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Abstract

A major impediment in rapidly deploying object detec-

tion models for instance detection is the lack of large an-

notated datasets. For example, finding a large labeled

dataset containing instances in a particular kitchen is un-

likely. Each new environment with new instances requires

expensive data collection and annotation. In this paper, we

propose a simple approach to generate large annotated in-

stance datasets with minimal effort. Our key insight is that

ensuring only patch-level realism provides enough training

signal for current object detector models. We automatically

‘cut’ object instances and ‘paste’ them on random back-

grounds. A naive way to do this results in pixel artifacts

which result in poor performance for trained models. We

show how to make detectors ignore these artifacts during

training and generate data that gives competitive perfor-

mance on real data. Our method outperforms existing syn-

thesis approaches and when combined with real images im-

proves relative performance by more than 21% on bench-

mark datasets. In a cross-domain setting, our synthetic

data combined with just 10% real data outperforms mod-

els trained on all real data.

1. Introduction

Imagine using an object detection system for an environ-

ment like your kitchen. Such a system needs to not only

recognize different kinds of objects but also distinguish be-

tween many different instances of the same object category,

e.g., your cup vs. my cup. With the tremendous progress

that has been made in visual recognition, as documented on

benchmark detection datasets, one may expect to easily take

a state-of-the-art system and deploy it for such a setting.

However, one of the biggest drawbacks of using a state-

of-the-art detection system is the amount of annotations

needed to train it. For a new environment with new ob-

jects, we would likely need to curate thousands of diverse

images with varied backgrounds and viewpoints, and anno-

tate them with boxes. Traditionally, vision researchers have

undertaken such a mammoth task [8, 26] for a few com-

monly occurring categories like man, cow, sheep etc., but
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Figure 1: We present a simple way to rapidly generate train-

ing images for instance detection with minimal human ef-

fort. We automatically extract object instance masks and

render it on random background images to create realistic

training images with bounding box labels. Our results show

that such data is competitive with human curated datasets,

and contains complementary information.

this approach is unlikely to scale to all possible categories,

especially the instances in your kitchen. In a personalized

setting we need annotations for instances like your cup. We

believe that collecting such annotations is a major impedi-

ment for rapid deployment of detection systems in robotics

or other personalized applications.

Recently, a successful research direction to overcome

this annotation barrier, is to use synthetically rendered

scenes and objects [22, 34, 47] to train a detection system.

This approach requires a lot of effort to make the scenes and

objects realistic, ensuring high quality global and local con-

sistency. Moreover, models trained on such synthetic data
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Figure 2: We present a simple approach to rapidly synthesize datasets for instance detection. We start with a set of images

of the instances and background scenes. We then automatically extract the object mask and segment the object. We paste

the objects on the scenes with different blending to ensure that local artifacts are ignored by the detection model. Our results

show that this synthesized data is both competitive with real data and contains complementary information.

have trouble generalizing to real data because of the change

in image statistics [5, 36]. To address this, an emerging

theme of work [16] moves away from graphics based ren-

derings to composing real images. The underlying theme is

to ‘paste’ real object masks in real images, thus reducing the

dependence on graphics renderings. Concurrent work [12]

estimates scene geometry and layout and then synthetically

places object masks in the scene to create realistic train-

ing images. However, the scene layout estimation step may

not generalize to unseen scenes. In our paper, we show a

simpler approach that does not require such scene geometry

estimation to create training images.

Our key insight is that state-of-the art detection meth-

ods like Faster-RCNN [39] and even older approaches like

DPM [9] etc. care more about local region-based features

for detection than the global scene layout. As an example, a

cup detector mostly cares about the visual appearance of the

cup and its blending with the background, and not so much

about where the cup occurs in the scene: the table-top or

the ground. We believe that while global consistency is im-

portant, only ensuring patch-level realism while composing

synthetic datasets should go a long way to train these de-

tectors. We use the term patch-level realism to refer to the

observation that the bounding box containing the pasted ob-

ject looks realistic to the human eye.

However, naively placing object masks in scenes creates

subtle pixel artifacts in the images. As these minor imper-

fections in the pixel space feed forward deeper into the lay-

ers of a ConvNet [25], they lead to noticeably different fea-

tures and the training algorithm focuses on these discrep-

ancies to detect objects, often ignoring to model their com-

plex visual appearance. As our results show (Table 1), such

models give reduced detection performance.

