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Abstract

Current fiducial marker detection algorithms rely on

marker IDs for false positive rejection. Time is wasted

on potential detections that will eventually be rejected as

false positives. We introduce ChromaTag, a fiducial marker

and detection algorithm designed to use opponent colors to

limit and quickly reject initial false detections and grayscale

for precise localization. Through experiments, we show

that ChromaTag is significantly faster than current fiducial

markers while achieving similar or better detection accu-

racy. We also show how tag size and viewing direction ef-

fect detection accuracy. Our contribution is significant be-

cause fiducial markers are often used in real-time applica-

tions (e.g. marker assisted robot navigation) where heavy

computation is required by other parts of the system.

1. Introduction

In this paper, we introduce ChromaTag1, a new col-

ored fiducial marker and detection algorithm that is signifi-

cantly faster than current fiducial marker systems. Fiducial

markers are artificial objects (typically paired with a detec-

tion algorithm) designed to be easily detected in an image

from a variety of perspectives. They are widely used for

augmented reality and robotics applications because they

enable localization and landmark detection in featureless

environments. However, because fiducial markers often

complement large real-time systems (e.g. Camera Track-

ing [2, 9], SLAM [35] and Structure from Motion [8]), it

is important that they run much faster than 30 frames per

second. Figure 1 shows the run time of several state of the

art markers, of which only ChromaTag achieves process-

ing times significantly faster than 30 frames per second (all

processing uses a 3.5 GHz Intel i7 Ivy Bridge processor).

ChromaTag achieves an orders-of-magnitude speedup

with good detection performance through careful design of

the tag and detection algorithm. Previous marker designs

(Figure 2) typically use highly contrasting (black to white)

1http://degol2.web.engr.illinois.edu/pages/ChromaTag ICCV17.html

Figure 1: ChromaTag is a colored fiducial marker and de-

tection algorithm that is significantly faster than other mark-

ers. Shown are successful detections of CCTag [8], April-

Tag [33], and ChromaTag (RuneTag [4] was unsuccessful),

with the time required by each tag’s detection algorithm.

The images in this paper are best viewed in color.

borders [4, 7, 8, 10, 15, 24] for initial detection, but black-

white edges are common in images and result in many ini-

tial false detections. IDs are decoded from the tags to verify

detections, but decoding is the last step in the pipeline, so

most of the time is spent rejecting false tags. Tags with dis-

tinctive color patterns can be used to limit initial false de-

tections, but color consistency and the reduced spatial res-

olution of color channels (Bayer grid) create challenges for

ID encoding and tag localization.

ChromaTag uses each channel of the LAB opponent col-

orspace to best effect. Large gradients between red and

green in the A channel, which are rare in natural scenes,

are used for initial detection. This results in few initial false

detections that can be quickly rejected. The black-white

border takes advantage of high resolution of the L channel

for precise localization. The B channel is used to encode
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the tag ID. Our ChromaTag detection algorithm finds initial

detections, builds a polygon on the borders, simplifies to a

quadrilateral, and decodes the ID. Robustness to variations

in lighting is achieved by using differences of chrominance

and luminance throughout detection and localization. The

algorithm is fast and robust and achieves precise tag local-

izations at more than 700 frames per second.

We collect thousands of images with ChromaTag and

state-of-the-art tag designs in a motion capture arena. We

use this data to demonstrate that our tag achieves signif-

icantly faster detection rates while maintaining similar or

better detection accuracy for varying camera perspectives

and lighting conditions. We tabulate which steps in the

ChromaTag detection algorithm most often fail and con-

sume the most time. We also evaluate how image tag

size and camera viewing direction affect detection accuracy.

Note that an unlabeled training video was used during algo-

rithm design and parameter setting; the parameters are not

tuned for the held out test sets.

In summary, the contributions of this paper are: (1) we

present ChromaTag, a colored fiducial marker and detec-

tion algorithm; (2) we demonstrate that our tag achieves ac-

curate detections faster than current state-of-the-art mark-

ers using thousands of ground truth labeled image frames

with different lighting and varying perspectives; and (3) we

show how ChromaTag and other fiducial markers perform

as a function of image tag size and viewing direction.

