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Abstract

At the core of many Computer Vision applications stands

the need to define a mathematical model describing the

imaging process. To this end, the pinhole model with ra-

dial distortion is probably the most commonly used, as

it balances low complexity with a precision that is suffi-

cient for most applications. On the other hand, uncon-

strained non-parametric models, despite being originally

proposed to handle specialty cameras, have been shown

to outperform the pinhole model, even with the simpler se-

tups. Still, notwithstanding the higher accuracy, the inabil-

ity of describing the imaging model by simple linear pro-

jective operators severely limits the use of standard algo-

rithms with unconstrained models. In this paper we propose

a parameter-free camera model where each imaging ray is

constrained to a common optical center, forcing the cam-

era to be central. Such model can be easily calibrated with

a practical procedure which provides a convenient undis-

tortion map that can be used to obtain a virtual pinhole

camera. The proposed method can also be used to calibrate

a stereo rig with a displacement map that simultaneously

provides stereo rectification and corrects lens distortion.

1. Introduction

The pinhole camera model is by far the most widely used

image formation model. The reasons behind its huge suc-

cess among researchers and practitioners is due to several

factors. First, its simplicity. In fact, the model is fully de-

termined by its optical center and principal point. Given

this basic information, the whole imaging process can be

modeled as a direct projection of the scene onto the image

plane. Second, the availability of mathematical tools. Its

plain formulation allows to easily apply a wide spectrum

of powerful and well understood mathematical tools, rang-

ing from epipolar geometry to projective invariance of con-

ics [6] and straight lines [10]. Finally, its wide range of

applicability. Specifically, provided that the field of view

of the camera fully intersects the image plane, a proper lens

distortion model can be applied to approximate an ideal pin-

hole. Generally speaking, the role of the distortion model

is to describe how the incoming light rays diverge from the

expected central direction once they enter the lens assembly

of a real camera. In practice, since for any given lens con-

figuration, the geometry that relates the optics to the image

sensor is fixed, the distortion model is often defined just as

a displacement function to be applied over the image plane.

Moreover, due to physical considerations, many distortion

models are radial; that is, they are defined as a displacement

function that only depends on the distance from the princi-

pal point. This is the case with the seminal model proposed

by Tsai [29], where the distortion function is modeled as a

polynomial radial translation with two non-zero coefficients

respectively for the second and fourth degree terms. Such

model, albeit simpler than previous proposals [7, 8], ob-

tained a large success, mainly because it was able to offer

a good approximation of the imaging process and an easy

calibration procedure was available since its introduction.

For this reason, it has been embraced and extended sev-

eral times in the last three decades. Zhang, when intro-

ducing his well-known calibration procedure [31], adopts

the same model with slight modifications. More recently,

Claus and Fitgibbon [9] proposed a rational function as a

replacement for the original polynomial term. This latter

approach is currently one of the most successful, probably

because of its inclusion in the OpenCV library. Other re-

cent approaches include variations on the number and type

of parameters [18, 30, 11], the enforcement of projective

invariants for parameter estimation [10, 5, 2], simultaneous

calibration of multiple cameras [13, 12], and extensions de-

signed to work with highly distorted cameras [24, 26]. In-

deed, it is when addressing the need to calibrate fisheye and

catadioptric cameras that the need to diverge from the pin-

hole model is felt the most, as any pinhole-based model,

regardless of its level of sophistication, is geometrically

unable to properly describe cameras exhibiting a view an-

gle wider than 180 degrees. To overcome such limitation,

several alternative parametric models have been proposed.

Some of them try to modify the captured image in order

to follow the original pinhole behaviour [16]. Others go

trough a totally different path by introducing novel image
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formation models [17, 27]. Also catadioptric [1, 19] and

light-field [3] systems have been widely covered in the lit-

erature, with a large selection of calibration methods. Given

the high variability of non-pinhole cameras, it has been

proven to be very difficult to define a parametric distor-

tion model able to accommodate the diverse behaviour of

physical lenses. This hindrances has been addressed by in-

troducing general camera models based on unconstrained

rays (usually called raxels) [14, 25] as well as partially non-

parametric distortion models such as [28] and [15]. For

former approach, a remarkable recent contribution is given

in [20], but the calibration is limited to a small set of 3D

rays that have to be interpolated to comprise all the pixels

in the image space. The non-parametric distortion approach

of [15] is similar in spirit to our work but it is not directly

comparable since the distortion is still modeled as a radial

function depending on the distance from a point on the im-

age plane. Similarly to [23], we also adopt a structured-light

target strategy to obtain a dense non-parametric image plane

undistortion. However, [23] only uses a single shot of the

calibration target so it cannot increase the accuracy by aver-

aging several target views nor be used to calibrate multiple

cameras at once.