Since our main goal is to create training data that is use-

ful for training detectors, we resolve these local imperfec-

tions and maintain patch level realism. Inspired from meth-

ods in data augmentation and denoising auto encoders [51],

we generate data that forces the training algorithm to ignore

these artifacts and focus only on the object appearance. We

show how rendering the same scene with the same object

placement and only varying the blending parameter settings

(Section 5.2) makes the detector robust to these subtle pixel

artifacts and improves training. Although these images do

not respect global consistency or even obey scene factors

such as lighting etc., training on them leads to high perfor-

mance detectors with little effort. Our method is also com-

plementary to existing work [12, 34, 47] that ensures global

consistency and can be combined with them.

Data generated using our approach is surprisingly effec-

tive at training detection models. Our results suggest that

curated instance recognition datasets suffer from poor cov-

erage of the visual appearances of the objects. With our

method, we are able to generate many such images with

different viewpoints/scales, and get a good coverage of the

visual appearance of the object with minimal effort. Thus,

our performance gain is particularly noticeable when the

test scenes are different from the training scenes, and thus

the objects occur in different viewpoints/scales.

2. Related Work
Instance detection is a well studied problem in com-

puter vision. [55] provides a comprehensive overview of

the popular methods in this field. Early approaches, such

as [6], heavily depend on extracting local features such as

SIFT [30], SURF [3], MSER [32] and matching them to

retrieve instances [29, 48]. These approaches do not work

well for objects which are not ‘feature-rich’, where shape-

based methods [10, 19, 21] are more successful.

Modern detection methods [14, 15, 39] based on learned

ConvNet features [23, 25, 44] generalize across feature

rich and feature poor objects [43]. With the availabil-

ity of powerful commodity GPUs, and fast detection al-
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gorithms [27, 38], these methods are suitable for real-

time object detection required in robotics. More recently,

deep learning based approaches in computer vision are be-

ing adopted for the task of pose estimation of specific

objects[33, 53, 54]. Improving instance detection and pose

estimation in warehouses will be signifcantly useful for the

perception pipeline in systems trying to solve the Amazon

Picking Challenge[7].

The use of these powerful methods for object and in-

stance detection requires large amounts of annotated data.

This requirement is both impractical and expensive for

rapidly deploying detection systems. Sythesizing data is

one way to address this issue. [36, 47] use rendered im-

ages of objects to do both object detection and pose esti-

mation. They render 3D models of objects from different

viewpoints and place them against randomly sampled back-

grounds. [34] also highlight the importance of using photo-

realsitic models in training CNNs.

There is a wide spectrum of work where rendered

datasets are used for computer vision tasks. At one end, we

have datasets with images of single objects on random back-

grounds [34–36, 47]. On the other end, there are datasets

where the entire scene is rendered [11, 17, 40]. On that

spectrum our work lies in between as we do not render the

whole world but use real images of both objects and back-

grounds to compose new scenes. In this sense, our work

closely related to contemporary work from [16] which gen-

erates synthetic data for localizing text in scenes.

Sedaghat et al. [42] show how an annotated dataset can

be created for the task of object pose estimation by taking

videos by walking around the object. [18] uses synthetic

data from [4] for multi-view instance recognition. [31] use

real and synthetic images for 2D-3D alignment.

Similarly, [5, 50] render 3D humans in scenes and use

this data for pose estimation. Tasks requiring dense anno-

tation, such as segmentation, tracking etc. have also shown

to benefit by using such approaches [11, 17, 40, 41]. [46]

shows a novel approach for collecting data of objects in a

closed domain setting. [1, 13, 24] annotate 3D points be-

longing to an object in the point cloud reconstruction of a

scene and propagate the label to all frames where the ob-

ject is visible. As synthetic data can be significantly differ-

ent from real images, [49] shows a domain adaptation ap-

proach to overcome this issue. In contrast, our work com-

poses training scenes using real object images as well as

real background images.

The existing approaches to sythesizing datasets focus

largely on ensuring global consistency and realism [5, 12,

22, 50]. While global consistency is important, we believe

that local features matter more for training detection sys-

tems. Our approach ensures that when we train our detec-

tion model it is invariant to local discrepancies.