2. Related Work

Figure 2 shows many of the tags discussed in this sec-

tion. Among the earliest fiducial markers is the concentric

contrasting circle (CCC) of Gatrell et al. [19] which consists

of a white inner circle surrounded by a black ring with an

outer white border. CCC has no signature to differentiate

markers. Cho et al. [10] adds additional rings to improve

detection at different depths and color to each ring as a sig-

nature. CyberCode (Rekimoto et al. [28]) is a square tag

with a grid of square white and black blocks to encode sig-

natures. Naimark et al. [23] combines the ring design of

CCC with the block codes of CyberCode to create a cir-

cular marker with inner block codes. ARToolKit [1] and

Fiala’s [15, 16] ARTag are the first tags with widespread

use for augmented reality [9]. Both tags borrow from past

success with square designs by using a white square bor-

der around a black inner region. ARToolKit uses different

symbols to differentiate markers while ARTag uses a grid

of white and black squares. ARTag also uses hamming dis-

tance to improve false positive rejection.

Fourier Tag of Sattar et al. [30] and Xu et al. [34] is a cir-

cular tag with a frequency image as the signature which re-

sults in graceful data degradation with distance. Schweiger

et al. [31] uses the underlying filters of SIFT and SURF

as the design motivation for their markers, which look like

(a) CCC [19] (b) Cho et.al [10]
(c) Cybercode [28]

(d) InterSense [23] (e) ARToolKit [1] (f) ARTag [15, 16]

(g) FourierTag [30] (h) SIFTTag [31] (i) CALTag [21]

(j) AprilTag [24] (k) RuneTag [4–6] (l) CCTag [7, 8]

Figure 2: Existing Fiducial Marker Designs

Laplacian of Gaussian images and are specifically designed

to trigger a large response with SIFT and SURF detectors.

Checkerboard-based markers increase the number of cor-

ners for improved camera pose estimation: CALTag by

Atcheson et al. [21] is a checkerboard with inner square

markers for camera calibration and Neto et al. [13] adds

color to increase the size of the signature library and remove

the perspective ambiguity of checkerboard detection.

Olson and Wang’s AprilTag [24, 33] is a faster and

more robust reimplementation of ARTag. Garrido-Jurado et

al [17, 18] uses mixed integer programming to generate ad-

ditional marker codes for the square design of ARTag and

AprilTag and provide their codes with the ArUco fiducial

marker library [2]. Another state-of-the-art tag (RuneTag)

comes from the work of Bergamasco et.al [4–6] which uses

rings of dots to improve robustness to occlusion and provide

more points for camera pose estimation. Lastly, CCTag by

Calvet et al. [7, 8] uses a set of rings like that of Prasad

et al. [26] to increase robustness to blur and ring width to
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(a) Original Image (b) A Channel (c) B Channel

Figure 3: The original image is converted to the LAB color space and the A and B channels are shown. In the A channel, the

different shades of red look the same and make a bright square region; and the different shades of green look the same and

make a dark ring. This makes it easy to detect the red to green border in the A channel. In the B channel, the different shades

of red and green become differentiable, making it possible to read the binary code for the tag.

Figure 4: An example ChromaTag. The red and green re-

gions are easily detectable and limit false positives. The two

shades of red and two shades of green are used to embed the

tag code. The outer black-white border provides full spatial

resolution for accurate localization of the tag corners.

encode marker signature. These tags (AprilTag, RuneTag,

and CCTag) represent the current state-of-the-art for fidu-

cial markers. They have demonstrated accurate detection

and are commonly used. ChromaTag uses a new detec-

tion approach (taking advantage of color on the markers)

to achieve processing times significantly faster than other

tags while still maintaining similar detection accuracies.