Traditionally, literature has deemed the unconstrained

models and related calibration procedures a last resort to

adopt only when traditional approaches fail for geometrical

or methodological issues. This is due to the fact that their

flexibility comes at the price of a higher calibration com-

plexity and (sometimes) cruder approximations. Recent re-

search shows that a fully unconstrained imaging model can

be applied effectively to real-world pinhole [4] cameras ob-

taining better accuracy and without needing a complex cal-

ibration procedure. However, the advantages in terms of

precision are partially offset by the inability to use the wide

mathematical toolset devised for the pinhole model. This is

unfortunate, since when dealing with standard cameras with

no large distortions, the central model is still reasonable.

With this study, we try to fill the gap between traditional

pinhole calibration techniques and unconstrained models.

Namely, we propose a model where the only raxels con-

straint it to cross a common projection center. Under this

assumption, after performing a proper calibration, it is easy

to define a non-parametric displacement map over the im-

age plane that can be used to move back and forth from the

unconstrained model to a virtual pinhole camera. This, in

turn, allows to exploit the full arsenal of tools designed to

work with pinhole cameras. To this end, the contribution of

this paper is threefold. First, we introduce an effective cali-

bration procedure for the proposed semi-constrained model.

Second, we define an optimal approach to create a virtual

pinhole camera from the calibrated model. Finally, we show

how to naturally extend the method to the calibration and

rectification of a stereo pair.

2. Novelty and Application Scenario

Differently from many other non-parametric methods,

our goal is not to cope with non-conventional imaging ge-

ometries. Rather, we are indeed dealing with central cam-

eras, that is, imaging devices where rays are supposed to

converge to a common optical center. This is a domain that

has been traditionally addressed by pinhole models aug-

mented with a radial distortion function. These models, and

the related calibration methods, are so widely used that it

is quite natural to wonder if it actually makes any sense to

adopt more complex solutions. This question is partially

answered by the continued interest in enhanced central dis-

tortion models [22], which is a statement of the active state

of the research. An additional hint to the open nature of this

problem, is also offered by recent research efforts toward

the adoption of general distortion models [21], that in some

cases can be estimated even with no direct recovery camera

pose and pinhole parameters [23]. With respect to this lat-

ter method, the general goal could seem very similar to the

technique we are introducing. In fact the authors propose an

image-based undistortion estimation that can be performed

on a single image without the need for an explicit assess-

ment of instrinsic and extrinsic camera matrices. However,

we would like to stress an important aspect: image-based

methods are not actually devoid of projective parameters

as the estimated distortion is affected by an homography

H, mixing instrinsic and extrinsic parameters. Actually, the

method proposed in [23] obtains an estimate for H assum-

ing the distortion to be zero around the image center, which

is indeed a quite strong assumption. Unfortunately, this

makes it difficult to effectively combine more than one tar-

get view. This is the reason because only one pose is used.

Conversely, we explicitly separate the pose-invariant cam-

era rays from the pose-dependent target orientation, thus

offering a geometrically sound constraint among multiple

exposures. Such constraints become even tighter when si-

multaneously accounting for multiple cameras, which is en-

abled by design with our method. To this end, our approach

is well suited in all the scenarios where the high accuracy of

general models is sought, still the notion of an image plane

is needed. This is the case for most setups where epipolar

geometry is exploited, including (for instance) structured-

light scanning, stereo reconstruction and multiple camera

tracking. It should be also noted that these kind of appli-

cations are actually the ones that benefit the most from the

ability of our method to easily compute an unified rectifica-

tion and undistortion map that can span multiple cameras.

