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Abstract

People detection in single 2D images has improved

greatly in recent years. However, comparatively little

of this progress has percolated into multi-camera multi-

people tracking algorithms, whose performance still de-

grades severely when scenes become very crowded. In this

work, we introduce a new architecture that combines Con-

volutional Neural Nets and Conditional Random Fields to

explicitly model those ambiguities. One of its key ingredi-

ents are high-order CRF terms that model potential occlu-

sions and give our approach its robustness even when many

people are present. Our model is trained end-to-end and we

show that it outperforms several state-of-the-art algorithms

on challenging scenes.

1. Introduction

Multi-Camera Multi-Target Tracking (MCMT) algo-

rithms have long been effective at tracking people in com-

plex environments. Before the emergence of Deep Learn-

ing, some of the most effective methods relied on simple

background subtraction, geometric and sparsity constraints,

and occlusion reasoning [12, 6, 1]. Given the limited dis-

criminative power of background subtraction, they work

surprisingly well as long as there are not too many people in

the scene. However, their performance degrades as people

density increases, making the background subtraction used

as input less and less informative.

Since then, Deep Learning based people detection algo-

rithms in single images [23, 19, 28] have become among the

most effective [28]. However, their power has only rarely

been leveraged for MCMT purposes. Some recent algo-

rithms, such as the one of [27], attempt to do so by first

detecting people in single images, projecting the detections

into a common reference-frame, and finally putting them

into correspondence to achieve 3D localization and elimi-

nate false positives. As shown in Fig. 1, this is prone to er-

rors for two reasons. First, projection in the reference frame

is inaccurate, especially when the 2D detector has not been

specifically trained for that purpose. Second, the projection

is usually preceded by Non Maximum Suppression (NMS)

on the output of the 2D detector, which does not take into

account the multi-camera geometry to resolve ambiguities.

Ideally, the power of Deep Learning should be combined

with occlusion reasoning much earlier in the detection pro-

cess than is normally done. To this end, we designed a joint

CNN/CRF model whose posterior distribution can be ap-

proximated by Mean-Field inference using standard differ-

entiable operations. Our model is trainable end-to-end and

can be used in both supervised and unsupervised scenarios.

More specifically, we reason on a discretized ground

plane in which detections are represented by boolean vari-

ables. The CRF is defined as a sum of innovative high-

order terms whose values are computed by measuring the

discrepancy between the predictions of a generative model

that accounts for occlusions and those of a CNN that can in-

fer that certain image patches look like specific body parts.

To these terms, we add unary and pairwise ones to increase

robustness and model physical repulsion constraints.

To summarize, our contribution is a joint CNN/CRF

pipeline that performs detection for MCMT purposes in

such a way that NMS is not required. Because it explic-

itly models occlusions, our algorithm operates robustly even

in crowded scenes. Furthermore, it outputs probabilities of

presence on the ground plane, as opposed to binary detec-

tions, which can then be linked into full trajectories using a

simple flow-based approach [6].

2. Related Work

In this section, we first discuss briefly recent Deep

Learning approaches to people detection in single images.

We then move on to multi-image algorithms and techniques

for combining CNNs and CRFs.

2.1. Deep Monocular Detection
As in many other domains, CNN-based algorithms [23,

19, 22] have become very good for people detection in sin-
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RCNN-2D/3D POM-CNN Ours

Figure 1. Multi-camera detection in a crowded scene. Even though there are 7 cameras with overlapping fields of view, baselines inspired by

earlier approaches—-RCNN-2D/3D by [27] and POM-CNN by [12], as described in Section 7.2—both generate false positives denoted by

red rectangles and miss or misplace a number of people, whereas ours does not. This example is representative of the algorithm’s behavior

and is best viewed in color. Please see supplementary material for results on a video sequence.

gle images and achieve state-of-the-art performance [28].

Algorithms in this class usually first propose potential can-

didate bounding boxes with scores assigned to them. They

then perform Non-Maximum Suppression (NMS) and re-

turn a final set of candidates. The very popular method

of [23] performs both steps in a single CNN pass through

the image. It returns a feature map in which a feature vector

of constant dimension is associated to each image pixel. For

any 2D bounding-box of any size in that image, a feature

vector of any arbitrary dimension can then be computed us-

ing Region Of Interest (ROI) pooling and fed to a classifier

to assess whether the bounding box does indeed correspond

to a true detection.