Several works perform planar object detection using

machine learning approaches. Early work by Claus et.

al [11, 12] employs a cascaded bayes and nearest neigh-

bor classification scheme for marker detection. More re-

cent work of Ozuysal et al. [25] and Lepetit et al. [22] uses

randomized forests to learn and detect planar objects. In

practice, these algorithms do not achieve detection accura-

cies on par with detection algorithms specifically designed

for marker detection. With the increased popularity of deep

learning based detection approaches, it is possible that bet-

ter detection can be achieved; however, ChromaTag, which

does not require a GPU, is faster than current deep learning

approaches which do require a GPU [27, 29].

3. ChromaTag Design

Figure 4 provides an example of a ChromaTag. The in-

ner red square and green ring are used for rejecting false

positives (Section 3.1) and the outer black and white rings

are used for precise localization of the tag (Section 3.2).

3.1. Efficient False Positive Rejection

Opponent color spaces offer large gradients between op-

posing colors in each channel. Figure 5 depicts the LAB

color space, where red and green are opposing colors in the

A channel and blue and yellow are opposing colors in the

B channel. Figure 5 also depicts how two (or more) shades

of green or red can have the same value in the A channel,

but different values in the B channel. ChromaTag’s color

configuration is designed based on these properties.

The red center surrounded by the green ring has a large

gradient in the A channel (Figure 3b), which rarely occurs

in natural scenes (empirically validated in Figure 10). Thus,

we can quickly detect tags with high precision and recall by

scanning the image in steps of N pixels and thresholding

the A channel difference of neighboring steps.

ChromaTag encodes the binary code in the B channel

(Figure 3c), which has little effect on the A channel inten-

sity (Figure 3b). Since every tag includes low and high B

values (encoding 0 and 1) in both the green and red area, the
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Figure 5: The LAB colorspace. ChromaTag uses red to

green borders because they have a large image gradient in

the A space. ChromaTag uses two shades of red and two

shades of green as representations of 0 and 1 to embed a

code in the tag. These different shades of red and green are

only differentiable in the B channel, so detection is done in

the A channel and decoding is done in the B channel. RGB

values for the different red and green colors are shown.

thresholds are adapted per tag to account for variations due

to lighting or printing. The tag detection is verified based

on the code value, enabling high precision.

We found LAB to be more robust to color printer and

lighting variations than other color spaces such as YUV. We

use hashing to speed computation of LAB values.

3.2. Precise Localization

Precise localization is required to decode the tag and re-

cover camera pose. Chrominance has lower effective reso-

lution than luminance due to the Bayer pattern filters used in

common cameras. ChromaTag is designed with outer black

and white concentric rectangles to provide high contrast and

high resolution borders for precise corner localization.

4. ChromaTag Detection

Algorithm 1 outlines ChromaTag detection. Substan-

tial effort was required to make each step of the detection

computationally efficient (700+ FPS!) and robust to vari-

able lighting and perspective.

FindADiff: The first step is to find potential tag lo-

cations. Assuming that tag cells are at least N/2 pixels

wide, we search over pixels on a grid of every N th row

and column. If a sampled pixel at location (i, j) is in an

already-detected area (InPreviousDetectionArea(i,j,Dets)),

j is moved to the next grid location outside the tag detec-

tion (MoveJToEndOfDetection(i,j)). Otherwise, the pixel is

converted to the LAB space (ConvertToLAB( Im(i,j) )), and

the A channel intensity is compared to the previous grid lo-

cation’s A channel intensity (A - OldA > ADiffThresh). If

Algorithm 1: ChromaTag Detection

Im = Input RGB image

N = Stepsize in pixels (4 in our experiments)

ADiffThresh = Threshold for initial detection (25 in

our experiments)

Dets = Struct to hold detections

TmpDet = Holds detections as they are built

for i=0; i < Im.Rows(); i+=N do

OldA = ConvertToLAB( Im(i,j) )

for j=0; j < Im.Cols(); j+=N do

if InPreviousDetectionArea(i,j,Dets) then

j = MoveJToEndOfDetection(i,j)