Finally, the experimental assessment of the actual impact

of the model is also an useful contribution of this paper.

Specifically, we show that our hybrid approach yields an

enhanced performance with respect to the parametric distor-

tion model, while retaining the aforementioned advantages

related to the availability of an actual image plane.
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Figure 1. Schema of the optimized camera model involving the

optical center o, the ray direction, the observed and expected code

and a target pose.

3. Unconstrained Distortion Calibration

To estimate a dense non-parametric lens distortion we

start by recovering the 3D light rays associated to each im-

age pixel. Specifically, we formalize the light path enter-

ing the lens and hitting the sensor at discrete pixel coordi-

nate (u, v) with the straight line r(u,v) = (o, d(u,v)) passing

trough the point o and oriented along the direction d(u,v).
The common point o constrains our model to be central

while no restriction is enforced on the directions d(u,v).
Also, the uniform-spaced grid of the CCD provides an or-

dering on the rays spatial topology.

Since the model implies 3 degrees of freedom for each

pixel, plus additional 3 for the optical center o, standard

point-to-point calibration approaches like [31, 29, 9] cannot

provide enough data to recover a valid solution. We solve

this by adopting the dense structured-light target proposed

in [4]. Specifically, we use an high-resolution LCD screen

displaying phase shift patterns to uniquely localize each tar-

get point seen by the camera.

This has a strong advantage with respect to common cal-

ibration targets composed by a discrete set of features: un-

like methods based on corner or ellipse localization, we can

reason in terms of discrete camera coordinates. Indeed, for

each camera pixel (u, v) a precise sub-pixel localization of

the 2D target-space coordinate of the observed point can be

recovered from the phase unwrapping process. In addition,

the coding theory approach is robust against possible visual

artifacts that may appear on target surface like illumination

gradients, specular highlights and shadows. Finally, we take

advantage of the precise manufacturing of modern LCD dis-

plays to get an affordable target far more accurate that the

ones created through ink printing process.

To estimate the optical center and the direction of each

ray, the calibration target is exposed to the camera in dif-

ferent positions and orientations. We denote with RTs the

3×4 matrix describing the roto-translation of the target with

respect to the camera in the pose s, assuming the target ref-

erence frame located in the upper left monitor pixel with
~i,~j,~k versors being respectively the monitor columns, rows

and normal. For each pose, let Co
s
(u,v) ∈ R

2 be the code

observed by the ray r(u,v) in shot s.

Since the LCD geometry and the displayed codes are

known, we can take advantage of a pose RTs to map each

code to a 3D point in the camera space, viceversa. For in-

stance, the intersection between a ray r(u,v) and the target

plane defined by a pose RTs yields to the expected code

Ce(r(u,v),RTs) ∈ R
2 that the ray should have observed

(Fig. 1).

3.1. Single Camera calibration

Following [4], we recover the geometry of the rays en-

tering the camera as the generalized least-squares minimiza-

tion problem:

argmin
r(u,v),RTs

∑

u,v,s

(εs(u,v))
T (Σs

(u,v))
−1

εs(u,v) (1)

where εs(u,v) = Co
s
(u,v) −Ce(r(u,v),RTs) are the residu-

als on the target plane between the observed and expected

codes and (Σs
(u,v))

−1 is the error covariance matrix for the

given ray-pose combination that accounts for errors het-

eroscedasticity in the image plane.

In our setting, we aim to simultaneously minimize the

optical center o, the direction d(u,v) of all rays and the pose

RTs for each exposure of the target. Similarly to [4], we

can also take advantage of the conditional independence

of the parameters to implement an alternating optimization

scheme that seeks optimal o and d(u,v) assuming last esti-

mation of RTs fixed, and vice-versa. While our optimiza-

tion involves less parameters, the optimization itself is more

complex since the common optical center introduces a cou-

pling between the rays which cannot be estimated indepen-

dently anymore. As a consequence, the rays optimization

step simultaneously estimates the optical center o and the

ray directions d(u,v) given all the poses. For the pose esti-

mation step we adopt the same ICP-based optimization in-

troduced in [4]. The former step is discussed in detail in

section 3.1.1 while, for the latter, we refer the reader to the

original paper.

