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Abstract

This paper proposes a robust solution for accurate 3D

hand pose estimation in the presence of an external ob-

ject interacting with hands. Our main insight is that the

shape of an object causes a configuration of the hand in the

form of a hand grasp. Along this line, we simultaneously

train deep neural networks using paired depth images. The

object-oriented network learns functional grasps from an

object perspective, whereas the hand-oriented network ex-

plores the details of hand configurations from a hand per-

spective. The two networks share intermediate observa-

tions produced from different perspectives to create a more

informed representation. Our system then collaboratively

classifies the grasp types and orientation of the hand and

further constrains a pose space using these estimates. Fi-

nally, we collectively refine the unknown pose parameters to

reconstruct the final hand pose. To this end, we conduct ex-

tensive evaluations to validate the efficacy of the proposed

collaborative learning approach by comparing it with self-

generated baselines and the state-of-the-art method.

1. Introduction

Real-time depth data acquisition from commercial sen-

sors has helped to simplify the tasks for hand pose esti-

mation over the last decade. Although extensive research

has been conducted on finding a robust and efficient so-

lution for kinematic pose estimation of an isolated hand

[14, 5, 6, 12, 29, 26, 17, 21, 2, 24, 22], the problem of the

hand’s interactions with a physical object is barely consid-

ered in the literature. The current approaches allow the user

to manipulate a known object and a simple primitive shape

such as a cylinder or cuboid. Therefore, these solutions do

not work consistently with general human-computer inter-

action interfaces and augmented reality applications during

natural interactions.

Hand pose estimation during the interaction with an un-

known object is a challenging problem due to (i) the loss

of hand information caused by partial or full object occlu-

sions, (ii) the complicated shape of the unknown object and

articulated nature of the hand, (iii) global 3D rotations, and

(iv) the noise in acquired data, which confounds continu-

ous estimation. In this paper, we present a new framework

to effectively resolve these issues by collaboratively learn-

ing deep convolutional features from a hand and object per-

spective. Our fundamental observation from earlier work

[20, 15] is that the interacting object can be a source of con-

straint on hand poses. In this view, we employ pose de-

pendency on the shape of the object to learn discriminative

features of the hand-object interaction.

The traditional approaches for pose estimation start with

segmenting hand and object regions using RGB data fol-

lowed by running an SVM classifier [18] or pixel-wise part

classification [23] using hand-crafted features. A convolu-

tional neural network (ConvNet) has recently been adopted

to replace the hand-crafted features in [19], but this ap-

proach only aims for grasp classification. In contrast to

these methods, we introduce a simultaneous training of

deep neural networks for hand pose estimation. As a first

step, we localize both the hand and object position using a

ConvNet architecture. Specifically, we show that predicting

the positions in the form of the heatmaps is an efficient way

of overcoming the use of simple heuristics such as color-

based segmentation or known object initialization.

We leverage the paradigm of analysis by synthesis and

create a population of everyday human grasps. Similar

to [19], the scope of hand-object interactions includes daily

activities captured from an egocentric viewpoint. We adopt

a 33-class taxonomy [3] to focus more on the shape of the

hand grasp rather than the grasping motion [11]. The hand-

object interactions are effectively mesh modeled with the

corresponding hand pose parameters and grasp class labels.

Although these synthetic depth images are easily simulated

and accurately annotated, they do not explore artifacts (e.g.,

noise and distortion) of real data captured from 3D sensors

[22]. Thus, we design a fully unsupervised learning ar-

chitecture to generate reconstructed data based on the idea

of signal reconstruction in autoencoders. The output im-

ages are used to extract grasp features encoded in pairs -
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one from a hand perspective and the other from an object

perspective. To this end, we validate the use of two input

sources (i.e. hand and object), in the context of grasp clas-

sification and consequently for hand pose estimation.

Our main contributions are summarized as follows:

1. Localization of an articulated hand and unknown ob-

ject using a ConvNet architecture that directly re-

gresses the heatmaps corresponding to the center po-

sition of the targets.

2. Use of object shape information as a latent cue to esti-

mate a hand pose in the form of grasp classification.

