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Abstract

Similar to common object discovery in images or videos,

it is of great interests to discover and locate common actions

in videos, which can benefit many video analytics applica-

tions such as video summarization, search, and understand-

ing. In this work, we tackle the problem of common action

discovery and localization in unconstrained videos, where

we do not assume to know the types, numbers or locations of

the common actions in the videos. Furthermore, each video

can contain zero, one or several common action instances.

To perform automatic discovery and localization in such

challenging scenarios, we first generate action proposals

using human prior. By building an affinity graph among all

action proposals, we formulate the common action discov-

ery as a subgraph density maximization problem to select

the proposals containing common actions. To avoid enu-

merating in the exponentially large solution space, we pro-

pose an efficient polynomial time optimization algorithm. It

solves the problem up to a user specified error bound with

respect to the global optimal solution. The experimental re-

sults on several datasets show that even without any prior

knowledge of common actions, our method can robustly lo-

cate the common actions in a collection of videos.

1. Introduction

Given a collection of unlabeled videos as shown in Fig-

ure 1, can we automatically discover and locate the com-

mon actions that frequently appear in these videos? It is

worth noting that the video collection may contain multiple

types of common actions which are not known in advance,

and each video can contain zero, one or several common

action instances. Similar to common object discovery in

images [22, 33, 46] or videos [18], finding common actions

can benefit many video analytics applications such as video

summarization [23], search [43, 44] and labeling.

However, compared with previous success of common

object discovery in images and videos [16, 18, 21, 35], com-

mon action discovery is much less explored due to the fol-
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Figure 1. Assuming that we are given a set of unlabeled videos

(each frame represents a video), we would like to automatically

discover and locate the common human actions in these videos.

The common actions to be discovered and located are denoted by

bounding boxes. Some videos contain one or multiple common

actions, while some videos contain no common actions.

lowing challenges. First, as we do not know in advance

the types or locations of the actions that are common in

the given dataset, we have to perform the discovery and lo-

calization simultaneously. Given a collection of unlabeled

videos, we need to automatically identify a set of spatio-

temporal bounding boxes that capture the common actions.

Second, similar actions may also appear differently due to

view point variation, scale variation or camera motion. It is

not a trivial task to automatically associate these common

actions. Last but not the least, besides common actions,

videos may also contain dynamic backgrounds or uncom-

mon actions, it is thus critical to differentiate such “noisy

motions” from common actions.

To address the above challenges of common action dis-

covery and localization, we first use human prior, i.e., hu-

man detector, to generate spatio-temporal action proposals

in each video. However, it is inevitable that some propos-

als may contain dynamic background, uncommon actions

or only partially capture the common actions. In order to

stand out the proposals containing common actions from

the initial proposal corpus, we build an affinity graph of the

action proposals, and formulate the common action discov-
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ery as a subgraph density maximization problem. Instead

of using the average degree subgraph density [13] in which

the average regularization is usually too strict for our co-

localization problem, we propose a different subgraph den-

sity measure that relaxes the average regularization to re-

call more common actions. To avoid enumerating in the

exponentially large solution space, we propose an efficient

polynomial time algorithm to effectively find the optimal

subgraph that captures common actions. The proposed al-

gorithm solves the proposed formulation within a user spec-

ified error bound with respect to the global optimal solution.

A tighter bound requires more computation.

The experimental results on several datasets show that

even without any prior knowledge of common actions, the

proposed method can robustly locate common actions in

unconstrained videos, where each video can contain zero,

one or several common actions. The extensive compar-

isons with other graph-based pattern discovery methods,

e.g., [2, 13, 27, 48, 49], as well as one recent video object

co-localization method [16] validate the effectiveness of our

method in the problem of common action co-localization.

2. Related Work

Our work is related to the video object co-localization

methods, weakly supervised action co-localization methods

and the maximum average degree density subgraph selec-

tion methods. We briefly discuss them in this section.