To start the alternating optimization we need a good ini-

tial approximation for the involved parameters. To this end,

we gather a set of 3D-2D point correspondences assum-

ing a discrete grid of target points similar to what can be

commonly obtained with a chessboard. Then, we use cali-

brateCamera function provided by OpenCV to obtain target

poses for each exposure and the direction of each ray. Note

that starting condition is not a critical aspect since most

baseline calibration methods are more than adequate to pro-

vide a reliable initial configuration, especially when dealing

with cameras that can be assumed to be almost central (dif-

ferently, the method proposed in [4] should be preferred).

In addition, the iterative method is based on a least-square

minimization which is guaranteed to converge to a (possibly

local) minimum.

3849



3.1.1 Optical Center and Rays Direction Optimization

In the o and d(u,v) optimization step we consider target

poses constant. Let

x
s
(u,v) = RTs





Co
s
(u,v)

0
1





be the 3D coordinates of the observed code Co
s
(u,v)

transformed trough the pose RTs. As shown in [4], the gen-

eralized least squares formulation with respect to the target

coordinates corresponds to a linear least squares with the

distance of each ray and its associated 3D point xs
(u,v). We

can formulate the estimation of the optical center o as:

argmin
o

∑

u,v

min
d(u,v)

∑

s

‖(hs
(u,v))

T (I − d(u,v)d
T
(u,v))‖

2 (2)

where hs
(u,v) = (xs

(u,v) − o), and the internal minimiza-

tion apt to find the best d(u,v) minimizing the sum of

squared distances between r(u,v) and all the x
s
(u,v). We

start by re-writing the squared norm in (2) as (hs
(u,v))

T (I −

d(u,v)d
T
(u,v))h

s
(u,v) to obtain

argmin
o

∑

u,v

∑

s

‖hs
(u,v)‖

2 − max
d(u,v)

∑

s

(

dT(u,v)h
s
(u,v)

)2
(3)

Let x̄(u,v) be the centroid of the point cloud generated by

the intersections of the ray r(u,v) and the target for each ob-

served pose. Also, let h̄(u,v) = (x̄(u,v) − o) be the distance

vector between o with such centroid. By expressing hs
(u,v)

as the summation of the two components:

hs
(u,v) = (xs

(u,v) − x̄(u,v)) + h̄(u,v)

and expanding the formulation in (3) we obtain:

argmin
o

∑

u,v

N(u,v)

(

tr(S(u,v)) + ‖h̄(u,v)‖
2
)

− (4)

− max
d(u,v)

dT(u,v)

(

N(u,v)S(u,v) +N(u,v)h̄(u,v)h̄
T
(u,v)

)

d(u,v) (5)

where S(u,v) and N(u,v) are respectively the covariance ma-

trix and the size of the point cloud generated by r(u,v).
Since we start our optimization with a configuration

close to the optimum, we expect that the distance between

each ray and its expected code is as small as few target pix-

els. This implies that the spatial extent of each point cloud

is order of magnitude smaller than the distance ‖h̄(u,v)‖2.

Under this assumption, an approximate maximizer for (5)

is given by

d(u,v) =
h̄(u,v)

‖h̄(u,v)‖2
(6)

By substituting (6) into (4) and (5), after some simplifi-

cations, we obtain the following alternative formulation

Ceu Cev
10241280 00

Figure 2. Left: RMSe between observed and expected codes for

each r(u,v) at the first (top) and last (bottom) iteration. Right: Rays

and calibration target poses recovered by the optimization. Only a

subset of the camera rays are plotted for visualization purposes.

argmax
o

∑

u,v

N(u,v)

h̄T
(u,v)S(u,v)h̄(u,v)

‖h̄(u,v)‖2
(7)

Problem (7) cannot be solved in a closed form. To provide a

good approximate solution we compute the derivative with

respect to o:
∂
∂o

∑

u,v N(u,v)
h̄T
(u,v)S(u,v)h̄(u,v)

‖h̄(u,v)‖2 (8)

=
∑

u,v 2N(u,v)K(u,v)h̄(u,v)