3. Pixel-wise recreation of input data to correct the error

of the sensor and mimic the attributes of synthetic data,

which makes the system more robust.

4. A multi-channel pipeline to encode the grasp represen-

tations in pairs from an unknown object along with an

observed hand.

In the remainder of this paper, Section 2 reviews rele-

vant literature on 3D hand pose estimation and hand-object

interaction. In Section 3, we present a localization network

to segment object and hand regions. Section 4 describes

the creation of a synthetic dataset and the reproduction of a

realistic dataset. Subsequently, we discuss our novel archi-

tecture for hand pose estimation during the interaction with

an unknown object in Section 5. Section 6 validates our

system from evaluations. In the last section, conclusions

are presented.

2. Related Work

In this section, we review some work relevant to depth

camera- or RGB-D input-based approaches.

2.1. Pose estimation of an isolated hand

Generative approaches (model-based) The optimization

of an objective function is proposed to recover the hand

configuration using a 3D hand model. Initially, particle

swarm optimization (PSO) [14] and a Gauss-Seidel solver

[12] are used to guide the optimization toward the best solu-

tion. Although these methods for finding an alignment be-

tween models are straightforward, they require precise ini-

tialization at the beginning and may fail to track the hand

when a prior estimate is inaccurate. Recently, the paradigm

has shifted to reinitializing the population of the hand poses

using external sources to mitigate the effect of model drift

[32, 21, 7].

Discriminative approaches (appearance-based) A map-

ping between image features and corresponding pose con-

figurations is learned for hand pose estimation [5, 6, 27].

However, these methods are susceptible to self-occlusions

and self-similarities of the fingers. To alleviate a large er-

ror in the presence of occlusions, some approaches locally

regress the pose parameters [24, 26, 28]. A collaborative

filtering framework is proposed in [2] to regress the joint

angle parameters from a set of similar poses. Subsequently,

cascaded convolutional neural networks are trained to out-

put deep activation features in [22] to improve the robust-

ness upon occlusions and jitters by replacing hand-crafted

features. In [4, 29], the 2D heatmaps corresponding to joint

positions are regressed and 3D hand poses are recovered us-

ing a single-view or multi-view ConvNet.

2.2. Pose estimation during hand­object interaction

Previous approaches for hand pose estimation in hand-

object interaction have mainly focused on model-based

pose optimization [1, 8, 9, 15, 31], similar to generative

methods in hand tracking. Some of these approaches aim to

track the interacting hands from a multi-camera input with a

manual initialization of a hand and object [1, 15, 31]. Even

though a dynamics simulator [8] and an ensemble of col-

laborative trackers [9] are presented to handle multiple ob-

ject tracking from a single RGB-D sensor, all these meth-

ods assume that the accurate 3D models of the manipulated

objects are given. In [16], tracking hands in interaction

with unknown objects is proposed for model reconstruction.

However, their use of temporal information from a model-

based hand tracker may cause a model drift and limit the

functional range of hand-object interaction. Although our

method also focuses on interaction with unknown objects,

we do not explicitly track the object but try to learn a dis-

criminative cue for hand pose estimation.

Besides these studies, our work shares similarities with

[20, 15] in terms of pose dependency on the shape of the ob-

ject. However, the method in [15] does not explicitly extract

shape information from the object. In [20], a set of synthetic

hand templates is used to find a similar pose while search-

ing the nearest neighbor. However, the small number of

examples in the database and the search complexity of this

method are the major bottlenecks. Even though our method

shares a similar insight, the search complexity is remedied

by reducing the search space based on the grasp type and the

orientation of the hand. Recently, [18, 23] have used hand-

crafted features for pose estimation while interacting with

an object. They first segment the hand and object regions

using RGB data, and then run either an SVM classifier [18]

or pixel-wise part classification [23] for hand pose estima-

tion. However, these methods oversimplify the pose esti-

mation problem by transferring a grasp template [18] or re-

quire a simple primitive as a manipulating object [23]. Even

though a convolutional neural network framework is subse-

quently employed to replace the hand-crafted features [19],

this approach only aims for grasp classification. In con-

trast, our method introduces a new ConvNet architecture

effectively designed to handle the hand-object interaction

for pose estimation that learns discriminative grasp features
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Figure 1: An overview of the proposed approach. (a) The localization ConvNet takes a depth image as input to predict the

heatmaps of the hand and object center. (b) The reproduction network generates the informative fused images for grasp

classification. (c) Our system collaboratively classifies both the global orientations of the hand and grasp type using the

paired images. (d) Then, pose regression is applied to estimate the pose parameters of the hand.

from both perspectives (i.e., of both the hand and the ob-

ject). The pipeline overview is presented in Figure 1.