OldA = ConvertToLAB( Im(i,j) )

continue

[L,A,B] = ConvertToLAB( Im(i,j) )

if A - OldA > ADiffThresh then

if InitialScan(Im,i,j,A,TmpDet) then

if BuildPolygon(Im,TmpDet) then

if PolyToQuad(Im,TmpDet) then

if Decode(Im,TmpDet) then

Dets.Add(TmpDet)

OldA = A

the difference is greater than ADiffThresh, detection com-

mences and the A value is set as ReferenceRed; otherwise,

the loop continues to the next sampled pixel. In our experi-

ments, N=4 and ADiffThresh=25.

InitialScan( Im,i,j,A,TmpDet ): The next step is to re-

ject red locations that are not tags so that no further process-

ing is done at that location. From the grid location (i,j), we

scan left, right, up and down as shown in Figure 6a. Each

scan continues until M successive pixels have A channel

differences greater than BorderThresh when compared

to ReferenceRed. If successive pixels are found, scanning

has entered the green region and the border (u,v) location

and pixel value (ReferenceGreen) are remembered. If suc-

cessive pixels are not found, we return false and the grid

location is abandoned. In our experiments, M = 3 and

BorderThresh = 5.

If all four scans (up, down, left, right) find the green re-

gion, we average the (u,v) locations on the red-green bor-

der to estimate the center of the tag and repeat the scan. If

any scan fails, we return false and the grid location is aban-

doned. When the center location converges, we continue

the scans through the green region to find the green-black

and black-white borders. These scans compare against a set

ReferenceGreen or ReferenceBlack respectively and use the
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(a) Initial Scan (b) Convergence to Center (c) Initial Polygon (d) Building Polygon (e) Building Polygon

(f) Building Polygon (g) Polygon Convergence (h) Fit Quad (i) Refine Corners (j) Final Detection

Figure 6: Scans up, down, left, and right are done to find the red-green border (Figure 6a). If the red-green border is found,

the center point is adjusted and scans are repeated until the center point converges. Scans then continue to find all borders

(Figure 6b). An initial polygon is built from the found border points (Figure 6c). Additional scans add new points to the

polygon (Figures 6d, 6e, and 6f). After enough scans, the polygon converges to the tag quadrilateral (Figure 6g). Polygon

edges are clustered into four edges of a quadrilateral (Figure 6h). Patches around each quadrilateral corner are searched for a

precise corner location (Figure 6i). A homography is fit and a grid of pixel locations are sampled to decode the tag (Figure 6j).

same M and BorderThresh parameters. Center conver-

gence and scans are depicted in Figure 6b. If all scans are

successful, the (u,v) locations for each border are used to

build three initial polygons as shown in Figure 6c.

BuildPolygon( Im,TmpDet ): The next step is to ex-

pand the initial polygon to match the tag borders. Because

squares project to quadrilaterals in the image (ignoring lens

distortion), the polygon must remain convex. This limits the

maximum potential area that can be added to the polygon

with the addition of a new point. Figure 7 shows the maxi-

mum area associated with each edge. We build the polygon

by greedily scanning in the direction of maximum potential

area. The scanning procedure is the same as that described

for InitialScan. Figures 6d, 6e, 6f demonstrate how iterative

scans add points to the polygon along the tag border. Con-

vergence is reached when the ratio of potential areas and

polygon area is greater than ConvThresh; resulting in a

polygon roughly outlining the tag border (Figure 6g). If a

scan fails, false is returned and the grid location is aban-

doned. In our experiments, ConvThresh = 0.98.

PolyToQuad( Im,TmpDet ): Next, a quadrilateral is fit

to the polygon. We cluster the angles of the edges weighted

by edge length using K-Means (K = 4). The cluster centers

and outer-most point of each cluster defines four lines and

their intersections form the four corners of the quadrilateral

(Figure 6h). A patch around each corner is searched using

(a) Potential Area (b) Scanning (c) Adding an Edge

Figure 7: The potential areas (shown in red) are constructed

from neighboring edges extending to an intersection point.