While this algorithm has demonstrated its worth on many

benchmarks, it can fail in crowded scenes such as the one of

Fig. 1. This is perennial problem of single-image detectors

when people occlude each other severely. One solution to

this problem is to rely on cameras with overlapping fields

of view, as discussed below.

2.2. Multi­Camera Pedestrian Detection

Here, we distinguish between recent algorithms that rely

on Deep Learning but do not explicitly account for occlu-

sions and older ones that model occlusions and geometry

but appeared before the Deep Learning became popular.

Our approach can be understood as a way to bring together

their respective strengths.

The recent algorithm of [27] runs a monocular detec-

tor similar to the one of [23] on multiple views and in-

fers people ground locations from the resulting detections.

However, this method is prone to errors both because the

2D detections are performed independently of each other

and because combining them by projecting them onto the

ground plane involves reprojection errors and ignores oc-

clusions. Yet, it is representative of the current MCMT

state-of-the-art and is benchmarked against much older al-

gorithms [12, 6] that rely on background subtraction instead

of a Deep Learning approach.

These older algorithms use multiple cameras with over-

lapping fields of view to leverage geometrical or appearance

consistency across views to resolve the ambiguities that

arise in crowded scenes and obtain accurate 3D localisa-

tion [12, 1, 21]. They rely on Bayesian inference and graph-

ical models to enforce detection sparsity. For example, the

Probabilisitic Occupancy Map (POM) approach [12] takes

background subtraction images as input and relies on Mean

Field inference to compute probabilities of presence in the

ground plane. More specifically, given several cameras with

overlapping fields of view of a discretized ground plane,

POM first performs background subtraction. It then uses

a generative model that represents humans as simple rect-

angles in order to create synthetic ideal images that would

be observed if people were at given locations. Under this

model of the image given the true occupancy, it approxi-

mates the probabilities of occupancy at every location using

Mean Field inference. Because the generative model ex-

plicitly accounts for occlusions, POM is robust and often

performs well. But it relies on background subtraction re-

sults as its only input, which is not discriminative enough

when the people density increases, as shown in Fig. 1. The

algorithm of [1] operates on similar principles as POM but

introduces more sophisticated human templates. Since it

also relies on background subtraction, it is subject to the

same limitations when the people density increases. And

so is the algorithm of [21] that introduces a more complex

Bayesian model to enhance the results of [1].

2.3. Combining CNNs and CRFs

Using a CNN to compute potentials for a Conditional

Random Field (CRF) and training them jointly for struc-

tured prediction purposes has received much attention in re-

cent years [18, 10, 11, 29, 2, 15, 17, 3]. However, properly

training the CRFs remains difficult because many interest-

ing models yield intractable inference problems. A popular

workaround is to optimize the CRF potentials so as to mini-

mize a loss defined on the output of an inference algorithm.

Back Mean-Field [11, 29, 2, 17] has emerged as a promis-

ing way to do this. It relies on the fact that the update steps
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during Mean-Field inference are continuous and paralleliz-

able [4]. It is therefore possible to represent these opera-

tions as additional layers in a Neural Network and back-

propagate through it. So far, this method has mostly been

demonstrated either for toy problems or for semantic seg-

mentation with attractive potentials, whereas our approach

also requires repulsive potentials.

3. Modeling Occlusions in a CNN Framework

The core motivation behind our approach is to properly

handle occlusions, while still leveraging the power of CNNs

and on perfectly calibrated, fixed cameras. To do so, we

must model the interactions between multiple people who

occlude each other but may not be physically close to each

other. Our solution is to introduce an observation space;

a generative model for observations given where people are

located in the ground plane; and a discriminative model that

predicts expected observations from the images. We then

define a loss function that measures how different the CNN

predictions are from those generated by the model. Finally,

we use a Mean-Field approach with respect to probabilities

of presence in the ground plane to minimize this loss. We

cast this computation in terms of minimizing the energy of

a Conditional Random Field in which the interactions be-

tween nodes are non-local because the people who occlude

each other may not be physically close, which requires long

range high-order terms.

In the remainder of this section, we first introduce the

required notations to formalize our model. We then define

a CRF that only involves high-order interaction potentials.

Finally, we describe a more complete one that also relies on

unary and pairwise terms.