3. Hand-Object Localization

In this section, we first discuss a creation of our synthetic

dataset that simulates the hand interacting with an object.

Then we present our pragmatic solution to extract a center

position of both the hand and the object for later use.

3.1. Synthetic dataset

3D hand Our hand model has a structure similar to that

of the 21 DOFs kinematic mesh broadly used for hand

pose estimation [2, 22]. We additionally construct the 2

DOFs lower arm to independently model the arm segment

rotations, which helps to identify the global hand orienta-

tion, thus regularizing the jitter of the estimated pose [21].

Our training dataset simulates hand-object interaction from

an entire egocentric viewpoint by rotating 3 wrist angles

θ
W = {θWr , θWp , θWy } where θWr ∈ [−60, 60]◦, θWp ∈

[−90, 90]◦, θWy ∈ [−10, 50]◦. These rotational ranges are

further quantized into the 48 orientation classes (4×6×2).

3D CAD models We collect 3D mesh models of 600 daily

objects that can be easily obtained online1 and are freely

downloadable. Our object models are all rigid shapes and

13D ContentCentral (https://www.3dcontentcentral.com) and Grab-

CAD (https://grabcad.com)

we only explicitly determine the contact points of each ob-

ject for the specific grasp.

Dataset creation Manual simulation of hand-object inter-

action from different individuals is an unsupervised and

time-consuming task that cannot even guarantee the anno-

tation quality of the grasps. Along this line, we employ

a model fitting method to optimize hand grasps with re-

spect to the shape of the target objects. For this, particle

swarm optimization is used to minimize the distance error

between the observed object and our 3D hand model. Al-

though this generative method guides the objective function

to best fit the observed data, it might be susceptible to a col-

lision of two geometric shapes (i.e., the intersection of two

triangular meshes). Therefore, we adopt a technique of col-

lision detection to quickly determine if the grasp state is in-

valid. Details of collision detection are skipped for brevity,

and we refer the readers to [10]. In practice, our approach

reaches realistic object grasps and outputs the correspond-

ing joint angle parameters of the hand with the grasp class

label. We then insert these rendered depth maps into the

cluttered background captured in-the-wild using Intel’s Re-

alSense F200, very similarly to [18]. This process is used

not only to mimic an everyday environment for our simu-

lated interaction but also to generalize our deep neural net-

work - in particular, to handle the sensitiveness to diverse

background perturbations. In total, we generate 330K syn-

thetic depth maps. They are rendered from 33 grasps in
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Layers # Kernels Filter size Stride Pad

1 Conv 16 5×5×1 1 2

2 ReLU

3 Pmax 2 0

4 Conv 32 5×5×16 1 2

5 ReLU

6 Pmax 2 0

7 Conv 64 5×5×32 1 2

8 ReLU

9 Pmax 2 0

10 Conv 128 5×5×64 1 2

11 ReLU

12 Conv 256 5×5×128 1 2

13 ReLU

14 Conv 2 5×5×256 1 2

15 ReLU

16 L2

Table 1: The design of a ConvNet for heatmap regres-

sion. (Conv: convolutional layer, Pmax: max pooling layer,

ReLU: rectified linear units layer, L2: Euclidean loss layer)

terms of 40 objects (on avg.), 48 wrist rotations, and 5 pop-

ulations per grasp2.