K(u,v) =

(

−S(u,v)‖h̄(u,v)‖
2+I

(

h̄T
(u,v)S(u,v)h̄(u,v)

)

)

‖h̄(u,v)‖4 (9)

If K(u,v) is known, o can be obtained by setting to zero

Equation (8) and solving the resulting linear system:

∑

u,v

2N(u,v)K(u,v)o =
∑

u,v

2N(u,v)K(u,v)x̄(u,v) (10)

Since K(u,v) is itself a function of o, the maximization prob-

lem (7) is tackled iteratively by computing K(u,v) with the

estimate of o at iteration t − 1 and then solving (10) to ob-

tain a new estimate at iteration t and repeating this process

until ‖o(t) − o(t−1)‖ < ǫ. When the optical center is found,

the direction of each ray is computed with equation (6). A

qualitative result of the effect of the optimization process is

shown in Fig. 2.

3.1.2 From ray bundle to virtual pinhole camera

After the optimization of rays, optical center and poses we

obtain a detailed model describing the light path entering

the camera. Next, we need to choose a convenient image

plane that define the intrinsic parameters of a new virtual

pinhole camera, along with a non-parametric dense undis-

tortion function to be applied to the acquired images.
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Figure 3. Left: the intersection of the camera rays with an image plane ℘ generates a projective distorted lattice. Center: An optimal plane

is estimated to let the lattice be as regular as possible. Right: Camera reference system is rotated so that the image plane is orthogonal to

the optical axis. Then, the lattice is re-sampled on an uniform grid to compute the undistortion function.

As a preliminary step, all rays are translated so that their

unique intersection point o lies at the origin. After that,

we define a plane ℘ as the locus of points x satisfying

〈x − v℘, n℘〉 = 0, with n℘ =
v℘

‖v℘‖
. As soon as an im-

age plane ℘ is chosen, it generates a virtual camera with

the z-axis oriented as the vector n℘ and with a focal length

f = ‖v℘‖. When choosing any ℘ intersecting the ray bun-

dle, all the intersection points inherit the lattice topology

from the camera sensor (Fig. 3, Left). However, the lattice

projective distortion and size are affected by the orientation

and distance of ℘, respectively. Trough an optimization pro-

cess we first find the best image plane to minimize the lattice

projective distortion. Then, we generate the image undistor-

tion function by re-sampling the lattice in a uniform grid.

The grid position and size will define the projection of the

optical center on the image plane (i.e. the pinhole param-

eters cx and cy) and the undistorted image size (see Fig. 3

for a complete description of the process).

3.1.3 Image Plane Estimation

Choosing a good plane ℘ is crucial to ensure the lattice be

as regular as possible and increase the quality of the subse-

quent re-sampling and interpolation processes. The optimal

image plane is computed in two steps. First, we estimate

the plane orientation n℘ to minimize the variance of the

squared distance between each plane-ray intersection point

and its neighbours. This ensure the lattice to be as regularly

shaped as possible (Fig. 3, Center). After that, the scaling

factor ‖v℘‖ (i.e. the plane distance from the origin) is com-

puted so that the average distance between all the points is

equal to 1.

Let Id ⊂ R
2 be the set of (u, v) indices of the rays. Let

U(i ∈ Id) = U(u, v) = {(u − 1, v), (u + 1, v), (u, v −
1), (u, v + 1)} the function defining the set of four neigh-

bours of a ray indexed by i. The squared distance between

the 3D intersections generated by rays ri and rj∈Id with a

plane ℘ lying at unitary distance from the origin is given by:

D2
i,j = ‖

di
nT
℘di

−
dj

nT
℘dj

‖2 (11)

Consequently, the variance of the squared distances D2
i,j

between each ray and its neighbours is given by the function

fD =
∑

i

∑

j∈U(i)

(

D2
i,j

)2

−

(

∑

i

∑

j∈U(i)

D2
i,j

)2

(12)

We cast the plane orientation problem as

argmin
n℘

fD

such that ‖n℘‖ = 1
(13)

solved via geodesic steepest descent. We start with an ini-

tial estimate of n
(0)
℘ =

(

0 0 1
)T

. For each iteration

t, we update the estimate of n
(t)
℘ enforcing the constraint

of ‖n℘‖ = 1 by rotating n
(t)
℘ around the rotation axis

Ψ = ∇f
(t−1)
D ×n

(t−1)
℘ for an angle θ = λmin(‖Ψ‖, ǫ). The

constant λ affects the speed of the gradient descent while ǫ
gives an upper bound on the amount of rotation to avoid

instabilities.