Video Object Co-localization Video object co-

localization aims to locate the common objects in a video

collection. The method in [33] performs image object

co-localization by labeling image object proposals through

quadratic programming. [18] extends [33] to perform video

object co-localization by enforcing temporal consistency

in the labeling process. The method in [4] performs

image object co-localization by assigning a commonness

score to each image object proposal using part based

probabilistic Hough voting. [21] extends [4] to perform

video object co-localization by combining the proposals’

motion evidence scores with [21]’s commonness scores.

[16] performs video object co-localization by assigning a

co-saliency score to each image object proposal tubelet.

[35] first generates object tracklets and then performs

semantic video object co-segmentation by tracklet co-

selection. [47] also generates object tracklets but performs

the co-segmentation by finding the maximum weighted

clique in a completely connected tracklet graph. The

methods in [11, 12, 39, 40] co-segment the common object

by energy minimization optimization in a spatio-temporal

proposal [9] or superpixel [1] graph. However, most of the

above video co-localization methods are for object instead

of action co-localization. Moreover, they mostly assume

each video contains exactly one common object and rarely

explore the fully unconstrained scenario like us.

Action Co-localization There are also several weakly

supervised action detection and localization methods [5, 6,

7, 8, 14, 24, 25, 31, 41], but they require video level labels

to perform co-localization. [25] proposes a matrix comple-

tion approach to the problem of weakly supervised learning

for multi-label learning. The methods in [24], [31] and [41]

first extract action proposals, and then apply multiple in-

stance learning to locate the labeled action. The method in

[24] also requires point annotations to perform localization.

The methods in [5, 14] perform action co-localization only

in pairs of videos. [6, 7, 8] focus on the discovery of re-

peated articulated local motion patterns of the same object

among the given videos. [45] operates in a less constrained

scenario but it only provides temporal localizations.

Maximum Density Subgraph Selection Our work is

also related to the subgraph selection method proposed in

[13], which selects the subgraph with the maximum average

degree density. However, this formulation is not suitable to

our problem due to the strict average regularization. We re-

lax this regularization in this work and propose an efficient

optimization approach for this new formulation.

3. Proposed Method

In this section, we introduce the proposed action co-

localization framework. The input is a collection of unla-

beled videos, and the output is spatio-temporal localizations

of the common actions appearing frequently in the videos.

The proposed method is comprised of two steps. The first

step is to extract action proposals from the input video col-

lection. Each action proposal is a spatio-temporal tube, i.e.,

a temporal sequence of bounding boxes, that locates an ac-

tion instance. However, besides capturing the common ac-

tions, the proposals may also contain noisy background or

actions that are not common in the dataset. Hence, the sec-

ond step is to select the action proposals containing com-

mon actions from the initial proposal corpus.

In order to stand out the proposals containing common

actions, we utilize the confidence score of each proposal as

well as the similarities among the proposals. The former

helps to reject the proposals containing non-action back-

ground and the latter helps to identify proposals contain-

ing common actions from those containing non-common

actions. To integrate these two cues in a unified frame-

work, we formulate it as a node selection problem in a graph

G = (T , E), where T denotes the collection of nodes, i.e.,

action proposals, and E denotes the collection of edges.

Node weights represent the quality scores of the propos-

als, and edge weights represent the semantic similarities be-

tween action proposals. Intuitively, the purpose is to select

a subgraph in which most of the nodes have high quality

scores and are densely connected to each other. Let t
j
i de-

note the ith proposal in the jth video, s
j
i denote the node
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Figure 2. An illustration on the selection results of the classic av-

erage degree density maximization formulation defined by Eq. (1)

and (2). Node weights are set to zero for simplicity.

weight of t
j
i , and w(tji , t

q
p) denote the edge weight between

node t
j
i and tqp. A classic formulation to make such a selec-

tion is the average degree density maximization formulation

in [13]:

A∗ = arg max
A⊆T

D(A), (1)

where A is the subgraph containing the selected nodes and

D(A) is the average degree subgraph density defined as

D(A) =

∑

t
j

i
∈A s

j
i +

∑

{tj
i
,t

q
p}⊆A w(tji , t

q
p)

|A|
, (2)

where |·| is the cardinality of a set. The nominator computes

the total node and edge weights of the selected subgraph

A, and the denominator regularizes the subgraph size. Al-

though it can be solved efficiently using the method in [13],

it is not suitable for our problem because the pure average

regularization in the denominator is too strong. The selec-

tion of a larger subgraph will significantly decrease the sub-

graph density. Thus, it always favors very small subgraphs

and leads to low recall. An example is shown in Figure 2.