3.2. Localization network

A heuristic method [17, 25, 22] to extract the region

of interest cannot work consistently with general human-

computer interaction applications. Hence, we train a

ConvNet model to regress the confidence map (i.e., the

heatmap) of the center for the hand and object model (see

Figure 2). Our fully convolutional network is comprised of

six convolutional layers followed by a nonlinear layer. Fur-

thermore, a final Euclidean loss layer computes the sum of

squares of differences between the predicted heatmap and

ground truth, as shown in Table 1. Even though the use of

additional layers slightly increases estimation accuracy, the

performance improvement is trivial compared to a signifi-

cant increase in computation requirement.

Table 2 shows the quantitative comparison with a ran-

dom forest (RF) classifier used in [29] which performs

pixel-wise hand segmentation. Here, we first compute a

centroid of segmented hand pixels and calculate the error

in pixels from a centroid of ground truth. In contrast, our

heatmap regressor directly outputs the position of the hand

center and significantly outperforms the RF-based approach

from localization accuracy.

Data Processing The depth values of input depth map Dm

are first normalized to the range of [0, 255] to generate

depth image Di, and then we rescale Di to width of 240.

The rescaled depth image Dr of size 240×240 is fed into

233 grasps × 40 objects × 48 rotations × 5 populations ≈ 330K

Model Error Settings

Ours 6.7 pixels 9 Epochs

RF [29] 27.6 pixels 22 Depth, 70 Trees

Table 2: Accuracy comparison of hand localization on our

synthetic dataset.

Figure 2: The heatmap regressor successfully segments the

center points within contact regions for the hand and the ob-

ject respectively (a)∼(c). The performance is lower in spe-

cial cases such as introducing another hand in the scene (d).

localization ConvNet. The network outputs two 30×30

heatmaps corresponding to the centroid of the hand and the

object, respectively. Next, we up-sample these heatmaps

with a scaling factor 8 and then rescale to width of 320

so that the size to be the same as the original depth map

Dm. The maximum value in each heatmap marks the hand

centroid {uh, vh} and the object centroid {uo, vo}. Note

that the depth value of these points dhm = {uh, vh, dh} and

dom = {uo, vo, do} can be obtained from the original depth

map Dm. We use dhm and dom to generate 64×64 depth im-

ages Dh
i and Do

i centered at the hand/object centroid. The

above process is detailed in the supplementary material.

4. Reproduction of Realistic Dataset

One observation obtained from quantitative evaluations

from earlier work [22] is that the system of analysis by

synthesis showed different aspects depending on the type

of dataset. They evaluated their approach using synthetic

and realistic datasets for self-comparison and comparison

with the state-of-the-art, respectively. However, the system

showed much better performance using a synthetic dataset.

Even though [22] tried to mimic the actual sensor image

by adding a Gaussian noise, there exists a gap between the

two to be further improved. To address it, we propose a

framework that allows the datasets to learn the attributes

across domains instead of heuristically adding artifacts to

the datasets or removing artifacts from them.

4.1. Synthesizing data by reconstruction

Our system is trained on a synthetic dataset that is vir-

tually simulated with 3D mesh models. Although this ap-
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Figure 3: Overall architecture of the proposed data repro-

duction network.

proach is attractive because it allows the system to be ap-

plied to a range of sensor types, we might lose a certain

degree of accuracy compared to the case when the same

dataset type is used for both training and testing. Therefore,

we generate synthesized real data based on the idea of sig-

nal reconstruction in autoencoders. The autoencoders try to

predict the missing part from the non-missing values to re-

cover original data. Our insight is that the loss of real data

can be better represented by imposing the repairing process

of an autoencoder. For this, we train our model to recon-

struct pixel-level artifacts of the input depth, Dh
i and Do

i .

In hand tracking literature, a synthesizer is proposed to

correct the error of initial estimation in [13]. The initial pose

estimation is used to generate a synthesized hand depth im-

age, and the updater predicts an updated hand pose using

both input data and the synthesized model in a closed loop.

For this, they trained three different ConvNet models using

a set of annotated training pairs. In contrast to this work, our

approach differs as follows: (i) our method is unsupervised

and we do not require any training pairs between real and

synthetic data; (ii) we re-generate the synthesized depth im-

age in a single shot without using inefficient iterations; and

(iii) pixel-level noise and artifacts are tractable by encoding

the input data and mapping back to the original data.