The intersection point defines the apex of the triangle and

the maximum area that can be added to the current polygon

without violating convexity. The next scan moves towards

the apex of the largest potential area and finds each border

along the way. The new points are added to each border

(only outer border is shown).

GoodFeaturesToTrack [32], and the highest scoring point is

saved as the new quadrilateral corner. Patch size is scaled

by the size of the quadrilateral. Figure 6i shows an example

patch and corner for each border.

Decode( Im,TmpDet ): A homography matrix is esti-

mated from the black-white border corners. A grid is fit to

the black-white border using the homography and the pixel

at each grid location is converted to the B channel. The red
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(a) Data Collection Path (b) Example Data Under Two Lighting Conditions

Figure 8: The tag (blue) and the camera trajectory (red) are shown. Example images annotated with tag size (square root of

area) and viewing angle are shown in Figure 8b (top row: white balance (WB); bottom row: no white balance (NWB)).

and green pixels are each clustered separately where the de-

cision boundary is the midpoint of the max and min. The

clusters represent the 1 and 0 values that define the tag sig-

nature. Figure 6j shows the grid of samples that were de-

coded in order to finalize detection of the tag. For cluster-

ing to work, both shades of red and and both shades of green

must be represented in the tag; we remove from established

tag libraries any codes that do not satisfy this requirement.

The decoded signature is identified as a match using a pre-

computed hash-table containing all the signatures as was

done for AprilTag [33]. If a match is not found, false is

returned and the grid location is abandoned.

5. Results and Discussion

We collect six datasets for comparison of ChromaTag

against AprilTag [33], CCTag [8], and RuneTag [4]. Col-

ored images are captured at 30 fps with a resolution of 752

x 480 using a Matrix Vision mvBluefox-200wc camera [3].

The camera is attached to a servo motor that continuously

rotates the camera inplane between 0 and 180 degrees. For

each dataset, ChromaTag and one of the comparison tags is

placed side-by-side on a flat surface. Data is captured as

the camera is moved around the scene. Both tags remain

in the image frame during the entirety of the captured se-

quence. A similar trajectory is traversed three times as the

pitch of the tag surface is adjusted between 0 degrees (ver-

tical), 30 degrees, and 60 degrees. A motion capture system

is used to capture the pose of the camera during the data

collection. This collection is repeated twice for two differ-

ent lighting conditions: white balance (WB) and no white

balance (NWB). Figure 8 depicts the path that is walked and

some sample images. The same ID from the 16H5 family

was used for both ChromaTag and AprilTag. Tag locations

are hand annotated in each image. Additional information

about the data can be found in the supplemental material.

The implementations provided by the authors of April-

Tag, CCTag, and RuneTag are used for all experiments. All

Average Frames Per Second

Total > 0 Detections 0 Detections

ChromaTag 926.4 709.2 2616.1

AprilTag 56.1 56.3 49.0

CCTag 10.0 6.5 18.5

RuneTag 41.9 2.4 71.3

Table 1: ChromaTag has a faster average frames per second

for all frames, frames with at least one detection, and frames

with 0 detections.

Detection Step Average Time Spent on Each Step

FindADiff 0.52 ms

InitialScan 0.03 ms

BuildPolygon 0.08 ms

PolyToQuad 0.74 ms

Decode 0.04 ms

Table 2: For frames with at least one detection, PolyToQuad

and FindADiff dominate computation.

processing uses a 3.5 GHz Intel i7 Ivy Bridge processor.

5.1. Detection Speed

ChromaTag’s detection algorithm is faster than other

state of the art tags. Table 1 provides the computation time

for each fiducial marker. Table 3 provides the number of

frames timed for each marker. The average frames per sec-

ond (FPS) was calculated by dividing 1 by the mean of the

computation time. From Table 1, we see that ChromaTag

achieves an average FPS of 926.4, which is 16x, 92x, and

22x faster than AprilTag, CCTag, and RuneTag respectively.

