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Abstract

The recent proliferation of high resolution cameras

presents an opportunity to achieve unprecedented levels of

precision in visual 3D reconstruction. Yet the camera cal-

ibration pipeline, developed decades ago using checker-

boards, has remained the de facto standard. In this paper,

we ask the question: are checkerboards the optimal pat-

tern for high precision calibration? We empirically demon-

strate that deltille grids (regular triangular tiling) produce

the highest precision calibration of the possible tilings of

Euclidean plane. We posit that they should be the new stan-

dard for high-precision calibration and present a complete

ecosystem for calibration using deltille grids including: (1)

a highly precise corner detection algorithm based on poly-

nomial surface fitting; (2) an indexing scheme based on po-

larities extracted from the fitted surfaces; and (3) a 2D cod-

ing system for deltille grids, which we refer to as DelTags,

in lieu of conventional matrix barcodes. We demonstrate

state-of-the-art performance and apply the full calibration

ecosystem through the use of 3D calibration objects for mul-

tiview camera calibration.

1. Introduction

Camera calibration is a foundational operation in 3D vi-

sion systems. Small errors incurred during the calibration of

perspective cameras are magnified by back-projection and

these errors often cascade through all successive modules

of the system. Precision is, therefore, of paramount im-

portance. Checkerboard patterns have become the default

choice for high precision camera calibration, as they pro-

vide a uniform calibration pattern with distinct corners for

precise fiducial localization [5, 6]. An entire ecosystem has

been built around checkerboard patterns that includes effi-

cient and precise corner detection algorithms [6, 18, 24],

robust indexing schemes when only a partial checkerboard

is visible [14, 30], and matrix barcodes for absolute local-

ization of corners on the checkerboard [13, 27]. Yet, the

advent of higher resolution cameras and the proliferation of

multi-camera rigs calls for revisiting the merit of checker-

board patterns as the basis of the calibration pipeline.

*Equal contribution

(a) Checkerboard (b) Deltille Grid (c) Icosahedron

Figure 1: Regular tiling with uniform but alternating color-

ings. (a) Checkerboard pattern, (b) a Deltille pattern with

the same edge length as (a), (c) a 3D calibration object tex-

tured with a deltille grid.

In this paper, we advocate for the use of triangles rather

than quadrilaterals as primitives for calibration patterns, and

report significant advantages to their use. We present a com-

plete calibration ecosystem based on deltille patterns [8] in-

cluding an algorithm for high precision deltille corner de-

tection, an indexing algorithm for partially viewed deltille

grids, and a triangular barcode system, which we refer to

as DelTags, for absolute localization of calibration objects.

This ecosystem is applied to precise multi-view camera cal-

ibration using a 3D calibration object.

A deltille is a regular triangular tiling (so-called “delta

tiles”) with a Schläfli symbol of {3, 6} [9]. It is one of only

three regular tilings of the Euclidean plane and, besides the

familiar checkerboard tiling, it is the only tiling that can be

colored with alternating colors (specifically, with a uniform

coloring of 121212) [16]. We refer to a deltille pattern with

such a coloring as a deltille grid (see Fig. 1(b)).

There are three principal advantages to deltille grids

compared to checkerboards: (1) Deltille grids achieve a

higher density of elements, for a given edge distance, com-

pared to square or skew-rectangular tiling, as can be seen

in Fig. 1. This property allows for a greater number of

fiducials to be detected, improving localization precision

(as shown in our experiments). Furthermore, as it is an

isotropic tiling, deltille grids help reduce localization bias

when the pattern is observed under perspective transforma-

tion. (2) Each fiducial is characterized by the intersection

of three alternating edges, which offer a greater number of

constraints compared to the intersection of two edges for

checkerboards (see Fig. 2). This property results in a more

precise localization even in the fronto-parallel view, under
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(a) Saddle surface (b) Monkey saddle surface

Figure 2: Two types of checkerboard corners and corre-

sponding local surface shapes

blur, and intensity noise in the image. (3) As a texture prim-

itive for 3D calibration objects, a triangle is a more attrac-

tive primitive than a quadrilateral. It is known that triangle

meshes are always more accurate than quadrilateral meshes

in approximating convex structures [11], which are desir-

able for multiview calibration. Consider, for example, a

cube compared to icosahedron as a calibration object: the

greater the number of regular faces, the less the bias due

to viewpoint. Intuitively, triangles are simpler primitives to

handle compared to quads: a triangle is flat and convex by

construction and the quality of a triangle mesh is straight-

forward to characterize (in terms of the deviation from an

equilateral triangle) [4].