To perform effectively the optimization, ∇fD can be an-

alytically computed as follows:

∇fD =
∑

i

∑

j∈U(i)

2D2
i,j

∂

∂n℘

D2
i,j − (14)

−

(

∑

i

∑

j∈U(i)

D2
i,j

)(

∑

i

∑

j∈U(i)

∂

∂n℘

D2
i,j

)

∂

∂n℘

D2
i,j =

2

(nT
℘di)

2

(

dTi dj
nT
℘dj

−
dTi di
nT
℘di

)

di + (15)

+
2

(nT
℘dj)

2

(

dTj di

nT
℘di

−
dTj dj

nT
℘dj

)

dj

Once n℘ has been recovered, we set f = ‖v℘‖ =
1

2N

∑

i

∑

j∈U(i) Di,j where N is the number of lattice

edges.
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3.1.4 Generating the Undistortion Map

Once an optimal plane has been found, we setup an in-

terpolation procedure to re-sample the points on a regular

grid. Let p(u,v) be the intersection of r(u,v) with the opti-

mized plane ℘. First, all the points p(u,v) are rotated around

the origin so that the vector v℘ coincides with the z-axis

(Fig. 3, Right). After discarding the third component of all

the points (all equal to 1 after the rotation), we compute

the integral coordinates of the top-left tlp ∈ Z
2 and bottom

right brp ∈ Z
2 corners of the containing bounding-box. At

this point, we can provide the intrinsic matrix of the new

virtual pinhole camera as:

K =





‖v℘‖ 0 −tlp
0 ‖v℘‖
0 0 1



 (16)

The undistorted image associated to the camera described

by K corresponds to a unit-spaced grid inside the area of

the bounding box. This leads to the construction of a dense

displacement function Ud : B → R
2 that maps the coordi-

nates of the output undistorted image B ⊂ N
2 to sub-pixel

coordinates of the input image1.

To produce the displacement map Ud, we generate the

quadrilaterals q1 . . . qn formed when considering the 4-

neighbours connectivity of the points p(u,v) with the topol-

ogy induced by the rays lattice. For each quadrilateral qi,
we compute the homography Hi transforming the inner

space bounded by its four vertices into the square defined

by the CCD location of the four rays associated to each ver-

tex. Then, the displacement map Ud can be obtained by:

Ud(u
′, v′) = HQ(u′,v′)(u

′, v′, 1)T (17)

where Q(u′, v′) is the function that returns the index of the

quadrilateral containing the point
(

u′ v′
)T

, if exists.

3.1.5 Filtering data outliers

Apart for being central, our model gives no constraint on

the relative position of the rays. As a consequence, erro-

neous data caused by failures in the phase decoding process

may lead to outliers in the ray estimation. Since no regular-

ization is involved, we included a data filtering step at each

alternation of rays-poses optimization. Specifically, we de-

fine the function E(u, v)s : Id → R as the point-line dis-

tance between the ray r(u,v) and the point xs
(u,v). We then

filter the observed codes Co
s
(u,v) by considering the median

of the error function E in a squared neighbourhood of each

point (u, v). If E(u, v)s is greater than κ times the median,

Co
s
(u,v) is marked as invalid and not used any more in the

subsequent iterations. Rays with less than 5 observed codes

1The obtained undistorted image has the same size of the bounding box

Figure 4. The effect of codes filtering step displayed by accumu-

lating the value E(u, v) among all the poses s. Left: original data

may contain clear outliers near the boundary of the target. Right:

after the filter almost all the spikes are no more visible. Note that

remaining artefacts are not topological outliers (as for 3.1.5) and

are probably due to the target non-planarity at the corners.

are completely removed from the optimization. A qualita-

tive example of the output of the filtering process is shown

in Fig. 4. Even if we filter erroneous observed codes, it may

happen to obtain some quadrilaterals qi for which the topo-

logical order of the vertices is not coherent with the order

of the relative rays. Since this would lead to a non-injective

displacement map Ud, such rays are marked as outlier and

subsequently replaced by a linear interpolation performed

over all the unmarked neighbours.

