated shapes sT

and the ground truth shapes s∗ can be denoted as alignment
error eA. Thus, the goal of face alignment can be regarded as
minimizing the alignment error eA:

eA = ‖sT − s∗‖22 . (1)

As stated in Algorithm 1, given images and an initial shape
s0, the regression based face alignment methods, CPR(·),
produces the estimated shapes sT :

sT = CPR(I, s0,R, T ) . (2)

where I ∈ Rw×h is the input image; s0 is the initial shape;
R(·) and T are regressors and the number of cascaded levels,
respectively.

Therefore, Equation (1) can be rewritten as:

argmin
s0,R,T

eA = ‖CPR(I, s0,R, T )− s∗‖22 , (3)

We note that although the above formulation only considers a
single initial shape, it is easy to generalize this into multiple
initial shapes problem.

As can be seen from Equation (3) that the initial shape
s0, shape indexed features f t, regressors R and the number

of regression levels T are factors that can influence the
performance of cascaded regression based face alignment. In
the light of this fact, the initial shape determination problem
primarily aims to find the initial shape, s0 that ultimately
reduces the alignment error, eA:

argmin
s0

‖CPR(I, s0,R, T )− s∗‖22 . (4)

The above optimization problem is difficult to study. To
that end, we introduce a measure called initialization error eI .
In a similar way, the initialization error eI is defined as the
difference between the initial shapes s0 and the ground truth
shapes s∗:

eI = ‖s0 − s∗‖22 . (5)

Therefore, the goal of face alignment now is to minimize the
initialization error eI with respect to the initial shapes s0:

argmin
s0

eI = ‖s0 − s∗‖22 . (6)

However, since it is impossible to obtain the ground truth
shape s∗ for a given test image I , we opt to address Equa-
tion (6) by relaxing the problem into:

argmin
g0

‖g0 − g∗‖22 , (7)

where g0 and g∗ are the global descriptors extracted from an
image from the training set and the testing image, respectively.
Notice that the above problem can be solved because in
contrast to the ground truth shape, s∗ which is impossible
to be automatically determined, the g∗ can be easily extracted
from the test image.

C. GIST Initialization for Cascaded Face Alignment

1) GIST Features: The GIST features are computed by
convolving the oriented filters with the image at different
orientations and scales. The filters are Gabor filters tuned to 8
orientations at 4 different scales. We divide the image into a
4×4 grid, and compute the average energy of each channel in
each grid cell, giving us 8× 4× 4× 4 = 512 features. In this
way, the high-frequency and low-frequency repetitive gradient
directions of an image can be measured. Consequently, GIST
descriptor is appropriate for selecting matching images that
have a similar spatial composition. A visualization of GIST
features can be seen from the right columns in Figure 1. The
GIST features are displayed in the 4 × 4 grid and each grid
cell shows the GIST features corresponding to 8 orientations
and 4 scales. Figure 1 suggests that faces with similar poses
would share similar spatial composition. Therefore, we use
GIST features as the global descriptors to represent each face.

In order to eliminate the effects of the background, we crop
the face by specifying a face bounding box bb ∈ R4 around the
face. Such a face bounding box is usually provided by a face
detector. In addition, in order to be robust to illumination, we
normalize the cropped-face by following the methods provided
by [16] [17]. We denote the resulting global feature vector
g∗ ∈ R512 derived from the normalized cropped-face Icrop
by

g∗ = gist(Icrop) . (8)
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Fig. 2. GIST features of two images with similar head pose information are
displayed on the right column. We see that the magnitude may be affected
by illumination.

2) GIST Initialization: We wish to improve the cascaded
regression method by using a low-cost supervised initialization
scheme. Our main idea is to utilize the GIST features to
encode the head pose information. Assuming that we have a
large set of images with their corresponding landmarks, we
could simply employ nearest neighbor search in the GIST
feature space. This step effectively minimizes the optimization
problem presented in Equation (7).

However, from our empirical observations, we found that
the `2 norm used in Equation (7) may not be accurate. This
is because, the effect of the illumination between two faces
with similar head pose could have high `2 distance due to
the magnitudes of the GIST features. Figure 2 shows some
examples. Thus, we opt to use the correlation metric that
changes (1) into:

argmax
g0

corr(g0, g∗) , (9)

where corr(g0, g∗) is defined via:

corr(g0, g∗) =
cov(g0, g∗)

σg0σg∗
, (10)

where cov means covariance and σ is the deviation. The
correlation can predict how the test image and training images
are related.