The selection completely misses the top two modes as well

as the outer region of the bottom mode. Hence, to overcome

this problem, we propose to use a relaxed regularization in

the subgraph density definition:

D(A) =
λ×

∑

t
j

i
∈A s

j
i +

∑

{tj
i
,t

q
p}⊆A w(tji , t

q
p)

η + |A|
. (3)

Here λ is a parameter balancing the node and edge weights,

and η weakens the subgraph size regularization which al-

lows the selection of more nodes to improve recall. We

name this new density definition as η-density. When η is

zero, it is equivalent to the classic average degree density

and only a small number of nodes will be selected. When

η approaches to infinity, the regularization vanishes and all

the nodes will be selected. However, the addition of η inval-

idates the optimization algorithm in [13], and enumerating

all possible solutions is not feasible as the number of possi-

ble subgraphs is exponential to the problem size.

In this paper, we propose a polynomial time algorithm to

solve Eq. (1) and (3). The proposed method is applicable

to any η values and solves the problem within a user speci-

fied error bound with respect to the global optimal solution,

although a tighter bound requires more computation.

In the following, we first present the construction of the

affinity graph in Section 3.1, and then introduce the pro-

posed optimization algorithm to Eq. (1) and (3) in Section

3.2. The details of action proposal generation and descrip-

tion are presented in Section 3.3.

3.1. Affinity Graph Construction

Given all the action proposals {tji} and their feature de-

scriptions {f j
i }, we build an ǫ-neighborhood [38] affinity

graph, G = (T , E), using all the proposal nodes. Node t
j
i

and tqp will be linked only if ‖f j
i − fq

p‖2 ≤ ǫ, where ‖·‖2
denotes the ℓ2 distance and ǫ is the bandwidth for graph

construction. The edge weight w(tji , t
q
p) is computed as

w(tji , t
q
p) = exp(

−‖f j
i − fq

p‖
2
2

2× β2
), (4)

where β is computed as

β =

∑

(tj
i
,t

q
p)∈E ‖f

j
i − fq

p‖2

|E|
, (5)

and |E| is the number of edges in the graph.

3.2. Density Maximization Optimization

When η = 0, Eq. (1) and (3) are the classic average de-

gree density maximization formulation which can be solved

efficiently by the method in [13]. However, the addition of a

non-zero parameter η in Eq. (3) invalidates the original ap-

proach in [13], and enumerating in the exponentially large

solution space is computationally infeasible. Hence, in this

section, we propose a polynomial time algorithm that gen-

eralizes the approach in [13] to any non-zero η values. The

proposed method uses a binary search strategy to find the

optimal density D(A∗), i.e., given the current lower bound

l and upper bound u on D(A∗), we first check if our new

guess g = u+l
2 defines a lower or upper bound on D(A∗)

and then shrink the search space by half. A candidate sub-

graph whose η-density falls within the current bound is

maintained during bound update. In the following, we intro-

duce how to perform this bound check in the binary search

process. We ignore λ in Eq. (3) without loss of generality.

Bound Check: To perform the bound check on our cur-

rent guess g on D(A∗), we add two auxiliary nodes, i.e.,

source node s and sink node t, to the original affinity graph.