The frames with detection often require more computa-

tion than those without. Thus, we provide the computation

times for correct detections (true positives). Table 1 shows

that ChromaTag has an Average FPS of 709.2 for true pos-
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Chroma April Chroma CCTag

Frames
WB 10266 11238

NWB 10303 10891

Precision
WB 96.9 46.0 96.3 100.0

NWB 95.7 42.9 95.7 99.9

Recall
WB 64.0 96.4 64.5 45.7

NWB 67.9 98.2 66.1 46.3

Table 3: Each dataset is a pairwise comparison between

ChromaTag and another tag with white balance (WB) and

no white balance (NWB). Precision and Recall are calcu-

lated for each dataset. ChromaTag achieves high precision

and better recall than CCTag. AprilTag is successfully de-

tected in almost every frame (high recall); however, many

false positives are also detected (low precision).

Detection Step Percent of Frames(%)

FindADiff 2.0

InitialScan 2.8

BuildPolygon 25.8

PolyToQuad 1.6

Decode 1.1

Table 4: For each step, the % of frames that failed is shown.

BuildPolygon is most often the step where failure occurs.

itive detections, which is 12x, 109x, and 295x faster than

AprilTag, CCTag, and RuneTag respectively.

The frames without detections should require very little

time because time spent on tagless images or failed detec-

tions is wasteful. We calculate computation time for frames

without a detection (false negatives because all data con-

tains the tags). ChromaTag has an average FPS of 2616.1,

which is 37x faster than the next fastest tag (RuneTag).

Table 2 shows how much time each step of ChromaTag

detection uses. Only frames where successful detection oc-

curred are used for this breakdown. PolyToQuad (0.74 ms)

and FindADiff (0.52 ms) are the most costly. PolyToQuad is

costly because of K-Means clustering and corner localiza-

tion, and FindADiff is costly because of scanning the image

and converting pixels to the LAB color space.

5.2. Detection Accuracy

Table 3 summarizes the detection results for ChromaTag

compared to AprilTag and CCTag. We define true positives

(TP) as when the tag was correctly detected in the image.

This means locating the tag and correctly identifying the

ID. Correctly identifying the tag is determined by having at

least 50 percent intersection over union between the detec-

tion and the ground truth (though detections by all tags far

exceeds this threshold). We define false positives (FP) as

detections returned by the detection algorithms that do not

identify the location and ID correctly. We define false neg-

atives (FN) as any marker that was not identified correctly.

Precision is TP

TP+FP
and recall is TP

TP+FN
.

RuneTag is omitted from Table 3 because it was not de-

tected in our dataset. The maximum size of any tag in the

images is about 126x126 pixels. With additional data, we

found that RuneTag requires larger tag sizes for detection.

See the supplementary material for more information.

Table 4 breaks down how often each step causes failed

detection. Most detection failures occur during the Build

Polygon step (25.8%). Profiling failures is useful to empha-

size areas for future improvements.

ChromaTag’s initial false positive rejection improves

precision. Table 3 shows that ChromaTag ( 96%) has a

higher precision than AprilTag ( 44%). This is interesting

because both tags are using the 16H5 family. ChromaTag is

successfully rejecting many initial false positives that April-

Tag identifies as tags. Note that the 36H11 family causes

less false positives [33]; however, less space on the tag is

available for the border and inner grid squares (resulting in

less recall). Thus, ChromaTag is able to take advantage of

the larger grid and border areas of the 16H5 codes with-

out suffering from false positives like AprilTag. ChromaTag

and CCTag have similar precisions (greater than 95%).

The combination of high recall and fast detection

makes ChromaTag a good choice for many applications.

Table 3 shows that ChromaTag has lower recall than April-

Tag (and higher recall than CCTag). However, figure 9a

shows that for tag sizes (square root of tag area in the im-

age) greater than 70 pixels, ChromaTag achieves similarly

high recall. To put that in perspective, the resolution of the

dataset images is 752x480 pixels, so a 70x70 tag area is less

than 2% of the total available area in these images. Thus,

for applications where detecting very small tags is not im-

portant, the 16x speed gain makes ChromaTag the better

option. Compared to CCTag, ChromaTag achieves similar

recall for large tags and higher recall as tag size decreases.