3.1. Notations

We discretrize the ground plane in grid cells and intro-

duce Boolean variables that denote the presence or absence

of someone in the cell. Let us therefore consider a dis-

cretized ground plane containing N locations. Let Zi be

the boolean variable that denotes the presence of someone

at location i. Let us assume we are given C RGB images

Ic of size Hc ×W c from multiple views 1 ≤ c ≤ C and

I = {I1, . . . , IC}. For each ground plane location i and

camera c, let the smallest rectangular zone containing the

2D projection of a human-sized 3D cylinder located at i be

defined by its top-left and bottom-right coordinates T c
i and

Bc
i . For a pixel k ∈ {1, . . . , Hc} × {1, . . . ,W c}, let Lc

k be

the set of such projections that contain k.

We also introduce a CNN that defines an operator

F(·; θF ), which takes as input the RGB image of camera

c and outputs a feature map Fc = F(Ic; θF ), where θF de-

notes the network’s parameters. It contains a d-dimensional

vector Fc
k for each pixel k.

LEARNING

INFERENCE

Generative Model

Discriminative Model
Figure 2. Schematic representation of our High-Order potentials

as described in Section 3.2.2. See supplementary material.

3.2. High­Order CRF
We take the energy of our CRF to be a sum of High-

Order potentials ψ
c,k
h , one for each pixel. They handle

jointly detection, and occlusion reasoning while removing

the need for Non-Maximum Suppression. Each of these po-

tentials use Probability Product Kernels [13] to represent

the agreement between a generative model and a discrimi-

native model over the observation space, at a given pixel,

as depicted in Fig. 2. We therefore write

P (Z; I) =
1

Z
expψh(Z;F(I; θF )) , (1)

ψh(Z;F) =
∑

1≤c≤C,k∈{1,...,Hc}×{1,...,W c}

ψ
c,k
h (Z;Fc

k) .

Assuming we know the values of the occupancy variables

Z, the generative model computes distributions over the set

of observations. For each pixel in each image, it computes a

distribution over possible 2D vectors representing observed

bounding-box regions. To this end, it considers the loca-

tions such that Zi = 1, crossing the corresponding line of

sight, and uses the simple generative occlusion model de-

scribed below. This results in images whose pixels are vec-

tors representing a distribution of 2D vectors, the observa-

tions, as depicted in the top row of Fig 2. Our discrimina-

tive model relies on a CNN which tries to predict similar

distributions of 2D vectors, directly by looking at the im-

age. For ease of understanding, we first present in more

details a simple version of our High-Order potentials ψ
c,k
h .

It assumes that our observations are zeros and ones at ev-

ery pixel. The discriminative model therefore acts much as

the background subtraction algorithms used in [12] did. We

then extend them to take into account the 2D vector output

of our discriminative model.
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3.2.1 Simple Generative Model

We first introduce a binary observation variable Xc
k ∈

{0, 1} over which we define two distributions P g and P d

produced by the generative and discriminative model re-

spectively. We take the distribution P g to be

P g(Xc
k = 1|Z) = 0, if Zi = 0 ∀i ∈ Lc

k , (2)

P g(Xc
k = 1|Z) = 1 otherwise,

and the discriminative one P d to be P d(Xc
k|F

c
k) =

fb(F
c
k; θb), where F c

k is the d-dimensional feature vector

associated to pixel k introduced above and fb is a Multi-

Layer Perceptron (MLP) with weights θb. In other words,

fb plays the role of a CNN-based semantic segmentor or

background-subtraction.

For each pixel, we then take the high-order potential to
be the dot product between the distributions

ψ
c,k
h (Z;Fc

k) = µh log

∫

Xc

k
∈ {0, 1}

P
g(Xc

k|{Zi}i∈Lc

k
)P d(Xc

k|F
c
k) , (3)

as in the probability product kernel method of [13]. Intu-

itively, ψ
c,k
h is high when the segmentation produced by the

network matches the projection of the detections in each

camera plane using the simple generative model of Eq. 2.

µh is an energy scaling parameter.

3.2.2 Full Generative Model

The above model correctly accounts for occlusions and ge-

ometry but ignores much image information by focusing on

background / foreground decisions. To refine it, we model

the part of the bounding-box a pixel belongs to rather than

just the fact that it belongs to a bounding-box. To this end,

we redefine the Boolean auxiliary variable Xc
k as

~Xc
k ∈ {0} ∪ R

2 , (4)

where the label 0 represents background as before, and a la-

bel in R
2 denotes the displacement with respect to the center

of the body of the visible person at this pixel location.