Both s and t are connected to all the original nodes as

shown in Figure 3. Let d
j
i denote the degree of node t

j
i ,

i.e., the weight summation of all the edges connected to t
j
i ,

the newly added source to node weight ω(s, tji ) and node to

sink weight ω(tji , t) are defined as

w(s, tji ) = m, (6)

w(tji , t) = m+ 2×g − d
j
i − 2×sji , (7)
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Figure 3. An illustration of the affinity graph with the addition of

the source and sink nodes. The edges between the original nodes

are omitted for simplicity.

where the variable m is defined as

m = max
t
j

i
∈T

(dji + 2×sji ). (8)

Note that all the newly added edge weights are non-negative

based on the definition. Now let’s cut the new graph by di-

viding the nodes into two disjoint subgraphs in which one

subgraph contains the source node and another subgraph

contains the sink node. Given an arbitrary cut, we denote

the subgraph containing the source and sink node asAs and

At, respectively. The cut capacity c(As,At) is defined as

the summation of the edge weights along the cut boundary.

Interestingly, c(As,At) is related to the η-density of sub-

graph As, i.e., D(As), as follows:

c(As,At)

=
∑

t
j

i
∈At

w(s, tji ) +
∑

t
j

i
∈As

w(tji , t) +
∑

t
j

i
∈As,t

q
p∈At

w(tji , t
q
p)

= m× |At|+
(

m× |As|+ 2×g × |As|

−
∑

t
j

i
∈As

d
j
i − 2×

∑

t
j

i
∈As

s
j
i

)

+
∑

t
j

i
∈As,t

q
p∈At

w(tji , t
q
p)

= m× |T |+ 2×g × |As| − 2×g × η + 2×g × η

−
∑

t
j

i
∈As

d
j
i − 2×

∑

t
j

i
∈As

s
j
i +

∑

t
j

i
∈As,t

q
p∈At

w(tji , t
q
p)

= m× |T | − 2× g × η + 2× (|As|+ η)×
(

g

−

∑

t
j

i
∈As

s
j
i

|As|+ η
−

∑

t
j

i
∈As

d
j
i −

∑

t
j

i
∈As,t

q
p∈At

w(tji , t
q
p)

2× (|As|+ η)

)

= m× |T | − 2× g × η

+ 2× (|As|+ η)× (g −D(As)). (9)

Let c∗ = c(A∗
s,A

∗
t ) denote the minimum cut capacity on

the current graph:

(A∗
s,A

∗
t ) = arg min

As∩At=∅,As∪At=T ,s∈As,t∈At

c(As,At).

(10)

Eq. (10) can be solved in polynomial time using the min-

cut algorithm proposed in [3]. We then perform the bound

check on the current guess g based on Theorem 1.

Theorem 1. Assume subgraph A∗
s and A∗

t give the mini-

mum cut c∗ and subgraph A∗ solves Eq. (1) and (3). If

c∗ > m × |T | − 2×g × η, then g > D(A∗); if c∗ < m ×
|T |−2×g×η, then g < D(A∗); if c∗ = m×|T |−2×g×η,

then g = D(A∗
s) and D(A∗

s) = D(A∗).

Proof. Notice that if c∗ > m × |T | − 2×g × η, then

g > D(A) ∀A ⊆ T based on Eq. (9) since c∗ is the

minimum cut capacity. We have g as an upper bound of

the optimal density D(A∗). If c∗ < m × |T | − 2×g × η,

then ∃A ⊆ T such that g < D(A) based on Eq. (9) since

c∗ is the minimum cut capacity. We have g as an lower

bound of the optimal density D(A∗). If c∗ = m × |T | −
2×g × η, then g≥D(A) ∀A ⊆ T and g = D(A∗

s) based

on Eq. (9) since c∗ is the minimum cut capacity. Hence,

D(A∗
s)≥D(A)∀A ⊆ T and D(A∗

s) = D(A∗).