It is timely to explore new approaches to high precision

calibration, as high-resolution imagery is increasingly be-

ing captured from multiple views in environments, such

as sports arenas, television studios, and crowd captures of

events. The advantages of deltille grids allow us to access

higher levels of precision in calibration, that can then filter

down to the rest of the vision process such as special effects,

3D distance estimation, and 3D reconstruction.

Contributions. We present a calibration pipeline based

on deltille grids with the following specific contributions:

1. Deltille Corner Detection: We present an approach

for highly precise deltille corner detection based on

fitting a monkey saddle point surface directly to the

image intensity samples. The polynomial surface fit is

convex and we employ a result from differential geom-

etry to design a fiducial discriminant as a star-shaped

umbilical point.

2. Indexing for Partially-viewed Deltille Grids: An

auxiliary result of the polynomial fit is access to the

polarities of the fit. Using the polarities at each point,

we design a robust indexing method for partial deltille

grid detection.

3. DelTags: We present a 2D coding system designed to

maximize the visibility of the code within a triangular

tile (or delta), that preserves the main error correction

mechanisms of matrix barcodes (such as QR codes).

We apply this pipeline to multiview calibration using a 3D

calibration object with a deltille grid. The corner detection

and indexing scheme also apply to checkerboard patterns,

and we qualitatively compare both modules and demon-

strate state-of-the-art performance on standard datasets.

2. Prior Works

Checkerboard corner detection can be split into two

tasks: checkerboard pattern detection and corner refine-

ment. Typically, a combination of different methods for

each part is encouraged to simultaneously achieve the best

detection rate and corner accuracy.

Checkerboard Pattern Detection. The OpenCV

checkerboard detection algorithm [6] is a widely used

full-checkerboard detector. It detects corners by segment-

ing black quadrangles and finding intersections of their

edges.Wang et al. [31] proposed a method to fit two groups

of lines to find the pattern grid. The lines of the grid

can also be found using the Hough transform [12, 17].

However, this kind of line fitting based detection methods

is only feasible on images with small lens distortions. A

version of the algorithm robust to strong lens distortion

was proposed by Rufli et al. [29] and implemented in the

OCamCalib Toolbox [30]. Placht et al. [28] presented a full

checkerboard detector which looks for a graph structure

of the checkerboard in a skeletal binary edge image.

Fuersattel et al. [14] extend this method using a subgraph

matching scheme to achieve partial checkerboard detection.

However, it is sometimes difficult to obtain a binary edge

image preserving a clear checkerboard structure if the im-

age is blurry or unevenly lit. Geiger et al. [15] proposed a

method which iteratively expands checkerboard hypotheses

starting from seed points. Although many of these methods

provide automatic detection of checkerboard, they often fail

due to various factors such as image resolution, blur, noise,

uneven illumination or strong geometric distortion. For

this reason, some people prefer to use Bouguet’s camera

calibration toolbox for MATLAB [5], which allows the

user to manually extract the checkerboard, to avoid false

detections that can ruin the entire calibration result.

Corner Refinement. The Harris corner detector [18] is a

common choice for localizing corner points. Bouguet [5]

present a method which refines initial corners to better lo-

cations where the gradients in the vicinity are orthogonal

to the selfward vectors. This well-known method is also

adopted in OpenCV [6] and Geiger et al. [15]. Lucchese

and Mitra [24] refine the initial Harris points by computing

saddle points of polynomial surfaces fitted to the vicinity

of the corners. The image is smoothed with a Gaussian fil-

ter before fitting polynomials. Chen et al. [7] propose a

comparable saddle point extraction directly using a Hessian

matrix, instead of fitting polynomials, for computational ef-

ficiency. Recently, Placht et al. [28] show that accuracy can

be improved by using a cone-shaped filter instead of a Gaus-

sian. Their saddle point method shows more robust charac-

teristics against blur and intensity noise than other methods

with the same amount of information i.e. small patch, which

allows the use of a target with a higher density of features.
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Other Primitives. Circular features or dots were also

used as primitives for calibration targets [19, 20, 21]. It was

shown in [25] that a compensated conic fitting can be used

to remove localization bias of their centroid under projec-

tive transformation but the bias from nonlinear transforma-

tion like lens distortion still affects the precise localization.