3.2. Dealing with Stereo Cameras

Since each ray acts independently with respect to the oth-

ers, our approach can be easily extended to simultaneously

calibrate and rectify a stereo rig. The pose optimization

step remains exactly the same with the foresight to merge

the two bundle of rays associated to each camera. Con-

versely, the optical centre and rays direction optimization

can be performed independently on the two sets operating

the same instance of target poses.

As a starting configuration for the subsequent optimiza-

tion we performed the intrinsic and extrinsic calibration of

the camera rig using the function provided by OpenCV li-

brary. Then, we are creating a single virtual imaging device

by adopting the reference frame of the first camera for both.

At the end of the optimization, we obtain an estimate of

the two optical centres o1 and o2 and the directions of the

rays in the two bundles. From this point, we roto-translate

the rays to let o1 coincide with the origin and the epipole

e = (o2 − o1) being oriented along the x-axis.

3.2.1 Rectification and Undistortion Map

If we constrain the image plane optimization so that n℘

remains orthogonal to e, the estimated plane would have

the property to keep all the epipolar lines for the left and

right cameras being parallel. To achieve this, we slightly

modify the optimization discussed in section 3.1.3 by fix-

ing the rotation axis Ψ = e
‖e‖ and the rotation angle to

θ = λmin(〈∇f
(t−1)
D ,Ψ× n

(t−1)
℘ 〉, ǫ).
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Figure 5. Left plots show a comparison of our non-parametric distortion model compared with Fitzgibbon’s rational model. On the right,

two examples of an undistorted images generated with our method. Note that black artifacts on the edges are due to the lack of clipping

after undistortion (yellow guides have been superimposed in order to help to better appreciate rectification).

After image plane optimization, two sets of points are

generated by the intersection of the two ray bundles with

the plane. The set of points generated by the right camera

is translated in the opposite direction of the x-axis by the

length of the baseline T = ‖e‖ to let the right optical cen-

ter coincide with the left one. Subsequently, two different

bounding boxes are generated with the two sets of points.

The height of the two boxes (i.e. the vertical coordinates of

the top-left and bottom-right corners) are forced to be equal

so that the epipolar lines are coincident with the rows of the

two images. To keep the largest available common area be-

tween the two images, the left edge of the merged bounding

box is taken from the bounding box of the right point set.

Symmetrically, the right edge is taken from the left point

set. Note that, this way, the intrinsic matrices of the two

cameras are exactly the same.

Finally, we compute the re-projection matrix

Q =









1 0 0 −tlp
0 1 0
0 0 1 ‖v℘‖
0 0 1/T 0









(18)

so that, given any dimensional image point (u′, v′) and

its associated disparity d, it can be projected into four-

dimensional projective space with

(

x y z w
)T

= Q
(

u′ v′ d 1
)T

(19)

4. Experimental Section

In order to assess the performance of the proposed ap-

proach, we compared it against the unconstrained model

[4] and the rational distortion model proposed by Claus and

Fitzgibbon2 [9] in both single camera and stereo setups3.

Our test setup included two PointGrey Flea3 1Mp

grayscale cameras with approximately 60o field of view,

fastened to a common rigid bar with a disparity of about

5cm. The calibration target was a 380 × 304mm commer-

cial LCD monitor with a resolution of 1280 × 1024 pixels.

2The most accurate method available from the OpenCV library
3Source code and datasets available at: anonymized URL

The cameras have been calibrated using a set of 20 shots and

tested over a set composed of 40 different shots of the same

active target. These shots have been acquired both with a

single camera and with the complete camera pair, taking

care to cover as much as possible of the respective fields of

view. The target has been acquired at random poses with

a distance from the cameras ranging from roughly 100 to

300 mm and a rotation with respect to the optical axis rang-

ing from 0 to about π
4 radians. (Fig. 2, Right) Using the

same data sets, we performed three different calibrations,

using respectively the fully unconstrained model (Uncon-

strained), the non-parametric distortion proposed in this pa-

per (Non-Parametric) and the rational distortion (Rational).