To extend the simple model and account for what part
of a bounding-box pixel k belongs to if it does, we sample

from the distribution P g( ~Xc
k|{Zi}i∈Lc

k
). To this end, let us

assume without loss of generality that the Lc
k are ordered

by increasing distance to the camera, as shown in the top

left corner of Fig. 2. We initialize the variables ~Xc
k to 0.

Then, for each i in Lc
k such that Zi = 1, we draw a boolean

random variable Oi with fixed expectancy o. If Oi = 1,
then

~Xk = ~x
i
k , (5)

=

(
kx − 0.5(T c

i x +Bc
i x)

Bc
i x

− T c
i x

;
ky − 0.5(T c

i y +Bc
i y)

Bc
i y

− T c
i y

)
,

that is, the relative location of pixel k with respect to the

projection of detection i in camera c, as depicted in the up-

per right corner of Fig. 2.

We define the distribution P d( ~Xk|F
c
k) as an M -Modal

Gaussian Mixture

P
d( ~Xk = 0) = fb(F

c
k ; θb) , (6)

P
d( ~Xk| ~Xk 6= 0) =

∑

1≤m≤M

fh(F
c
k ; θh)mN ( ~Xk − αm;σm) ,

as depicted in the bottom right corner of Fig. 2. As a re-

sult, P d( ~Xk = 0) is the same as in the simple model but

P d( ~Xk| ~Xk 6= 0) encodes more information. (αm, σm) are

Gaussian parameters learned for each modem. fh is a MLP

parametrized by θh that outputs M normalized real proba-

bilities where M is a meta-parameter of our model. Simi-

larly, fb(F
c
k; θb) is a background probability.

Finally, as in Eq. 3, we take our complete potential to be

ψ
c,k
h (Z;Fc

k) = µh log

∫

~Xk ∈ {0} ∪ R
2

P
g( ~Xk|{Zi}i∈Lc

k
)P d( ~Xk|F

c
k) . (7)

3.3. Complete CRF
To increase the robustness of our CRF, we have found it

effective to add, to the high-order potentials of Eq. 1, unary
and pairwise ones to exploit additional image information.
We therefore write our complete CRF model as

P (Z; I) =
1

Z
expψ(Z;F) , (8)

ψ(Z;F) = ψh(Z;F) +
∑

i≤N

ψ
i
u(Zi;F) +

∑

i≤N,j≤N

ψp(Zi, Zj),

where ψh is the high-order CRF of Eq. 1, the ψi
u are unary

potentials, and ψp pairwise ones, which we describe below.

3.3.1 Unaries

The purpose of our unary potentials is to provide a prior

probability of presence at a given location on the ground,

before considering the occlusion effect and non maximum

suppression. For each location i and camera c, we use a

CNN fu(T
c
i , B

c
i ,F

c), with parameters θu, which outputs a

probability of presence of a person at location i. fu works

by extracting a fixed size feature vector from the rectan-

gular region defined by T c
i , B

c
i in Fc, using an ROI pooling

layer [23]. A detection probability is finally estimated using

an MLP. Estimates from the multiple cameras are pooled

through a max operation

ψi
u(Zi;F) = µuZi max

c
log

fu(T
c
i , B

c
i ,Fc)

1− fu(T c
i , B

c
i ,Fc)

, (9)

where µu is a scalar that controls the importance of unary

terms compared to others.
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3.3.2 Pairwise

The purpose of our pairwise potentials is to represent the

fact that two people are unlikely to stand too close to each

others. For all pairs of locations (i, j), let E
i,j
p = Ep[|xi −

xj |; |yi − yj |], where Ep is a 2D kernel function of of pre-

defined size. We write

ψp(Zi, Zj) = −Ei,j
p ZiZj (10)

for locations that are closer to each other than a predefined

distance and 0 otherwise.

4. Inference and Derivation

Given the CRF of Eq. 8 and assuming all parameters

known, finding out where people are in the ground plane

amounts to minimizing ψ with respect to Z, the vector of

binary variables that indicates which ground locations con-

tain someone, which amounts to computing a Maximum-

a-Posteriori of the posterior P . Instead of doing so di-

rectly, which would be intractable, we use Mean-Field in-

ference [26] to approximate P by a fully-factorised distri-

butionQ. As in [12], this produces a Probability Occupancy

Map, that is, a probability of presence Q(Zi = 1), at each

location, such as the one depicted by Fig. 3.