Methods based on concentric circles [22] and confocal con-

ics [23] are also prone to nonlinear lens distortions. On the

contrary, polynomial fitting based corner detection [24] –

similar to our method – was proven to be invariant to both

types of bias [25].

3. Method: Deltille Grid Detection

In the following sections we present the corner detection

on a deltille pattern, a generalization of the precise local-

ization of corners on rectangular grids [28, 2]. To highlight

the analogies, we detail the rectangular case1 and will re-

fer to it throughout this section. In Sec. 3.2, we detail a

robust method for indexing i.e. establishing 2D to 3D cor-

respondences on partial targets and multifaceted calibration

objects.

3.1. Corner Detection by Monkey Saddle Fitting

Let us represent an image of a deltille grid as a smooth

two dimensional function of pixel coordinates with values

in each point representing an intensity of a pixel. The inter-

section of the edges on a deltille grid forms a specific type

of saddle point of the image function, see Fig. 2(b), usually

called a monkey saddle [1]. Geometrically, there are three

valleys and three ridges of the image intensity function that

form a perfect saddle for the two legs and a tail of a mon-

key. The minimum degree of the polynomial that forms a

monkey saddle surface is three, and the deltille grid corner

is a critical point of this surface.

Let f(x) be a smooth image intensity patch in the vicin-

ity sought deltille grid corner x∗, where alternating black

and white regions meet at the intersection point of three tri-

angles. Given an initial guess of the critical point location

x
0, we construct a sequence x

t by approximating the local

surface by a series of third order polynomials centered at

x
t, whose critical points converge to x

∗. Instead of using

Taylor series expansion that would involve up to third order

derivatives in x
t, we directly fit a third order polynomial

f̃(x; c) = c1x
3 + c2x

2y + c3xy
2 + c4y

3+

c5x
2 + c6xy + c7y

2 + c8x+ c9y + c10, (1)

to the intensity surface function f around point xt. The

polynomial surface fitting can be formulated as

argmin
c

∑

∆i∈N

‖f(xt +∆i)− f̃(∆i; c)‖2 (2)

1Please refer to the extended version of the paper.

where c = [c1, c2, . . . , c10]
⊤

is the vector of polynomial co-

efficients and N is a set of n sampling points ∆i = (ui, vi)
that are chosen on a grid within the distance r from x

t.

In practice, this least squares fitting problem can be ef-

ficiently solved for m corner points at once. The vector of

coefficients c satisfies a linear system Ac− b = 0, where

A =






u3
1 u2

1v1 u1v
2
1 v31 u2

1 u1v1 v21 u1 v1 1
...

...
...

u3
n u2

nvn unv
2
n v3n u2

n unvn v2n un vn 1







b =
[

f(xt +∆1), · · · , f(x
t +∆n)

]⊤
.

The sampling of subpixel intensities of f is done using bi-

linear interpolation.

By selecting the same grid of ∆i for each corner, the

matrix A can be fixed and reused in fitting of all points at

each iteration. Thus, we solve all surface fitting problems

at each iteration by a single equation AC = B, where the

n-by-m matrix B can be filled by concatenating the cor-

responding vectors of samples for all m corner points. To

solve this over-determined problem (for n ≥ 10), we com-

pute M =
(

A
⊤
A
)

−1

A
⊤, to estimate 10-by-m matrix C

of all polynomial surface coefficients by C = MB. Note

that M needs to be computed only once in the beginning

and utilized over the entire process.

The localization of the critical point of the fitted surface

based on the conventional Newton’s method turns out to be

tricky, as the first derivatives of the surface are second-order

polynomials:

∇xf̃(x) = 3c1x
2 + 2c2xy + c3y

2 + 2c5x+ c6y + c8,

∇y f̃(x) = c2x
2 + 2c3xy + 3c4y

2 + c6x+ 2c7y + c9.