Algorithm: Based on Theorem 1, we implement our bi-

nary search strategy to iteratively shrink the lower and upper

bound of the optimal density D(A∗). However, since both

our node and edge weights are continuous values, D(A) is

also continuous for A ⊆ T . We have to search infinitely

to find A∗. In practice, we can specify an error bound to

stop the search. For example, let Â be our candidate so-

lution, u and l be the current upper and lower bound. If a

solution satisfying
D(A∗)−D(Â)

D(A∗) ≤ β is good enough, we

can safely stop the search when u−l
l
≤ β. A tighter bound

needs more iterations. The entire algorithm is summarized

in Algorithm 1. Note that, we update the candidate sub-

graph Â toA∗
s when g is the determined to be the new lower

bound because D(A∗
s) is greater than the new lower bound

g and smaller than the current upper bound u. This is not

true when g is the upper bound as D(A∗
s) may be smaller

than the current lower bound. The initial lower bound is set

to the maximum η-density of any 2-node subgraph of G to

avoid zero lower bound, and the initial upper bound is set

to the summation of all the node and edge weights in the

graph. A loose bound like this does not affect the efficiency

of our algorithm as binary search shrinks the bounds expo-

nentially. Let U denote the initial upper bound, we need to

perform O(log( U
β×D(A∗) )) graph cut operations throughout

the algorithm. It is logarithmic in terms of the problem size.

Simulation Experiment: In order to visualize the effec-

tiveness of the proposed density maximization approach, a

test experiment is performed on simulated 2D data points.

These data points are drawn from three 2D Gaussian distri-

butions and one 2D uniform distribution, as shown in the

first plot of Figure 4. In this simulation experiment, the

points’ unary scores are set to zero as they are difficult to

visualize. The affinity graph is constructed in the same way

as described in Section 3.1. The selection results using the

proposed method are shown in the subsequent plots of Fig-

ure 4. It can be seen that, the selection is quite conservative

when η = 0. It completely misses the two dense modes at
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Figure 4. Dense subgraph selection results in the simulation experiment. The red dots denote the selected nodes under different η settings.

Algorithm 1 Maximum η-Density Optimization

1: Input: Graph G = (T , E), error bound β

2: Output: Subgraph Â ⊆ T achieving the maximum η-

density defined by Eq. (3) within the given error bound

3: l←
max

t
j
i
∈T ,t

q
p∈T ,t

j
i
6=t

q
p
s
j

i
+sqp+w(tj

i
,tqp)

η+2

4: u←
∑

t
j

i
∈T s

j
i +

∑

(tj
i
,t

q
p)∈E w(t

j
i , t

q
p)

5: Â ← the two-node subgraph achieving l

6: while u−l
l

> β do

7: g ← u+l
2

8: Find c∗, A∗
s and A∗

t in Eq. (10) by max flow [3].

9: if c∗ > m× |T | − 2×g × η then

10: u←g

11: else if c∗ < m× |T | − 2×g × η then

12: Â ← A∗
s

13: l←g

14: else

15: Â ← A∗
s

16: break

17: end if

18: end while

the top as well as the outer region of the mode at the bottom.

A larger η relaxes the strict average regularization and the

algorithm selects all three modes. It is worth noting that the

selection does not change much when we increase η from

1000 to 2000, which indicates the proposed method is not

particularly sensitive to η at this range.

3.3. Action Proposal Generation and Description

Compared with generic video object proposals [15, 26,

36] or motion based action proposals [37], human prior has

shown to be a much more accurate cue to detect human ac-

tions [20, 41, 42]. In this work, we also start with per-frame

human detections to build spatio-temporal action propos-

als. The Faster R-CNN (VGG16) object detection frame-

work [28] is used here for its good performance. However,

a critical drawback of human detection is that it usually

misses the humans undergoing severe pose variations or oc-

clusions while performing an action. Hence, to improve the

recall, we fuse per-frame detection results of two Faster-

RCNN models. One is trained on the VOC2007 [10] train-

validation subset containing daily human photos with mod-

erate pose variation, and the other is trained on the MPII

human activity dataset [41] containing human photos with

large pose variations. Spatio-temporal action detection pro-

posals are then generated by linking the per-frame human

detections using the method proposed in [42]. Furthermore,

since the linking process does not produce new human de-

tections, we also apply tracking to generate more spatio-

temporal action proposals to improve the recall [41].