4.2. Reproduction network

Our system follows the traditional autoencoder frame-

work which consists of two components, an encoder and a

decoder. The encoder tries to reduce the dimensionality of

the input by mapping high-dimensional data into a lower di-

mensional feature space, whereas the decoder recovers the

original input by mapping back the learned representation

into a high-dimensional space. The overall specification of

our data reproduction network is displayed in Figure 3. We

impose four hidden layers followed by a nonlinear function

(sigmoid layer) for both the encoder and the decoder. The

proposed network is trained on the 240K depth images cap-

tured across sensor types3 and converged after 20 epochs.

In Figure 4, three data types are visually compared. The

top row shows the original 64×64 depth images (Dh
i and

380K synthetically rendered images + 160K real depth images (80K

captured from PrimeSense & 80K from Intel’s RealSense F200.)

Figure 4: Visual comparison for data synthesis on the se-

lected depth images of NYU dataset [29]. First row: the

original depth images. Second row: the synthesized images

using our framework. Third row: spatially fused images.

Do
i ) selected from an NYU dataset [29] for proof of con-

cept. The second row shows the corresponding synthesized

images generated using our reproduction network. We note

that pixel-wise artifacts (e.g., holes or missing pixels) of the

original images are eliminated from the synthesized images

by the reconstruction process of the network. However, a

new compression distortion is observed from the palm re-

gions of the synthesized images. To further eliminate such

distortions, we spatially fuse the depth images by averag-

ing the input (original) and output (synthesized) images.

This is a simple yet effective strategy to improve the overall

performance. The improvement of classification accuracy

(37.75% to 41.00% in Table 3) on the fused images (Dh
f and

Do
f ) demonstrates the impact of the averaging process. We

discuss more details with empirical validation in Section 6.

5. Hand Pose Estimation

5.1. Grasp classification

The partial or full loss of hand information during the in-

teraction with hands cannot be recovered particularly when

unknown objects are introduced. Instead of processing low-

level data to recover or remove the region of object occlu-

sions, we draw a ConvNet framework to extract informa-

tive expressions of grasps from those regions. We assume

that there is a strong relation between the shape of the ob-

ject and the configuration of the hand poses in the context

of hand grasp. Thus, our model collaboratively learns the

convolutional features about grasps from a hand and object

perspective in pairs by sharing intermediate representations

between two networks in the feature space.

Details of our network structure are shown in Figure 5.

The fused 64×64 image pair (Dh
f and Do

f ) from the previ-

ous step is now used as input to this model. Each network

independently learns discriminative representations from
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Figure 5: The architecture of proposed grasp classifica-

tion network. Given fused pair images, each image is

passed through distinctive networks to classify both hand’s

global orientation as well as grasp type. Color codes:

Blue = Conv+ReLu, orange = Pmax, green = concatena-

tion, yellow = Fully connected layer (ReLU exists between

fully connected layer).

different perspectives: the hand-oriented network focuses

on the loss of hand information caused by occlusions due

to the object, while the object-oriented network extracts po-

tential pose information even from the unseen object. Each

feature map of size 4 × 4 × 64 independently extracted af-

ter the fourth convolutional layer is then concatenated as a

tensor of size 4 × 4 × 128. This step is important to trans-

fer knowledge about a perceptual set of attributes such as

hand/object occlusions, shape, or silhouette learned from

different domains. This vector is further used to estimate

the pose parameters in the next subsection.

5.2. Pose estimation

Although the ConvNet-based hierarchical classification

strategy is effective for finding unknown pose parameters

[22], it is computationally inefficient to train every five net-

works corresponding to each of the 144 global bins. Our

pose estimation method is inspired by a 2-stage hierarchical

strategy, but we do not estimate the global parameters from

stage 1. Instead, we only constrain the pose configuration

space using the possible hand orientations and a grasp type

likely to be a set of good initializations. Once we identify

the reduced subset, then we evaluate all the pose parameters

in an all-in-one approach in stage 2 from this space.