Thus, unlike in the rectangular corner case, there might ex-

ist multiple stationary points (intersections of two ellipses)

around the deltille corner point. Newton method is less

likely to reach the true monkey saddle point and converges

to some of these local stationary points.

To overcome this problem, we use another clue found in

differential geometry. The critical point of a monkey saddle

surface is regarded as an umbilical point, at which the Gaus-

sian curvature becomes zero [3]. Consequently, the monkey

saddle point is a degenerate critical point where all of its

second derivatives are zero. This allows us to discriminate

it by keeping only points x∗ where ∇2f̃(x∗) = 0.

In each iteration, we compute the location of the degen-

erate critical point xd from the local surface fitted in x
t,

satisfying:

∇2f̃(xd)











∇2
xxf̃(xd) = 6c1xd + 2c2yd + 2c5 = 0,

∇2
xy f̃(xd) = 2c2xd + 2c3yd + c6 = 0,

∇2
yy f̃(xd) = 2c3xd + 6c4yd + 2c7 = 0.

(3)
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Figure 3: An iteration of the procedure for: deltille (left)

and rectangular corner (right). From an initial grid of points

x
0, the red arrow is shown to x

1 if point satisfies Eq. 5, and

its displacement xd < r. Blue points are filtered by J ≥ 0,

green points are filtered out when xd≥r.

Since Eq 3 is an over-determined linear system, xd is com-

puted by solving the corresponding least squares problem.

The monkey saddle point location x
t+1 is updated as:

x
t+1 = x

t + xd (4)

Any point in the vicinity of a monkey saddle should have

both positive and negative principal curvatures [3], there-

fore to detect all corner points on a deltille grid, the iter-

ation is initialized densely from every point that satisfies

det∇2f(x) < 0. To filter out non-monkey-saddle points

that share the same critical point property (Eq. 3), we ex-

plore previous studies on the umbilical classification which

was first proposed by Darboux [10]. Berry and Hannay [3]

named the three typical forms of umbilical points: star,

monstar, and lemon, based on the pattern of the principal di-

rection vector field around the umbilic. Specifically, in our

case, the star shape of umbilical point represents the mon-

key saddle point. The discriminant for star shaped umbilics

distinguishing them from others is given by:

J(c1, c2, c3, c4) = 3(c1c3 + c2c4)− (c22 + c23) < 0, (5)

and we consider any local surface satisfying J < 0, is

potentially a monkey saddle point. The convergence flow

around a sample deltille and rectangular corner is depicted

in Fig. 3.

Since the discriminant is only based on the highest order

coefficients, it is invariant to x-y domain shift of surface

fitting. In other words, the discriminant can be checked for

all points from the first iteration of our process regardless

of how precisely the points are localized. This is important

to significantly reduce outliers and allows us to efficiently

process only monkey saddle like points.

3.2. Robust Indexing for Deltille Grids

The appearance of the calibration pattern in images

changes significantly due to image acquisition effects such

as vignetting, lens aberrations and rasterization on the sen-

sor as well as geometric effects such as strong radial and

perspective distortion. Calibration with multifaceted cali-

bration objects e.g. Fig. 1(c) or partially visible patterns re-

quires robust indexing – process of establishing correspon-

dences between the image corners and pattern points. In the

following, we detail individual steps of the indexing proce-

dure as shown in Fig. 4.

3.2.1 Polarities

Let us assume that each converged point x∗ from a previous

iterative procedure is a precisely localized monkey saddle

point. The polynomial surface f̃(x∗) can be approximated

as a multiplication of three hyperplanes (intensity ramps)

intersecting at the origin:

f̃(x) ≈ k (x sin θ1 − y cos θ1) (x sin θ2 − y cos θ2)

(x sin θ3 − y cos θ3) + l. (6)

The angles θi of these hyperplanes, which we denote as

polarities, describe the orientation and shape of the sur-

face (see Fig. 4(a)) that can be further utilized in grid index-

ing. In particular, by relating Eq. 6 with Eq. 1, we obtain

c1 = k sin θ1 sin θ2 sin θ3,

c2 = −k sin θ1 sin θ2 cos θ3 − k sin θ1 cos θ2 sin θ3−

k cos θ1 sin θ2 sin θ3,

c3 = k sin θ1 cos θ2 cos θ3 + k cos θ1 sin θ2 cos θ3+

k cos θ1 cos θ2 sin θ3,

c4 = −k cos θ1 cos θ2 cos θ3.