After extracting spatio-temporal action proposals, we

break each proposal tube into a sequence of tubelets with

16 frames long and 8 frames overlap. These tubelets are

then described by the 4096-dimensional fc-6 activations of

the C3D network [34] trained on Sport-1M dataset [19]. A

proposal tube’s feature vector is computed as the average of

all its tubelets’ C3D features followed by ℓ2 normalization.

PCA is also used to reduce the feature dimensions to 512.

4. Experiments

4.1. Datasets

To evaluate the proposed common action co-localization

method in unconstrained scenarios, we first build two

datasets. In both datasets, some videos contain one or mul-

tiple common actions, while some videos contain no com-

mon actions, i.e., outlier videos. Many outlier videos also

contain actions but they are not common in the dataset.

The first dataset is the UCF Sports Plus dataset. It in-

cludes all the 150 videos (10 action classes) in the UCF

Sports Action [29] dataset as common actions. We re-

annotate the videos containing multiple common actions to

include them all. We also add 70 outlier videos contain-

ing no common actions. The second dataset is the SVW

Mini dataset. It includes the annotated bowling and golfing

videos in the SVW (Sports Action in the Wild) [30] dataset

as common actions. Besides adding the 70 outlier videos in

the UCF Sports Plus dataset, we also pick one video from

each of the rest action classes in the SVW dataset as addi-

tional outlier videos. In total, there are 216 videos in this

dataset, 120 of which contain common actions. Some ex-

ample frames in these two datasets are shown in Figure 5.

4.2. Evaluation Criteria

Similar to previous video object co-localization works

[16, 18, 21], our co-localization method returns a ranked
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videos containing no common actions

videos containing common actions

Figure 5. Sample frames in the newly proposed UCF Sports Plus

(left two columns) and SVW Mini (right two columns) datasets.

The bounding boxes denote the common action annotations.

list of localizations for each video. A ground truth is re-

called if its intersection over union (IOU) ratio with a lo-

calization is greater than a threshold. Most previous works

have evaluated the co-localization performance separately

for each video, i.e., flag a video as correctly localized if the

common object in the video is covered by the top 1 detec-

tion. While this metric is meaningful in the constrained case

where each video contains exactly one common object, it is

not suitable in our unconstrained action co-localization sce-

nario where a video may contain zero or multiple common

actions. Indeed, this evaluation criterion implicitly excludes

all the outlier videos containing no common actions. Thus,

in this work, we use a different evaluation criterion to test

the performance. We first put all the detections, including

outlier videos, in a single ranked listed, and then compute

the precision-recall curve and average precision to evalu-

ate the localization performance. Note that, a ground truth

common action can only be recalled once and all subsequent

detections are treated as false positives.

4.3. Comparison with Baselines

In this section, we compare with several baselines and

other subgraph selection methods to validate the advantage

of the proposed co-localization method. In the following

description, we use K to denote the actual number of com-

mon action classes in the dataset.

• Select all proposals and assign them random scores.

• Select all proposals and use their original scores.

• Set η = 0, i.e., the average degree subgraph density for-

mulation proposed in [13].

• Use the graph cut based subgraph selection formulation

proposed in [2].

• Use the Cohesive Subgraph Mining (CSGM) formulation

proposed in [48].

• Use K-Means to cluster the proposals into K+1 clusters,

and remove the cluster with most number of outlier tubes.