The decision network (5th convolutional layer and the

following fully connected layers in Figure 5) first classi-

fies the top 5 orientations using the softmax function. Our

rationale for classifying the orientation of the hand is as

follows: the overall performance of hand pose estimation

becomes deterministic based on the robustness of pose ini-

tialization [21, 24], and the majority of the pose error is

associated with the global orientation of the hand in prac-

tice. We subsequently classify the top 1 grasp type from

the same network. Then we identify a reduced subset

(i.e., 1 grasp×40 objects×5 orientations×5 populations ≈
1K) from our 330K training images. An additional 64-

dimension feature vector f2 is extracted in the penultimate

layer of the orientation decision network, which contains

discriminative cues sufficient to classify the global orienta-

tion of the hand. Finally, we perform a nearest neighbor

search from the restricted space to retrieve l poses similar

to the input hand pose. In practice, we observe that the use

of more neighbors does not effectively increase the overall

performance but introduces a computational bottleneck.

Our regression method aligns with the collaborative

learning approach [2, 22] to predict the pose parameters.

Let n = 64 be a dimensionality of the feature vector,

m = 18 be a number of joint angles, and l = 32 be a

number of nearest neighbors, then the matrices F1 ∈ R
l×n,

f2 ∈ R
1×n, P1 ∈ R

l×m, and p2 ∈ R
1×m are the subma-

trices of M :

M =

[

F1 P1

f2 p2

]

, (1)

where F1 is the feature vectors of neighboring poses, f2 is

the feature vector of the current pose, P1 is the joint angles

of neighboring poses, and p2 is the unknown angles to be

regressed. We compute p2 using MacDuffees theorem:

p2 = f2(F1)
+P1, (2)

where + denotes the Moore-Penrose pseudo-inverse. The

proof of the above process is detailed in [22].

6. Experiments

We conduct extensive evaluations to verify our design

choices for localization and grasp classification as well as

hand pose estimation. To demonstrate the efficacy of our

approach, we compare the results of testing our method and

a state-of-the-art method using a public dataset and of test-

ing our self-generated baselines using a synthetic dataset.

6.1. Datasets for comparison

The size of our synthetic dataset is 16.5K; it is comprised

of 500 depth maps per grasp randomly rendered from dif-

ferent objects, orientations, and backgrounds. This dataset

is used for comparison with self-generated baselines (de-

scribed below) to validate our design choices. Since we aim

to achieve 3D hand pose estimation, our dataset is fully an-

notated with the grasp numbers, orientation labels, joint an-

gle parameters, and joint positions in 3D.

For localization and grasp classification, we additionally

evaluate using a publicly available GUN-714 dataset [19].

It was captured in-the-wild from eight subjects covering 28

everyday objects per grasp with various egocentric views.

Since the grasp type is labeled on a per-frame basis, it is

4Although GUN-71 dataset contains 71 grasps, we only use the com-

mon 33 grasps (≈ 6K depth maps).
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Original Synthesized Fused

Train set

Test set
GUN-71 GUN-71 GUN-71

Original 39.75% 16.87% 31.71%

Synthesized 32.86% 37.75% 36.51%

Fused 36.43% 29.31% 41.00%

Table 3: Grasp classification results for 33 grasps evalu-

ated on GUN-71 dataset [19]. The use of reproduction

network (spatially fused) improves overall classification re-

sults. Note that Train denotes the type of training dataset

used to train our model and Test denotes the format of GUN-

71 dataset used for testing our networks.

suitable to evaluate the performance of the proposed repro-

duction network and grasp classification approach with re-

spect to grasp recognition accuracy.

Although we are aware of the publicly available hand-

object datasets in the literature [30, 23], we do not use them

for evaluations. As we discussed in Section 3.1, our hand-

object interactions are simulated from an egocentric view-

point which differs from their interaction ranges. In addi-

tion, their software is not publicly available so we evaluate

the quantitative/qualitative performance of our method us-

ing the synthetic dataset and the publicly available GUN-71.