Average convergence time for both Unconstrained and Non-

Parametric calibration was about 10 minutes, while Ratio-

nal always required less than 2 minutes.

Finally, we compared the performance of these meth-

ods by means of two experiments, assessing respectively

the ability of providing a strictly projective virtual camera

and to perform an accurate triangulation in the 3D space.

4.1. Image Undistortion

With this experiment we are testing the quality of the

undistortion, that is how well the virtual pinhole camera ob-

tained with the different methods approximate an ideal pro-

jective geometry. To this end, we exploited the projective

invariance of straight lines. Specifically, for each horizontal

and vertical scanline of the undistorted camera we collect

the observed codes and we fit a straight line on them. Since

we can assume the screen pixels to be regular and equally

spaced, better pinhole approximation should exhibit a lower

RMS error to the fitted line. Since a virtual pinhole cannot

be produced with the fully unconstrained model, in Fig. 5

we plotted only the results for the Non-Parametric and the

Rational model. While both methods are affected by some

error, it is clear that the approximation given by the Non-

Parametric approach yields less distorted lines. Further-

more, the structured nature of the RMS error obtained with

the Rational model strongly suggests a systematic error due

to the inability of the model to properly fit the data.

Note that, while our approach yields a much smaller
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Figure 6. In the left-most plot we show the average relative error between the expected and measured distance of two triangulated points.

In the right we show an example of a stereo-rectified image pair.

undistortion error than the Rational model, there is still

a strong spatial coherency in the error. We think the

non-centrality of the camera to be the predominant error

source, since the RMS consistently grows towards the im-

age boundaries. We suggest that the non-planarity could

also contribute, being the borders of the target usually lo-

cated near the border of the captured image.

4.2. 3D Measurement

In our second experiment we investigate the calibration

quality of the camera pair. Using the rectificated image pair,

we triangulate the 3D position of two random screen pixels

observed by both cameras. We repeated the experiment for

several shots with different positions of the target screen.

In Fig. 6 we plotted the average relative error between the

expected and measured distance of two triangulated points

with respect to the distance of the target from the camera

pair. In this case, the Unconstrained model shows the best

performance as it produces a lower error at any distance and

more repeatable measures. The Non-Parametric model ex-

hibits a slightly higher error. This proves that the additional

constraint hinders a perfect calibration. Still it is notice-

ably more reliable than the Rational model, thus it can be

Figure 7. Reconstructed range-map triangulated with OpenCV cal-

ibration and rectification (Left) and our proposed method (Right).

deemed as a reasonable alternative to the totally free model

when high accuracy is needed, but it is not desirable to lose

the advantages of the pinhole model. Finally, in Fig. 7 we

give a qualitative example of a reconstructed range-map af-

ter stereo rectification provided by the OpenCV stereoRec-

tify function and our calibration pipeline. The better align-

ment of epipolar lines with image rows gives a more precise

and dense reconstruction, especially on grazing surfaces.

5. Conclusions

In this paper, we proposed a new calibration technique

to model a central camera with a distortion described as a

non-parametric dense displacement map on the input image.

This approach combines the simplicity of a central camera

model, enabling the usage of powerful projective geome-

try tools, while sharing the ability of unconstrained mod-

els to accommodate subtle lens characteristics that cannot

be generalized by parametric functions (A synthetic exam-

ple is shown in Fig. 8). Moreover, the independence of

each ray entering the camera can be exploited to calibrate

a stereo setup with minor modifications on the process it-

self. By means of a couple of specially crafted experiments,

we show that this hybrid approach works better than stan-

dard radial models and can be used to enhance the accuracy

of quasi-central cameras without the hindrances associated

with non-parametric approaches. In this rather common

scenario, our method can be used as a drop-in replacement

providing a significant boost without any added drawback.

Figure 8. A small synthetic sinusoidal pixel displacement has been

further applied to the acquired images (left). As expected, the ra-

tional model is unable to handle this distortion (center), which can

be corrected with our non-parametric distortion model (right).
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