(a) (b)

Figure 3. Output. (a) Given a set of images of the same scene,

ours algorithm produces a Probabilistic Occupancy Map, that is, a

probability of presence at each location of the ground plane. Red

values indicate probabilities close to 1 and blue ones values close

to zero. (b) Because the probabilities are very peaked, they can

easily be thresholded to produce detections whose projections are

the green boxes in the original image(s).

To perform this minimization, we rely on the natural-
gradient descent scheme of [4]. It involves taking gradient
steps that are proportional to

∇ηi = EQ [(ψ(Z,F)) |Zi = 1]−EQ [(ψ(Z,F)) |Zi = 0] , (11)

for each location i. The contribution to ∇ηi
of the unaries

derives straightforwardly from Eq. 9. Similarly, the one of
the pairwise potentials of Eq. 10 is

(∇ηi)p = −
∑

j

E
i,j
p Qj(Zj = 1) , (12)

= −
∑

j

Ep[|xi − xj |, |yi − yj |]Qj(Zj = 1) ,

which can be implemented as a convolution over the current

estimate of the probabilistic occupancy map Q with the two

dimensional kernel Ep[., .]. This makes it easy to unroll the

inference steps using a Deep-Learning framework.

Formulating the contributions of the higher-order terms
of Eq. 7 is more involved and requires simplifications. We
first approximate the Gaussians used in Eq. 6 by a func-
tion whose value is 1 in Bm and ǫ elsewhere, where Bm

is the rectangle of center αm and half-size 3σm. Note that
this approximation is only used for inference purposes, and
that during training, it keeps its original Gaussian form. We
then threshold the Gaussian weights fh resulting in the bi-

nary approximation f̃h. This yields a binary approxima-

tion P̃ d( ~Xk) of P d( ~Xk). Note that the corresponding ap-

proximate potential ψ̃
c,k
h (Z,Fc

k) can be either O(log ǫ), if

P ( ~Xk, bk = 1;Z) = 0 for all ~Xk such that P d( ~Xk) > ǫ or

O(log(1)). Hence, the configurations where ψ
c,k
h (Z,Fc

k) =
O(log ǫ) will dominate the others when computing the ex-
pectancies. This yields the approximation of Eq. 11,

∇̃ηi = −C(EQ [∆(Z)|Zi = 1]− EQ [∆(Z)|Zi = 0]) , (13)

where C = −logǫ is a constant and ∆(Z) is a binary ran-

dom variable, which takes value 1 if ψ̃
c,k
h (Z,Fc

k) = 0, and

0 otherwise. Note that ψ
c,k
h (Z,Fc

k) = O(log(1)) iff

∃i ≤ N,m ≤M s.t f̃h(F
c
k ; θh)m = 1 and ~X

i
k ∈ Bm . (14)

This means that for each pixel k, given a thresholded out-

put from the network f̃h(F
c
k; θh), we obtain a list of compat-

ible explanations Ck ⊂ {1, . . . , N} such that pixel k defines

a very simple pattern-based potential of the form 1 if Zi =
0 ∀i ∈ Ck, 0 otherwise, which is similar to the potentials

used in the Mean-Fields algorithms of [25, 12, 16, 2, 5]. In

the supplementary material, we see how this operation can

be implemented efficiently using common Deep-Learning

operations and integral-images.

5. Training

We now show how our model can be trained first in a

supervised manner and then in an unsupervised one.

5.1. Supervised Training

Let us first assume that we observe D data points

(Z0, I0), . . . , (ZD, ID), where Id represents a multi-view

image and Zd the corresponding ground truth presences.