ChromaTag localizes corners precisely. Since use of

tags for pose estimation depends on accurately localizing

the corners, we evaluate accuracy for corner localization

compared to hand-labeled corners that are locally refined

with a Harris corner detector [20]. We found that Chro-

maTag localized 94.4% of the corners within 3 pixels of

the ground truth corners and AprilTag localized 89.1% of

the corners within 3 pixels (94.2% within 4 pixels). This

demonstrates that our white-black border design and detec-

tion enables precise corner localization on par with that of

AprilTag. On visual inspection, errors of within 5 pixels are

attributable to reasonable variation.

ChromaTag is robust to color variation. Table 3 shows

that ChromaTag achieves similar recall for both the WB and

NWB datasets despite the colors being significantly differ-

ent. Specifically, ChromaTag recall is 64.0% and 67.9%
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(a) Tag Size vs Recall (b) Viewing Direction vs Recall
(c) ChromaTag Recall for Tag Size vs View-

ing Direction

Figure 9: Recall is high when tag size (square root of tag area in image) is large and decreases as tag size decreases (Figure 9a).

Recall is high when the camera is frontally facing the tag (low values) and decreases as the angle increases (Figure 9b).

Viewing angle is the angle between the normal vector of the tag plane and the camera viewing direction (tag plane center to

camera center). ChromaTag achieves similar recall to AprilTag for tags larger than 70 pixels. Figure 9c shows the recall for

ChromaTag as it depends on both viewing direction and tag size. Yellow means a high recall and blue means a low recall. We

see from this plot that both viewing direction and tag size affect ChromaTag recall, though tag size has a larger direct effect.

Figure 10: WB Tag Region (blue) and NWB Tag Region

(orange) are the regions of the WB and NWB data respec-

tively that include the tag. No Tag Region (yellow) is the

tagless parts of the WB and NWB data. Each histogram

bins A channel pixel differences from horizontally scanning

the image (same approach as our detection algorithm). For

WB and NWB Tag Region, only the max pixel difference is

binned. The result is two modes highlighting how the pixel

difference on the tag is easily differentiable from the pixel

differences of natural images. The colors of WB and NWB

are drastically different, yet still differentiable from natural

images, showing that red and green pixel differences in the

A channel are robust to color variation.

for WB and NWB on the AprilTag dataset and 64.5% and

67.9% for WB and NWB on the CCTag dataset. The com-

parisons for ChromaTag are similarly close for precision be-

tween WB and NWB for each dataset. These results provide

evidence that ChromaTag is robust to color variation.

ChromaTag is robust to color variation because initial de-

tection and finding borders rely on LAB pixel differences,

which the tag design ensures are consistently large. Fig-

ure 10 shows histograms of pixel differences in the A chan-

nel for the tag region of the WB data (blue), the tag re-

gion of the NWB data (orange), the tagless regions of WB

and NWB (yellow), and the Pascal VOC 2012 dataset [14]

(purple). Each histogram is created by binning A channel

pixel differences from horizontally scanning the image with

N = 4 subsampling (same approach as our detection al-

gorithm). For the tag regions, only the max difference is

counted since only one difference must be above thresh-

old for detection. Despite large variation in color between

WB and NWB, the A channel difference for tag regions is

clearly differentiable from A channel differences in natural

images, which shows why ChromaTag is robust to lighting

and color variation and can reject false positives quickly.

6. Conclusions

We present a new square fiducial marker and detection

algorithm that uses concentric inner red and green rings to

eliminate false positives quickly and outer black and white

rings for precise localization. We demonstrate on thou-

sands of real images that ChromaTag achieves detection

speeds significantly faster than the current state of the art

while maintaining similar detection accuracy. We also show

that ChromaTag detection fails at far distances and steep

viewing angles and recommend AprilTag as a better option

for applications that require detection in these conditions.