We first extract the GIST features from each image in the
training set. Let, G = {g1 · · · gm} be the set of GIST features
extracted from each image in the training image. Inspired
from [6], [7], [11], in order to increase the initialization
reliability, we opt to use K nearest neighbors instead of the
nearest neighbor:

{s0k}Kk=1 = Knn({Ci}i=m
i=1 ,K) , (11)

where Ci is defined as:

Ci = corr(gi, g
∗), gi ∈ G . (12)

In Figure 3 , for each query image on the left, we show the 5
nearest neighbors on the right. From the figure, we can clearly
see that the returned faces have similar pose and expressions

Fig. 3. Query faces (first column) and corresponding four nearest neighbors
(columns: 2-5). This figure demonstrates that the nearest neighbors based on
GIST features have similar pose to query faces. The 3rd column shows the
furthest neighbor of each query, which often has the opposite pose.

to the query image to some extent. From this analysis, one
can see that similar spatial compositions of images can infer
similar shapes of faces.

After the KNN searching, we feed the CPR methods with
multiple initial shapes and take the average of the predicted
shapes as the final estimate:

sT =
1

K

K∑
k=1

CPR(I, s0k, R, T ) (13)

The proposed cascaded regression using GIST initialization
scheme is summarized in Algorithm 2.

Algorithm 2 GIST Initialization for Cascaded Regression
Require: Query image I , face bounding box bb, GIST fea-

tures of the training set, G, number of nearest neighbors K,
the cascaded regression function CPR and its pre-trained
model including R and T

Ensure: Estimated pose sT

1: Icrop = crop(I, bb) . Crop face
2: g∗ = gist(Icrop) . Extract GIST features
3: Ci = corr(g∗, gi), gi ∈ G . Calculate correlation of

GIST features between I and each training exemplar
4: {s0k}Kk=1 = Knn({Ci}i=m

i=1 ,K) . Choose multiple initial
shapes by KNN

5: sT = 1
K

∑K
k=1 CPR(I, s

0
k, R, T ) . Compute cascaded

pose regression with chosen {s0k}Kk=1 as Algorithm 1

IV. EXPERIMENTS AND RESULTS

We first describe dataset and implementation details. Then
the experimental results and discussions are presented.
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A. Datasets

In our work, we use two challenging face landmark datasets:
(1) 300 Faces in-the-wild (300-W) [12] and (2) Caltech
Occluded Faces in the Wild (COFW) [3].
300-W dataset [12] — is created for Automatic Facial
Landmark Detection in-the-wild Challenge [12]. This dataset
standardizes several popular alignment datasets, including
AFW, LFPW, HELEN and XM2VTS with 68-point landmark
annotations. In addition, the 300-W dataset contains a new
challenging set called iBUG comprising 135 images. In order
to compare with the recent methods, we follow the experiment
setting of [4]. More specifically, we regard all the training
images from HELEN, LFPW and the whole AFW as the
training set (3148 images in total). The testing set consists of
test images from HELEN (330 images), LFPW (224 images)
and images in the iBUG subset (135 images), with 689 images
in total.
COFW [3] — is a dataset designed to depict faces in real-
world conditions with partial occlusions [3]. Due to differences
in pose, expression, hairstyle, and use of accessories or inter-
actions with other objects, the face images show large variation
in shape and occlusions. The COFW dataset comprises 1007
images annotated by 29 landmarks. The training set includes
845 LFPW faces [18] + 500 COFW faces, that is 1345
images in total. The test set contains the remaining 507 COFW
faces. The 29 landmarks of each image are labeled with their
occluded/unoccluded state as well.

B. Implementation Details

We contrast our proposed initialization scheme, GIST ini-
tialization, with several recent initialization schemes: (1) ran-
dom initialization; (2) mean shape initialization; (3) head
pose initialization and (4) random forest initialization. We
apply these schemes on the state-of-the-art cascaded regression
methods such as ESR [2], RCPR [3], CFSS [4], SDM [1]. For
RCPR and ESR, for which the code for training is available,
we retrain the model on the training images of 300-W using
all the 68 facial landmarks. For RCPR, we set the occlusion
information as 0 since the occlusion status annotation of 300-
W dataset is not available. CFSS provides both the training and
test codes, and a pre-trained model on the 300-W dataset as
well, so we apply it directly to the test images. For SDM, the
original paper only provides the trained models with test codes.
Fortunately, since CFSS shares a similar regression method to
SDM, the CFSS implementation could be modified to evaluate
the SDM performance.

For fair comparisons, all of the methods we evaluate use
the same face bounding boxes for both training and testing.
We use the face bounding boxes provided by both datasets.

For evaluation, we follow the popular evaluation scheme us-
ing the landmark mean error. More specifically, the alignment
error and initialization error in (1) and (5) are normalized by
the inter-ocular distance, i.e. the Euclidean distance between
two eye centers. We do not report the result of CFSS using
the mean shape initialization as CFSS requires multiple initial
shapes.

In addition, we use default parameters for every method
(i.e., we set R and T according to the recommended values by

Fig. 4. Results on 300-W dataset, compared with ESR [2], RCPR [3], SDM
[1] and CFSS [4].

the authors). The only parameter our system has is the number
of nearest neighbors, K. In this case, we set K = 10 for all
evaluated methods.