The purpose of training is then to optimize the network pa-

rameters θF , θu, θh defined in Sections 3.1, 3.3.1 and 3.2.2

respectively, the gaussian parameters α, σ of Eq. 6 and the

energy-scaling meta-parameters µu, µh of Eqs. 9 and 3 to

maximize
∑
d≤D

logP (Zd; Id). It cannot be done directly

using Eq. 8 because computing the partition function Z is

intractable.
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Back Mean-Field An increasingly popular work-around

is to optimize the above-mentioned parameters to ensure

that the output of the Mean-Field inference fits the ground

truth. In other terms, let QθF ,θu,θh,α,σ(Z; I) be the distribu-

tion obtained after inference . We look for

argmax
θF ,θu,θh,α,σ

∑

(Zd,Id)

logQθF ,θu,θh,α,σ(Z = Zd; Id) . (15)

Since QθF ,θu,θh,α,σ(Z = Zd; Id) is computed via a se-

quence of operations which are all differentiable with re-

spect to the parameters θF , θu, and θh, it is therefore possi-

ble to solve Eq. 15 by stochastic gradient descent [11, 29].

Pre-training However, it still remains difficult to opti-

mize the whole model from scratch. We therefore pre-train

our potentials separately before end-to-end fine-tuning.

More precisely, the CNN fu that appears in the unary terms

of Eq. 9 is trained as a standard classifier that gives the

probability of presence at a given location, given the pro-

jection of the corresponding bounding-box in each camera

view. For each data point, this leaves the high-order terms

for which we need to optimize

∑

c

∑

k∈Pc

log(ψc,k
h (Zd,Fc

k)) , (16)

with respect to the parameters of the Gaussian Mixture net-

work θh, α, and σ. We use Jensen’s inequality to take our

generative distribution P g out of the integral in Eq. 7 and

approximate it by random sampling procedure described in

Section 3.2.2. We rewrite the set of samples for ~Xc
k from all

the pixels from all the cameras from all the data-points as

S(Z0, . . . , ZD). The optimization objective of Eq. 16 can

then be rewritten as

∑

~xs∈S(Z0,...,ZD)

log(P d(~xs|F
c
k, θh, α, σ)) , (17)

which is optimized by alternating a standard stochastic gra-

dient descent for the θh parameters and a closed form batch

optimization for α, σ. This procedure is similar to one of-

ten used to fit a Mixture of Gaussians, except that, during

the E-Step, instead of computing the class probabilities di-

rectly to increase the likelihood, we optimise the parameters

of the network through gradient descent. More details are

provided in the supplementary material.

This pre-training strategy creates potentials which are

reasonable but not designed to be commensurate with each

others. We therefore need to choose the two energy param-

eters scalars µu, and µh, via grid-search in order to optimize

the relative weights of Unary and High-Order potentials be-

fore using the Back-Mean field method.

5.2. Unsupervised Training

In the absence of annotated training data, inter-view con-

sistency and translation invariance still provide precious

a-priori information, which can be leveraged to train our

model in an unsupervised way.

Let us assume that the background-subtracting part of

the network, which computes fb, the MLP introduced in

Section 3.2.2, is reasonably initialized. In practice, it is

easy to do either by training it on a segmentation dataset

or by relying on simple background subtraction to compute

fb. Then, starting from initial values of the parameters θ, we

first compute the Mean-Field approximation of P (Z; I0, θ),
which gives us a first lower bound of the partition function.

We then sample Z from Q and use that to train our poten-

tials separately as if these samples were ground truth-data,

using the supervised procedure of Section 5.1. We then iter-

ate this procedure, that is, Mean-Field inference, sampling

fromZ, and optimizing the potentials sequentially. This can

be interpreted as an Expectation-Maximization (EM) [7]

procedure to optimize an Expected Lower Bound (ELB) to

the partition function Z of Eq. 8.

6. Implementation Details

Our implementation uses a single VGGNet-16 Network

with pre-trained weights. It computes features that will then

be used to estimate both unary and pairwise potentials. The

features map Fc = F(Ic; θF ) is obtained by upsampling of

the convolutional layers.

Similarly to the classification step in [23], we restrict the

Region-Of-Interest pooling layer (ROI) to the features from

the last convolutional layer of VGGNet. The output of the

ROI is a 3x3x1024 tensor, which is flattened and input to

a two layers MLP with ReLU non-linearities. In a similar

way as in previous works on segmentation [29], we use a

two layers MLP to classify each hyper-column of our dense

features map Fc = F(Ic; θF ) to produce segmentation fb

and Gaussian Class fh probabilities.

We use M = 8 modes for Multi-Modal Gaussian dis-

tribution of Eq. 6 for all our experiments and we have not

assessed the impact of this choice on the performance. Be-

sides, our kernel defining the pairwise potentials of Eq. 10

takes an arbitrary uniform constant value. For unsupervised

training, we use a fixed number of 6 EM iterations, which

we empirically found to be enough, as illustrated in the sup-

plementary material.