6.2. Analysis of design choices

Experiments on public dataset To demonstrate the effi-

cacy of the proposed data reproduction process, we indi-

vidually train nine models using different types of dataset

from scratch. We first define three types of training and

test datasets: (i) Original denotes the original depth images

(Dh
i and Do

i ) obtained as a result of localization; (ii) Syn-

thesized is a set of images outputted from the reproduction

network; (iii) Fused indicates the images (Dh
f and Do

f ) ob-

tained by spatially averaging the Original and Synthesized

data. The experimental result is shown in Table 3. The

best performance (accuracy of 41.00 %) is achieved when

the network is trained using the spatially fused images and

tested on the same type of dataset. It validates that train-

ing and testing with Fused data allows the extraction of

more expressive representations of data while minimizing

depth artifacts. Interestingly, the model that is trained and

tested using the Synthesized data shows poorer performance

than the model that is trained and tested using the Original

data. Here we observe that the higher accuracy may not

be accomplished by simply synthesizing the depth images

because the reproduced dataset could explore a new distor-

tion, as also shown in Figure 4 (second row). Subsequently,

Table 4 compares the performance of our grasp classifica-

tion method to that of [19]. Note that the accuracy of [19]

is directly captured from their paper. All our methods sig-

nificantly outperform their deep feature-based SVM grasp

Model Classification accuracy

Rogez et al. [19] 20.50 %

Original 39.75 %

Synthesized 37.75 %

Ours (Fused) 41.00 %

Table 4: Accuracy comparison of grasp classification on

GUN-71 dataset.

Network Hand-only Ojbect-only Ours

Orientation Acc. 59.31% 51.12% 60.50%

Grasp Acc. 43.87% 49.12% 55.56%

Table 5: Classification accuracy for the orientation of the

hand and the grasp type. Hand only achieves higher perfor-

mance to orientation classification than Object only but has

less impact on grasp classification.

classifier by a huge margin. This comparison validates the

rationale of our specific approach against other choices.

Experiments on synthetic dataset We conduct more abla-

tive tests that demonstrate the efficacy of our two-stream

(the hand and object stream shown in Figure 5) orienta-

tion/grasp classification network. For this, we compare our

two-stream network to two additional baselines by conduct-

ing tests with a synthetic dataset: (i) with only the hand

stream (Hand-only) and (ii) with only the object stream

(Object-only). Table 5 shows the performance of these base-

lines relative to our proposed approach. As expected, the

Hand-only stream performs better to classify the orienta-

tion of the hand, whereas the Object-only stream achieves

higher accuracy for grasp type classification relative to the

Hand-only stream. It implies that the Hand-only stream ex-

tracts more beneficial information about the configuration

of the hand. The Object-only stream focuses more on the

shape of the object, which infers hand grasp. The proposed

two-stream strategy outperforms these two baselines by ex-

tracting informative representations from both streams. It

validates that constructing the two-stream network is criti-

cal to good performance.

6.3. Evaluation for pose estimation

Quantitative evaluation We validate the proposed frame-

work for hand pose estimation using our own synthetic

dataset. Figure 7a shows the averaged angle error (in

degrees) over all frames for each joint position. We ob-

serve that the error of the Synthesized (12.11) and Original

(10.73) data is higher than that of the Fused (10.17) data

all over the joint positions. It validates the rationale of the

proposed data reproduction process. The consistent result

is drawn in Figure 7b which presents the averaged distance

error for each joint. Again, the use of the Fused images
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Figure 6: Qualitative evaluations are conducted on (a) our synthetic dataset and (b) publicly available GUN-71 dataset. The

first row shows the input depth image, and estimated hand skeletons are presented in the second row. The third row shows

the reconstructed hand mesh model from skeleton estimation.

(a) (b)

Figure 7: Quantitative evaluation on the overall robustness.

(a) The individual mean joint angle error is used to compare

the performance of the proposed method and baselines (in

degrees). (b) Accuracy of hand pose estimation is examined

as a function of the averaged joint distance (in mm) error.

outperforms the others over an entire range, validating our

choice is overall more robust for pose estimation. In par-

ticular, the fact that the distance error of our palm position

is less than average indicates our localization network well

performs on the cluttered background in the presence of un-

seen objects.