Lastly, we provide evidence that ChromaTag detection is

robust to color variation, and break down which steps of the

detection algorithm take the most time and fail most often.
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M. Marı́n-Jiménez. Automatic generation and detection of

highly reliable fiducial markers under occlusion. Pattern

Recognition, 47(6):2280 – 2292, 2014.

[18] S. Garrido-Jurado, R. M. noz Salinas, F. Madrid-Cuevas, and

R. Medina-Carnicer. Generation of fiducial marker dictionar-

ies using mixed integer linear programming. Pattern Recog-

nition, 51:481 – 491, 2016.

[19] L. B. Gatrell, W. A. Hoff, and C. W. Sklair. Robust image

features: concentric contrasting circles and their image ex-

traction, 1992.

[20] C. Harris and M. Stephens. A combined corner and edge de-

tector. In In Proc. of Fourth Alvey Vision Conference, pages

147–151, 1988.

[21] R. Koch, A. Kolb, C. R. salama (eds, B. Atcheson, F. Heide,

and W. Heidrich. Caltag: High precision fiducial markers for

camera calibration, 2010.

[22] V. Lepetit and P. Fua. Keypoint recognition using random-

ized trees. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 28(9):1465–1479, Sept 2006.

[23] L. Naimark and E. Foxlin. Circular data matrix fiducial

system and robust image processing for a wearable vision-

inertial self-tracker. In Proceedings of the 1st International

Symposium on Mixed and Augmented Reality, 2002.

[24] E. Olson. Apriltag: A robust and flexible visual fiducial sys-

tem. In Robotics and Automation (ICRA), 2011 IEEE Inter-

national Conference on, pages 3400–3407, May 2011.

[25] M. Ozuysal, M. Calonder, V. Lepetit, and P. Fua. Fast key-

point recognition using random ferns. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 2010.

[26] M. G. Prasad, S. Chandran, and M. S. Brown. A motion blur

resilient fiducial for quadcopter imaging. In 2015 IEEE Win-

ter Conference on Applications of Computer Vision, pages

254–261, Jan 2015.

[27] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You

only look once: Unified, real-time object detection. In The

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), June 2016.

[28] J. Rekimoto and Y. Ayatsuka. Cybercode: Designing aug-

mented reality environments with visual tags. In Proceed-

ings of DARE 2000 on Designing Augmented Reality Envi-

ronments, 2000.

[29] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: To-

wards real-time object detection with region proposal net-

works. In Advances in Neural Information Processing Sys-

tems (NIPS), 2015.

[30] J. Sattar, E. Bourque, P. Giguere, and G. Dudek. Fourier tags:

Smoothly degradable fiducial markers for use in human-

robot interaction. In Computer and Robot Vision, 2007. CRV

’07. Fourth Canadian Conference on, pages 165–174, May

2007.

[31] F. Schweiger, B. Zeisl, P. Georgel, G. Schroth, E. Steinbach,

and N. Navab. Maximum detector response markers for sift

and surf, 2009.

[32] J. Shi and C. Tomasi. Good features to track. In Computer Vi-

sion and Pattern Recognition, 1994. Proceedings CVPR ’94.,

1994 IEEE Computer Society Conference on, pages 593–

600, Jun 1994.

1480



[33] J. Wang and E. Olson. AprilTag 2: Efficient and robust fidu-

cial detection. In Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), Octo-

ber 2016.

[34] A. Xu and G. Dudek. Fourier tag: A smoothly degradable

fiducial marker system with configurable payload capacity.

In Computer and Robot Vision (CRV), 2011 Canadian Con-

ference on, pages 40–47, May 2011.

[35] T. Yamada, T. Yairi, S. H. Bener, and K. Machida. A study on

slam for indoor blimp with visual markers. In ICCAS-SICE,

2009, pages 647–652, Aug 2009.

1481