Finally, all our pipeline is implemented end-to-end using

standard differentiable operations from the Theano Deep-

Learning library [24]. For Mean-Field inference, we use a

fixed number of iterations (30) and step size (0.01).
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7. Evaluation

7.1. Datasets, Metrics, and Baselines

We introduce here the datasets we used for our experiments,

the metrics we relied on to evaluate performance, and the

baselines to which we compared our approach.

Datasets.

• ETHZ. [8] It was acquired using 7 cameras to film

the dense flow of students in front of the ETHZ main

building in Zürich for two hours. It comprises 250 an-

notated temporal 7-image frames in which up to 30

people can be present at a time. We used 200 of these

frames for training and validation and 50 for evalua-

tion. See the image of Fig. 1 for a visualization.

• EPFL. The images were acquired at 25 fps on the ter-

race of an EPFL building in Lausanne using 4 DV cam-

eras. The image of Fig. 3 is one of them. Up to 7 peo-

ple walk around for about 3 1/2 minutes. As there are

only 80 annotated frames, we used them all for evalu-

ation purposes and relied either on pre-trained models

or unsupervised training.

• PETS. The standard PETS 2009 (PETS S2L1) is

widely used for monocular and multi-camera detec-

tion. It contains 750 annotated images and was ac-

quired from 7 cameras. It is a simple dataset in the

sense that it is not very crowded, but the calibration is

inaccurate and the image quality low.

Metrics. Recall from Section 4, that our algorithms pro-

duces Probabilistic Occupancy Maps, such as the ones of

Fig. 3. They are probabilities of presence of people at

ground locations and are very peaky. We therefore simply

label locations where the probability of presence is greater

than 0.5 as being occupied and will refer to these as de-

tections, without any need for Non-Maximum suppression.

We compute false positive (FP), false negative (FN) and true

positives (TP) by assigning detections to ground truth using

Hungarian matching. Since we operate in the ground plane,

we impose that a detection can be assigned to a ground

truth annotation only if they are less than a distance r away.

Given FP, FN and TP, we can evaluate:

• Multiple Object Detection Accuracy (MODA)

which we will plot as a function of r, and the Multiple

Object Detection Precision (MODP) [14].

• Precision-Recall. Precision and Recall are taken to be

TP/(TP + FN) and TP/(TP+FP) respectively.

We will report MODP, Precision, and Recall for r = 0.5,

which roughly corresponds to the width of a human body.

Note that these metrics are unforgiving of projection errors

because we measure distances in the ground plane, which

would not be the case if we evaluated overlap in the image

plane as is often done in the monocular case. Nevertheless,

we believe them to be the metrics for a multi-camera system

that computes the 3D location of people.

Baselines and Variants of our Method. We imple-

mented the following two baselines.

• POM-CNN. The multi-camera detector [12] described

in Section 2.2 takes background subtraction images as

its input. In its original implementation, they were

obtained using traditional algorithms [30, 20]. For

a fair comparison reflecting the progress that has oc-

curred since then, we use the same CNN-based seg-

mentor as the one use to segment the background, that

is fb(F
c
k; θb)0 from Eq. 6.

• RCNN-2D/3D. The recent work of [27] proposes a

MCMT tracking framework that relies on a powerful

CNN for detection purposes [23], as discussed in Sec-

tion 2.2. Since the code of [27] is not publicly avail-

able, we reimplemented their detection methodology

as faithfully as possible but without the tracking com-

ponent for a fair comparison with our approach that

operates on images acquired at the same time. Specif-

ically, we run the 2D detector [23] on each image. We

then project the bottom of the 2D bounding box onto

the ground reference frame as in [27] to get 3D ground

coordinates. Finally, we cluster all the detections from

all the cameras using 3D proximity to produce the final

set of detections.

To gauge the influence of the different components or

our approach, we compared these baselines against the fol-

lowing variants of our method.

• Ours. Our method with all three terms in the CRF

model turned on, as described in Section 3.3, and

fine tuned end-to-end through back Mean-Field, as de-

scribed in Section 5.1.

• Ours-No-FT. Ours without the final fine-tuning.