Qualitative evaluation We conduct a qualitative evaluation

of our approach using our synthetic dataset and publicly

available GUN-71 dataset [19]. The top row of Figure 6a

shows the input depth frames rendered using our 3D hand

and object models. Note that the cluttered background was

captured in-the-wild using a commercial depth camera. The

second row shows the hand pose estimates using our frame-

work. Finally, the reconstructed hand models are displayed

in the third row. We observe that the proposed approach

robustly estimates the valid and natural hand configurations

against the severe object occlusions, various global orienta-

tions, and the cluttered background. Subsequently, the first

row of Figure 6b shows the selected depth images of the

GUN-71 dataset. Note that we use the first 33 classes of the

GUN-71 dataset, which share the same grasp types with our

dataset. The second and third row, respectively, shows the

estimated poses and corresponding reconstruction based on

our estimates. Figure 6 demonstrates that our approach per-

forms robustly across input sources (i.e., the data type and

noise in acquired data)

7. Conclusion

We present a learning framework for hand pose estima-

tion while interacting with an unknown object. Our main

insight is that the shape of the object can be used to better

represent the hand pose in the form of interactive grasps.

By exploring their intimate relationship, more discrimina-

tive cues can be collaboratively derived from both perspec-

tives. To generate a large database of the synthetic human

grasps, we simulate 3D hand and CAD models. Using the

dataset along with a ConvNet, we localize the center of the

hand and object to create a pair of images. This pair is pro-

cessed through the reproduction network to learn attributes

of the synthetic images. We then classify the hand orien-

tations and grasp type from the multi-channel network to

reduce the search space for pose estimation. Finally, we

compute the angle parameters from this subset. The eval-

uation results show that we achieve robust performance for

both grasp classification and hand pose estimation. Future

work will focus on varying attributes (e.g., transparency) of

the 3D object models and covering an entire camera view-

point to reflect more realistic factors to our system.
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and C. Theobalt. Real-time joint tracking of a hand manipu-

lating an object from RGB-D input. In European Conference

on Computer Vision, pages 294–310. Springer, 2016. 1, 2, 7

[24] X. Sun, Y. Wei, S. Liang, X. Tang, and J. Sun. Cascaded hand

pose regression. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 824–832,

2015. 1, 2, 6

[25] A. Tagliasacchi, M. Schroeder, A. Tkach, S. Bouaziz,

M. Botsch, and M. Pauly. Robust articulated-ICP for real-

time hand tracking. Technical report, 2015. 4

[26] D. Tang, H. J. Chang, A. Tejani, and T.-K. Kim. Latent

regression forest: Structured estimation of 3d articulated

hand posture. In Computer Vision and Pattern Recogni-

tion (CVPR), 2014 IEEE Conference on, pages 3786–3793.

IEEE, 2014. 1, 2

[27] D. Tang, T.-H. Yu, and T.-K. Kim. Real-time articulated hand

pose estimation using semi-supervised transductive regres-

sion forests. In Computer Vision (ICCV), 2013 IEEE Inter-

national Conference on, pages 3224–3231. IEEE, 2013. 2

3131



[28] A. Thayananthan, R. Navaratnam, B. Stenger, P. H. Torr, and

R. Cipolla. Multivariate relevance vector machines for track-

ing. Springer, 2006. 2

[29] J. Tompson, M. Stein, Y. Lecun, and K. Perlin. Real-time

continuous pose recovery of human hands using convolu-

tional networks. ACM Transactions on Graphics (TOG),

33(5):169, 2014. 1, 2, 4, 5

[30] D. Tzionas, L. Ballan, A. Srikantha, P. Aponte, M. Pollefeys,

and J. Gall. Capturing hands in action using discriminative

salient points and physics simulation. International Journal

of Computer Vision, 118(2):172–193, 2016. 7

[31] Y. Wang, J. Min, J. Zhang, Y. Liu, F. Xu, Q. Dai, and J. Chai.

Video-based hand manipulation capture through composite

motion control. ACM Transactions on Graphics (TOG),

32(4):43, 2013. 2

[32] C. Xu and L. Cheng. Efficient hand pose estimation from a

single depth image. In Computer Vision (ICCV), 2013 IEEE

International Conference on, pages 3456–3462. IEEE, 2013.

2

3132