• Use the Dominant Set clustering method with the pro-

Table 1. The average precisions of the proposed method as well as

several baselines on the action co-localization task.
UCF Sports Plus SVW Mini

IOU = 0.5 IOU = 0.25 IOU = 0.25

random 8.67% 21.73% 7.78%

original 31.27% 35.62% 25.60%

η = 0 [13] 5.88% 7.41% 0.83%

graph cut [2] 31.28% 35.63% 28.83%

k-means 32.24% 37.99% 33.83%

CSGM [48] 31.38% 35.82% 25.68%

DomSet [27] 41.79% 49.65% 46.75%

ours 50.29% 58.49% 48.17%

w/o outliers 71.23% 80.41% 71.30%

Table 3. Clustering accuracies (F-Measures) on the original pro-

posals and our selected proposals on the SVW Mini dataset.

bowling golf average

original 0.20 0.15 0.17

ours 0.43 0.22 0.32

w/o outlier videos 0.34 0.25 0.30

w/o outlier tubes 0.96 0.97 0.97

Figure 7. Although all the shown proposals capture valid human

actions, some are selected (top four rows) by our method as they

contain common actions in the dataset, while some are rejected

(bottom two rows) as they contain non-common actions.

posed pealing off strategy in [27] to cluster the proposals

and remove those un-clustered proposals.

• Select all proposals after excluding the videos containing

no common actions.

The precision recall curves of these methods are shown

in Figure 6, and the average precisions are shown in Ta-

ble 1. We use a lower threshold, i.e., 0.25, for SVW Mini as
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Figure 6. Precision recall curves of the proposed method as well as several baselines on the action co-localization task. The curve for

“original” is not quite visible because it largely overlaps with the “graph cut” or “CSGM” curve.

Table 2. Clustering accuracies (F-Measures) on the original proposals and our selected proposals on the UCF Sports Plus dataset.

dive golf kick lift horse ride run skateboard swing angle swing walk average

original 0.55 0.048 0.22 0.19 0.39 0.35 0.036 0.57 0.35 0.26 0.29

ours 0.62 0.074 0.11 0.50 0.46 0.38 0.053 0.67 0.46 0.33 0.37

w/o outlier videos 0.61 0.20 0.26 0.36 0.63 0.39 0.014 0.62 0.42 0.38 0.39

w/o outlier tubes 0.92 0.32 0.52 0.78 0.82 0.60 0.33 0.87 0.90 0.53 0.66

its ground truth annotation is loose, as shown in Figure 5.

Note that, if we manually exclude the outlier videos, i.e., the

method “w/o outliers”, we can achieve a high average pre-

cision just using the original proposals. This demonstrates

the good quality of the initial action proposals. After adding

outlier videos, i.e., the method “original”, the average pre-

cision drops significantly. This shows the importance of the

proposed action co-localization problem in unconstrained

scenarios. The proposed method successfully selects the

proposals containing common actions, and improves the av-

erage precision by more than 20% percent in all the datasets

and IOU settings. It is worth noting that, when η = 0, the

average precision is even lower than the random case but

the initial precision is almost perfect in the first two pre-

cision recall curves. The lower average precision is due

to the extremely low recall as the selection is too strict.

This further demonstrates the importance of a relaxed reg-

ularization. The graph cut based formulation [2] has only

marginally improved the original baseline. This is because

the graph cut formulation only minimizes the edge weights

between selected and unselected nodes, while does not en-

force strong edges within the selected nodes. Hence, this

formulation is useful only when the node weights are mostly

reliable, which is not true in our case due to the existence of

“non-common” actions. The method “K-Means” does not

perform well because it assumes the outlier proposals can

also form a compact cluster. The “CSGM” method is not

performing well as their formulation can only be solved ap-

proximately [48]. The method “DomSet” is the best among

the compared methods but still outperformed by ours, espe-

cially on the UCF Sports Plus dataset where its PR curve

is consistently lower than ours. On SVW Mini, it has a bet-

ter initial precision but the final recall is lower. In addition,

“DomSet” is much slower than ours in our experiment.

Some qualitative results are shown in Figure 7 to demon-

strate how our method successfully selects proposals con-

taining common actions and rejects proposals containing

uncommon actions. We also show some actual action co-

localization results in Figure 8. It is worth noting that, in the

top left row of Figure 8, there are actually two humans. In-

deed, the proposal highlighting the right person has a higher

proposal confidence score, but our method selects the left

person as there are many golfing actions in this dataset.