• Ours-Unsuperv. Same as Ours-No-FT but the train-

ing is done without ground truth annotations, as de-

scribed in Section 5.2.

• Ours-Simple-HO : We replace the full High-Order

term of Section 3.2 with the simplified one that approx-

imates the one of [12], as described at the beginning of

that section.

• Ours-No-HO. We remove the High-Order term of

Section 3.2 altogether.
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ETHZ EPFL PETS

ETHZ EPFL PETS

Method Precision / Recall MODP Precision / Recall MODP Precision / Recall MODP

Ours 95 / 80% 53.8% - - - -

Ours-No-FT 93 / 80% 53.4% 88 / 82% 48.3% 93 / 87% 60.4%

Ours-Unsuperv 86 / 80% 49.8% 80 / 85% 47.5% - -

Ours-Simple-HO 87 / 70% 47.5% 85 / 75% 43.2% 93 / 87% 60.4%

Ours-No-HO 84 / 55% 34.4% 37 / 68% 23.3% 93 / 81% 55.2%

POM-CNN 75 / 55% 30.5% 80 / 78% 45.9% 90 / 86% 42.9%

RCNN-2D/3D 68 / 43% 18.4% 39 / 50% 21.6% 50 / 63% 27.6%

Figure 4. Results on our three test datasets. Top row. MODA scores for the different methods as function of the radius r used to compute

it, as discussed in Section 7.1. Bottom row. Precision/Recall and MODP for the different methods for r = 0.5. Some of the values are

absent either due to the bad calibration of the data-set, or missing ground-truth, as explained in Sections 7.1 and 7.2. The numbers we

report for the RCNN-2D/3D baseline are much lower than those reported in [27] for the method that inspired it, in large part because we

evaluate our metrics in the ground plane instead of the image plane and because [27] uses a temporal consistency to improve detections.

7.2. Results

We report our results on our three test datasets in Fig. 4.

ETHZ. Ours and Ours-No-FT clearly dominate the

RCNN-2D/3D and POM-CNN baselines, with Ours

slightly outperforming Ours-No-FT because of the fine-

tuning. Simplifying the high-order term, as in Ours-

Simple-HO, degrades performance and removing it, as in

Ours-No-HO, degrades it even more. The methods dis-

cussed above rely on supervised training, whereas Ours-

Unsuperv does not but still outperforms the baselines.

EPFL. Because the images have different statistics than

those of ETHZ, the unary terms as well as the people de-

tector RCNN-2D/3D relies on are affected. And since there

is no annotated data for retraining, as discussed above, the

performance of Ours-No-HO and RCNN-2D/3D drop very

significantly with respect to those obtained on ETHZ. By

contrast, the high order terms are immune to this, and both

Ours-No-FT and Ours-Unsuperv hold their performances.

PETS. The ranking of the methods is the same as before

except for the fact that Ours-Simple-HO does as well as

Ours-No-FT. This is because the PETS dataset is poorly

calibrated, which results in inaccurate estimates of the dis-

placement vectors in the generative model of Section 3.2.2.

As a result, it does not deliver much of a performance boost

and we therefore did not find it meaningful to report results

for unsupervised training and fine-tuning of these High-

Order potentials.

From Detections to Trajectories. Since our method pro-

duces a Probability Occupancy Map for every temporal

frame in our image sequences, we can take advantage of

a simple-flow based method [6] to enforce temporal consis-

tency and produce complete trajectories. As shown in Fig. 5

this leads to further improvements for all three datasets.

Method ETHZ EPFL PETS

Ours 74.1% 68.2% 79.8%

Ours + [6] 75.2% 76.9% 83.4%

Figure 5. MODA scores for r = 0.5 before and after enforcing

temporal consistency.

8. Discussion

We introduced a new CNN/CRF pipeline that outper-

forms the state-of-the art for multi-camera people localiza-

tion in crowded scenes. It handles occlusion while taking

full advantage of the power of a modern CNN and can be

trained either in a supervised or unsupervised manner.

A limitation, however, is that the CNN used to compute

our unary potentials still operates in each image indepen-

dently as opposed to pooling very early the information

from multiple images and then leveraging the expected ap-

pearance consistency across views. In future work, we will

explore the multi-camera regression method of [9] to im-

prove unary potentials.

This work was supported in part by the Swiss National Science Foun-

dation, under the grant CRSII2-147693 “Tracking in the Wild”.
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