Our proposed initialization scheme is contrasted with the
existing initialization schemes: (1) random initialization; (2)
mean shape initialization [1]; (3) head pose initialization [6]
and (4) random forest initialization [7]. For head pose initial-
ization, we directly use the ground truth head pose information
of their work [6] as the features of the head pose initialization
scheme. Based on this, the errors caused by their ConvNet
pose estimator [6] may be eliminated.

As COFW dataset offers much more challenging problem
related to occlusions, most systems do not perform well. To
that end, we only perform the evaluation of RCPR which
is specifically designed to address the posed COFW dataset
problem. Since the COFW dataset randomly overlaps the
face bounding boxes by 80% to simulate the output of a
face detector, we use the ground truth bounding boxes for
training images and leave the overlapped bounding boxes
for test images as a fair comparison. To show that our
proposed initialization scheme can be used on the occlusion
dataset, COFW, we compare our work with the random forest
initialization which is tested in COFW as well. Since head
pose initialization [6] doesn’t estimate results on COFW, we
do not compare with this scheme here.

C. Evaluation on 300-W Dataset
On this dataset, we evaluate the performance of four meth-

ods from the cascaded pose regression family 1) the ESR [2];
2) the RCPR [3]; 3) the SDM [1]; 4) the CFSS [4] using
various initialization schemes. The experimental settings are
configured as discussed above.

As can be seen from Figure 4, our proposed initialization
scheme outperforms the unsupervised schemes such as random
and mean pose initializations on all methods. It suggests that
our proposed initialization approach can be used for general
cascaded regression methods. It is worth noting that the
performance of our GIST initialization scheme is competitive
with head pose based initialization which requires enormous
computing power as well as additional expensive training. This
means our proposed initialization scheme can provide compet-
itive results with markedly lower computation. In addition, our
initialization scheme does not need the additional training and
dataset collection.
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TABLE II
INITIALIZATION ERROR ANALYSIS WITH RCPR [3]

Initialization Error Alignment Error
eI (%) eA (%)

Random Initialization 38.56 6.37
Mean Shape Initialization 29.20 6.27
Head Pose Initialization 18.54 6.06
GIST Initialization (proposed) 19.24 6.06

TABLE III
COMPARISONS ON COFW DATASET WITH RCPR [3]

Alignment Error
eA (%)

Random Initialization 8.51
Random Forest Initialization 8.62
Mean Shape Initialization 7.615
GIST Initialization (proposed) 7.64

It can also be seen from the results of ESR and RCPR that
with GIST initialization, ESR can obtain a similar result with
RCPR without using re-start scheme. It shows that with good
initialization, the face alignment methods do not need the help
of re-start.

In order to further study the influence of each initialization
scheme, we evaluate the initialization error eI according to (5).
We present the results using RCPR in Table 2. We note that
the results from other methods are similar. Hence, they are
not shown. It can be clearly seen from Table II that when the
initialization error eI decreases, the alignment error eA will
decrease; showing the close relationship between initialization
and alignment errors.

D. Evaluation on COFW

As can be seen from Table III, random forest initializa-
tion does not perform better than random initialization as
reported in their original paper [7]. Whereas, the proposed
GIST initialization scheme outperforms both random and
random forest initializations. As can be seen, our proposed
initialization scheme can also show competitive results on
this very challenging dataset which is designed to depict
faces in real-world conditions with partial occlusions. When
compared with the mean shape initialization, we notice that
our GIST initialization can get only a competitive result.
It is because we average the occlusion information of the
training set for the mean shape initialization, whereas our
initialization scheme only provides head pose information
without considering the occlusions. Additionally, in our case,
the global image descriptor is used as feature space for KNN.
Occlusions tend to modify this feature space such that similar
head poses might not be close in the feature space, providing
bad initializations.

E. Run-time Analysis

We record the run-time performance of our GIST initializa-
tion on a standard 3.40GHz CPU machine using non-optimized
MATLAB implementation. For 300-W dataset which includes
3148 images, the run-time of extracting GIST features for all
the images in the training set is 20 minutes. At test stage, the

GIST initialization takes 0.381s for each query image. How-
ever, the head pose initialization, which achieves competitive
performance as ours, completes their training of ConvNet in 2
hours on Tesla K40c GPU. The forward propagation of their
network takes 0.3ms per image [6].

V. CONCLUSION

In this work, we presented a novel initialization scheme
based on global descriptors, GIST features, to improve the
state-of-the-art face alignment methods. The GIST initializa-
tion scheme chose K initial shapes by the nearest neighbor
scheme. The searching was based on the correlation of GIST
features between the query image and the candidate images in
the training set. In our work, we found that GIST features are
effective in capturing head pose information; thus, eliminating
additional training steps to extract head pose information.
We compared our proposed initialization scheme with several
recent initialization schemes on top of the state-of-the-art face
alignment methods. The results show that our proposed initial-
ization scheme can outperform recent initialization schemes as
well as achieve high efficiency.

In the future, we will study the performance of other global
descriptors for this purpose.
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