Three angles θ1, θ2, and θ3 are obtained as the three solu-

tions of the following third order equation:

c4 tan
3 θ + c3 tan

2 θ + c2 tan θ + c1 = 0. (7)

Two of its three roots may be complex numbers. We embed

roots into a unit sphere using real part as azimuth and imag-

inary part as elevation, and then use the cosine distance to

find similar neighboring corners on the deltille grid.

3.2.2 Initial Quad Selection

The initial quad consists of two triangle elements of the

deltille grid (Fig. 4(b)). The first point of a quad is ran-

domly selected, then out of all nearest neighbors, a diago-

nal neighbor with the same polarity is selected. Each near-

est neighbor shadows an angular span of γ degrees and as

a result, only a couple of closest neighbors in the vicinity

of the point survive. Out of them, the third and fourth point

in the quad that has the same polarities are selected and in-

terior of the triangles inspected for homogeneity. Polarities

are deemed the same if they are within δ degrees. An ini-

tial quad is formed for the next stage if after this procedure

exactly two off-diagonal points remain out of the neighbors.
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(a) Corners with polarities (b) Initial quad detection (c) Circle fitting (d) Grid growing

Figure 4: Illustration of deltille grid detection indexing: (a) detected corner points (blue dot) with polarities (black and gray

arrows), (b) initial quad with initial point (red dot) and selected neighboring points (orange dots), (c) edge growing by fitting

circular arcs (blue, green, yellow) into considered neighboring points (orange dots) and checking homogeneity along the arc,

dark regions. (d) grid growing after the first iteration.

3.2.3 Edge Growing by Circle Fitting

In the last stage, the deltille grid is grown from each initial

quad. From each edge already in the grid, candidates ex-

tending the edge are sought. First, the same procedure as

in the previous step is used to reduce the number of near-

est neighbors by shadowing. Then, a candidate neighbor

with a correct polarity is selected and a circular arc is fit-

ted into the triplet of two edge points and the candidate

(see Fig. 4(c)). Homogeneity along both sides of the consid-

ered edge, marked by (1) and (2), is inspected by comparing

corresponding intensity values on both sides. If consecutive

samples on each side of the edge are homogeneous, and the

intensity gradient between samples on opposite sides does

not change sign, the candidate is inserted into the grid to-

gether with the extending edge (Fig. 4(d)). The procedure

continues in this breadth-first search until there are no can-

didates that can be added.

3.3. DelTags

In the previous sections, we detailed a robust approach to

establish neighborhood structure of partial rectangular and

deltille grids. However, more than a local neighborhood

structure of the grid needs to be inferred in order to define

unique correspondences between 2D observations and 3D

locations of points on the calibration object with multiple

faces, or when only a part of the grid is visible.

Inspired by the recent success of various families of

QR tags for localization [27] in robotics and AR applica-
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Figure 5: Example of DelTags family d25h7. (a) Indexes of

bits embedded in a DelTag, (b) embedding of tag with value

4945677, black triangle encodes bit with value 0, white tri-

angle with value 1, (c) deltille board with DelTags from

family d25h7.

tions [13], we introduce a novel class of QR codes DelT-

ags that can be easily embedded in deltille grids. DelTags

from a family dbhh (see Fig. 5) are triangular embeddings

of binary codes uniquely encoding position and orientation

similarly to AprilTags [27] with the following properties:

1. Distinguishable, to keep low false positive rates, each

DelTag of length b is guaranteed to be in Hamming dis-

tance of at least h from any other DelTag in the family.

2. Robust to rotations, each rotation of a DelTag is in at

least in Hamming distance h from all other codes and

their rotations.

3. Robust to bit-flips, having all other DelTags of the

same family in at least h Hamming distance provides

error correction of up to ⌊(h − 1)/2⌋ bit errors and

detection of ⌊h/2⌋ errors.