To further demonstrate the effectiveness of the proposed

co-localization approach. We perform K-Means to clus-

ter the selected proposals into K + 1 clusters. We assign

each cluster an action label based on majority voting and

compute the precision, recall, and f-measure of each action

class. The comparisons before and after the node selec-

tion are shown in Table 2 and 3. The method “w/o outlier

videos” means we manually exclude the videos containing

no common actions. The method “w/o outlier tubes” means

we manually exclude the proposal tubes capturing no com-

mon actions. It can be seen that, the proposed method ap-

parently improves the baseline and are comparable to the

method “w/o outlier videos”.

In order to show our method can also generalize to larger

video sets. We perform extra experiments on the JHMDB

[17] and UCF101 (test set of the 24-class detection subset)

[32] datasets with added outlier videos. In total, there are

1010 videos (45K frames), and 997 videos (200K frames),

respectively. The mAP for the input proposals, [13] and

our method are 64.83%, 1.94%, 69.00% for JHMDB with

an IOU threshold of 0.5, and 26.07%, 3.43%, 37.92% for

UCF101 with an IOU threshold of 0.25. This shows that

our method can improve the baselines in these larger sets.

4.4. Comparison with Video Object Co­localization

In this section, we compare with [16] to show that it

is non-trivial to apply existing video object co-localization

methods to common action co-localizations. In [16], it

generates one localization for each video (including out-
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Figure 8. Our action co-localization results on the UCF Sports Plus (left) and SVW Mini (right) datasets. The top rows in the green blocks

contain videos with common actions. The bottom rows in the red blocks contain videos that do not have common actions. It can be seen

that, the proposed method can handle the cases when there are zero, one or multiple common actions in the videos.

Table 4. Comparison with [16] using correct detection ratio metric.

[16] ours

UCF Sports Plus (IoU=0.5) 31.85% 49.20%

Table 5. The running time of each step in the proposed co-

localization approach on a dataset containing 23013 frames.

time % of total time

human detection 200 min 48.78%

action proposal generation 130 min 31.70%

feature extraction + PCA 79 min 19.27%

affinity graph construction 6.1 sec 0.025%

subgraph selection 1.2 sec 0.0049%

total 410 min -

lier videos) because it assumes each video contains exactly

one common object and the detection scores between dif-

ferent videos are not comparable. For a fair comparison, we

use [16]’s correct detection ratio metric, exclude all outlier

videos and only use the top 1 detection of our method in

each video. The comparison results are shown in Table 4.

It can be seen that our method produces more accurate lo-

calization results. Furthermore, [16] cannot identify outlier

videos due to their assumption.

4.5. Running Time

The detailed running time of the proposed co-

localization approach on the UCF Sports Plus dataset is

shown in Table 5. For this dataset, there are 23013 frames in

total and the affinity graph contains 2142 nodes and 41102

edges. Furthermore, for the larger UCF101 dataset with

200K frames, affinity graph construction and common pro-

posal selection take 138 and 1.1 seconds, respectively. It

can be seen that most of the time is spent on the proposal

generation and feature extraction steps, while the proposed

optimal subgraph selection algorithm is efficient.

4.6. Limitations and Future Work

It is worth noting that, due to human prior, the proposal

generation method we use cannot handle untrimmed case

where a human performs common action only during part

of his/her presence. However, the proposed common ac-

tion selection method still has great potential of handling

untrimmed videos as long as we can obtain reasonable ac-

tion proposals. In the future, we will consider to propose

more robust action proposals to handle untrimmed videos.

We will also explore the potential of our selection method

to directly refine temporally untrimmed proposals.

5. Conclusion

In this work, we tackle the problem of automatic com-

mon action discovery and localization in unconstrained

videos. We are unaware of which types of action are com-

mon, and each video may contain zero, one or several com-

mon action instances. In the proposed method, we first gen-

erate action proposals and then select the proposals contain-

ing common actions by solving a subgraph density maxi-

mization problem. A polynomial time algorithm is also pro-

posed to solve it. The evaluation results on several datasets

demonstrate the effectiveness of the proposed method.
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