4. Experimental Results

We have evaluated several aspects of our method in the

experimental validation, and in camera calibration using the

standard pinhole camera model [32]. First, we have fo-

cused on the precision of our deltille and rectangular cor-

ner extraction algorithms based on realistic simulation in

Sec. 4.1. For benchmarking our deltille grid indexing algo-

rithm against state-of-the-art methods, we applied it both to

conventional checkerboard and deltille grid detection and

compared their performance in Sec. 4.2. The precision in

real world calibration scenarios was compared in Sec. 4.3.

Finally, we demonstrate that the use of deltille grids allows

simpler calibration of a multi-view camera rig in Sec. 4.4.

4.1. Simulation

This experiment was focused on the validation of the pre-

cision and convergence of our polynomial fitting based cor-

ner methods. As a reference method, we used the OpenCV’s

subpixel localization implementation [6].

Image Rendering Pipeline. An image rendering pipeline

was designed, to closely resemble the appearance of the

rectangular and monkey saddle points in real world images.
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Figure 6: Analysis of the influence of blur, noise and perspective distortion on the localization precision and convergence of

our method. For details, please refer to Sec. 4.1.

First, a point on the view sphere centered on a corner is gen-

erated as an in-plane rotation α and zenith2 φ angles. Then,

a sharp image of a perspective camera at (α, φ) looking at

rectangular/triangular corner is generated. To simulate de-

focus blur, the image is filtered with an isotropic Gaussian

kernel with zero mean and standard deviation σ pixels. Fi-

nally, a Gaussian intensity noise with zero mean and stan-

dard deviation of σn intensities is then added to each pixel.

Evaluation Protocol. The influence of individual aspects

– blur (σ), noise (σn) and viewpoint (φ) – of image ren-

dering pipeline on the localization precision and conver-

gence of our method was evaluated in three tests: 1) blur

test σ ∈ (0, 5〉 px was with fixed σn = 1.0% and random

φ ∈ (0, 60〉°, 2) noise test σn ∈ (0, 5〉% was with fixed

σ = 1.0 px, random φ ∈ (0, 60〉°, and 3) perspective dis-

tortion test φ ∈ (0, 75〉° was with fixed σ = 1.0 px and

σn = 1.0%.

For each data point, a set of 1000 of 200 × 200 images

was generated with the in-plane rotation α randomly sam-

pled from (0, 2π〉. The ground-truth location of x∗
g was ran-

domly generated within a 1-pixel square of the center pixel,

to avoid bias due to rendering artifacts such as aliasing. Ex-

2Angle from normal of the plane with corner point.

amples of generated images are shown in Fig. 6. All tested

methods were initialized from four corners of the pixel x∗
g

and a fixed 11× 11 window size was used for all meth-

ods. The localization error |x∗ − x
∗
g| of OpenCV method

was measured after the convergence, and that of ours after

first, second and fifth iteration for a meaningful convergence

analysis. Finally, localization errors from all 1000 images

(× 4 corners) were averaged.

Gaussian Blur Test. The results of the image blur test are

shown in Fig. 6(a). The reference OpenCV method diverges

from the correct location for σ > 2 on both rectangular and

deltille corner points. After only two iterations, both our

regular and monkey saddle methods outperform the refer-

ence method over the full range of blurs. The monkey sad-

dle point extraction slightly and consistently outperformed

the rectangular saddle method.

Image Noise Test. Image noise influences the correctness

of assumptions of the polynomial fitting model. The perfor-

mance in the image noise test is summarized in Fig. 6(b).

The reference and our methods are clearly influenced by

the selected range of image noise. It increases the mean lo-

calization error about five times at the strongest 5% noise

level. Both our methods outperform the reference method,

reducing the mean localization error by two to three times.
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Table 1: Average detection rates of different checkerboard pattern detection methods (Sec. 4.2). The average computation

time per frame is also shown. Note that we used the same algorithm (except the initial quad selection), as for deltille grids.

Type Method

Dataset (# image)

Mesa uEye GoPro Full Partial Fisheye
(206) (206) (100) (162) (162) (256)

P
ar

ti
al

Our method
100.00%

13 ms

100.00%

249 ms

100.00%

740 ms

100.00%

184 ms

99.18%

199 ms

99.26%

298 ms

OCamCalib [30]
99.99%

120 ms

100.00%

597 ms

100.00%

637 ms

99.95%

384 ms

92.25%

441 ms

96.05%

706 ms

OCPAD [14]
98.00%

1111 ms

99.92%

2737 ms

100.00%

2329 ms

97.83%

2529 ms

40.94%

3631 ms

26.37%

9325 ms

F
u
ll

Geiger et al. [15]
100.00%

2144 ms

100.00%

4484 ms

100.00%

10740 ms

99.94%

4129 ms

94.85%

3467 ms

88.33%

6192 ms

MATLAB Computer Vision

Toolbox [26]

100.00%

19 ms

99.84%

203 ms

92.00%

726 ms

99.94%

136 ms

93.30%

129 ms

14.99%

255 ms

ROCHADE [28]
96.60%

1034 ms

100.00%

2809 ms

100.00%

7195 ms

97.53%

3092 ms

36.42%

2574 ms

1.95%

8574 ms

OpenCV [6]
94.66%

94 ms

100.00%

94 ms

100.00%

645 ms

98.77%

54 ms

38.27%

59 ms

11.72%

409 ms

Perspective Deformation Test. The out-of-plane rotation

significantly influences appearance by changing the aspect

ratio of the corner image. Fig. 6(c) shows that all three

methods perform well for φ < 65. Then, the quantization

and image rasterization effects start to influence all methods

due to the finite resolution of the generated images. The ef-

fect seems to be more pronounced for monkey saddle point

that is a higher frequency structure, however, it still shows

better performance than other methods in the same condi-

tions. In practice, the deltille pattern allows tessellating

regular objects into more facets, which helps to reduce the

average view angles to object facets in multi-camera setups.

4.2. Deltille Grid Indexing Performance

In this experiment, we applied our deltille grid index-

ing method to a conventional checkerboard detection3 to al-

low comparison with other state-of-the-art methods [26, 6,

14, 15, 28, 30]. All methods were run on the full and par-

tial checkerboard datasets provided by [14, 28]. Addition-

ally, we compared the results on our new challenging image

dataset captured using a fisheye camera with 220° FOV that

exhibits high lens distortion.

In the evaluation, we first manually labeled all visible

checkerboard corners and correct grid topology on all im-

ages. Then, we counted corners as detected, when they

were located within a radius of 3 pixels from any visible

corner, considering each visible corner at most once. The

performance was measured by the average detection rate
1
N

∑N

i=1
#detected cornersi
#visible cornersi

, where N is the number of im-

ages in the dataset. To emphasize the indexing correct-

ness, the number of detected corners was counted as zero,

when the topology of the detected grid was incorrect. For

3with modifications for the rectangular pattern, see extended version of

the paper

Figure 7: Corresponding deltille and checkerboard pattern

images captured using the same trajectory of a robot arm.

Both grids detected by our method are drawn in red.

a fair comparison, parameters of each method were opti-

mized to result in the overall best performance and kept

fixed throughout the evaluation.

The results summarized in Table 1 show that our method

outperformed other methods on all datasets, even though

they vary widely in resolution and lens distortion, from nar-

row FOV lenses with 176× 144 images in (Mesa), 1280×
1024 images in (uEye), 4000 × 3000 images with strong

lens distortion (GoPro), 1280 × 720 images in (OCPAD-

full/partial) up to 1600 × 1200 images with extreme dis-

tortion from 220° FOV lenses in (Fisheye) dataset. In par-

ticular, our method provides superior performance on the

Fisheye dataset which is composed of challenging partial

checkerboard pattern images. Covering full field of view

helps with calibration of strong distortion.

4.3. Evaluation using a Robot Mounted Camera

In this experiment, we compare the performance of other

methods with our deltille and checkerboard grid detection

method in a real-world camera calibration scenario. A robot

mounted camera setup was used to capture two calibration

patterns separately. They were mounted at the same loca-

tion, images were captured with the same trajectory and il-
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Table 2: Results of camera calibration and pose estimation

on the robot hand sequence, RMSE - Root Mean Squared

Error of the reprojection.

Pattern Method
# Used

Corner

Calibration

RMSE[px]

Pose Est.

RMSE[px]

Deltille

grid

10× 11

Proposed 11,988 0.1006 0.1161

Proposed with

less points

9,592

(random)
0.0995 0.1173

Checker-

board

8× 11

Proposed 9,592 0.1096 0.1283

Geiger et al. 9,592 0.1140 0.1348

OpenCV 8,976 0.1152 0.1365

Rochade 9,592 0.1192 0.1372

OCPAD 9,591 0.1202 0.1382

MATLAB 9,592 0.1267 0.1634

OCamCalib 9,592 0.3118 0.3204

lumination conditions in a controlled indoor environment.

We manufactured an 8×11 rectangular checkerboard with

2cm squares and a 10×11 deltille grid of 2cm equilateral

triangles covering similar areas of a high flatness board.

A wide FOV camera (Basler Dart) with 1600 × 1200 res-

olution was mounted on the robot’s end-effector and 109
views were captured covering a half sphere space in front

of the board with 5° inclination and 30° azimuth intervals

(see Fig. 7 with the setup and example images). We split

each image sequence into two parts:

Calibration. All camera parameters were estimated by per-

forming a calibration with the first half of the sequence in

which the camera moved on a half sphere centered at the

pattern center within mild perspective angles from 0◦ to 25◦

with respect to the normal direction of the pattern plane.

Pose Estimation. Fixing the obtained intrinsic camera pa-

rameters, only the extrinsic camera parameters were esti-

mated on the other half of the sequence, where the camera

covered stronger perspective angles from 25◦ to 45◦.

The reprojection errors (RMSE) for each sequence and

each phase are summarized in Table 2. Presented rectan-

gular and deltille grid methods outperformed the state-of-

the-art methods. The lower RMSE in pose estimation using

the deltille grid is achieved not only by more precise cor-

ner detection but also by more accurate camera parameters.

Moreover, in the same conditions, our deltille grid detection

resulted in even smaller calibration errors while observing

25% more corners than the checkerboard, which is a desir-

able property for accurate camera calibration.

4.4. Multi­view Camera Calibration

In the last experiment, we applied our method to cal-

ibrate a multi-camera rig with 4 high-resolution (12Mpx)

cameras with narrow 20° field of view, approximately 0.8
meters from the target. We precisely manufactured planar

triangular panels with high flatness and glued deltille pat-

terns with DelTags on a non-reflective paper, and mounted

them on a 3D printed skeleton of an icosahedron, see Fig. 8.
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Figure 8: Top row - detections (drawn in rainbow colors)

of a deltille icosahedron and checkerboard cube calibration

targets from different views. Bottom row - mean reprojec-

tion errors over four cameras for each of 150 images.

Similarly, we built a comparable cube target with checker-

board patterns and AprilTags [27]. Both targets were pre-

calibrated by finding relative poses of all planes.

A dataset with 150 images for each of the targets and

each of the four cameras was taken in controlled conditions:

synchronized shutter, same illumination and a similar dis-

tance from the cameras. Deltille grid and regular checker-

board detector were used to get 2D to 3D point correspon-

dences from respective targets. Note that at least three faces

of the icosahedron target were detected in any viewpoint in

contrast to one face for the cube target.

The mean reprojection errors (RMSE) for each of the

frames are shown in Fig. 8. Each frame represents the mean

of images from all cameras. These results, as well as sta-

tistical analysis of the camera parameters on the sequence,

show that the icosahedron provides stable, and more precise

calibration with significantly lower reprojection errors.

5. Conclusions

We present a new calibration ecosystem based on a novel

method for precise localization of monkey saddle points on

deltille grids. The polarities, orientations of the intersect-

ing edges derived from the fitted polynomial surface, were

used together with DelTags to establish robust indexing on

multifaceted objects and partially visible grids. A thorough

experimental evaluation showed that deltille grid detection

is superior to both the rectangular case, and state-of-the-art

corner detection methods leading to more precise calibra-

tions. The extended version of the paper, datasets and code

are available at https://github.com/deltille.
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[19] J. Heikkilä. Geometric camera calibration using circular con-

trol points. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 22(10):1066–1077, 2000. 3

[20] J. Kannala and S. S. Brandt. A generic camera model and cal-

ibration method for conventional, wide-angle, and fish-eye

lenses. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 28(8):1335–1340, 2006. 3
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