Object Detection

Instance Detection

Granola Bar 1 Granola Bar 2

Granola Bars

Cup 1 Cup 2 Cup 3 Cup 4

Cups

Figure 3: Object vs Instance Detection. Instance de-

tection involves fine-grained recognition within the same

‘object category’(as shown by the visually similar cups)

while also detecting the same instance from different view-

points(depicted by the different views of the granola bars).

In this example, instance recognition must distinguish

amongst 6 classes: 2 types of granola bars and 4 types

of coffee cups. Object detection would distinguish only

amongst 2 classes: coffee cups and granola bars.

3. Background

Instance Detection: Instance detection requires accurate

localization of a particular object, e.g. a particular brand of

cereal, a particular cup etc. In contrast, generic object de-

tection detects an entire generic category like a cereal box

or a cup (see Figure 3). In fact, in the instance detection sce-

nario correctly localizing a cereal box of some other brand

is counted as a mistake. Instance detection occurs com-

monly in robotics, AR/VR etc., and can also be viewed as

fine-grained recognition.

Traditional Dataset Collection: Building detection

datasets involves a data curation step and an annotation step.

Typically, data curation involves collecting internet images

for object detection datasets [8, 26]. However, this fails for

instance datasets as finding internet images of particular in-

stances is not easy. For instance detection [45] data cura-

tion involves placing the instances in varied backgrounds

and manually collecting the images. Manually collecting

these images requires one to pay attention to ensure diver-

sity in images by placing the object in different backgrounds

and collecting different viewpoints. The annotation step is

generally crowd sourced. Depending on the type of data,

human annotations can be augmented with object tracking

or 3D sensor information [1, 13, 24, 46, 52].

Unfortunately, both these steps are not suitable for

rapidly gathering instance annotations. Firstly, as we show

in our experiments, even if we limit ourselves to the same

type of scene, e.g., kitchens, the curation step can lack di-

versity and create biases that do not hold in the test setting.

Secondly, as the number of images and instances increase,

manual annotation requires additional time and expense.
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4. Approach Overview

We propose a simple approach to rapidly collect data for

instance detection. Our results show that our approach is

competitive with the manual curation process, while requir-

ing little time and no human annotation.

Ideally, we want to capture all of the visual diversity of

an instance. Figures 1 and 3 show how a single instance ap-

pears different when seen from different views, scales, ori-

entation and lighting conditions. Thus, distinguishing be-

tween such instances requires the dataset to have good cov-

erage of viewpoints and scales of the object. Also, as the

number of classes increases rapidly with newer instances,

the long-tail distribution of data affects instance recognition

problems. With synthetic data, we can ensure that the data

has good coverage of both instances and viewpoints. Fig-

ure 2 shows the main steps of our method:

1. Collect object instance images: Our approach is agnos-

tic to the way the data is collected. We assume that we

have access to object images which cover diverse view-

points and have a modest background.

2. Collect scene images: These images will serve as back-

ground images in our training dataset. If the test scenes

are known beforehand (like in the case of a smart-

home or a warehouse) one can collect images from those

scenes. As we do not compute any scene statistics like

geometry or layout, our approach can readily deal with

new scenes.

3. Predict foreground mask for the object: We predict

a foreground mask which separates the instance pixels

from the background pixels. This gives us the object

mask which can be placed in the scenes.

4. Paste object instances in scenes: Paste the extracted

objects on a randomly chosen background image. We

ensure invariance to local artifacts while placing the

objects so that the training algorithm does not focus on

subpixel discrepancies at the boundaries. We add var-

ious modes of blending and synthesize the exact same

scene with different blending to make the algorithm ro-

bust to these artifacts. We also add data augmentation

to ensure a diverse viewpoint/scale coverage.

5. Approach Details and Analysis

We now present additional details of our approach and

provide empirical analysis of our design choices.

5.1. Collecting images

We first describe how we collect object/background im-

ages, and extract object masks without human effort.

Images of objects from different viewpoints: We choose

the objects present in Big Berkeley Instance Recognition

Dataset (BigBIRD) [45] to conduct our experiments. Each

object has 600 images, captured by five cameras with differ-

ent viewpoints. Each image also has a corresponding depth

image captured by an IR camera.

Background images of indoor scenes: We place the ex-

tracted objects from the BigBIRD images on randomly sam-

pled background images from the UW Scenes dataset [24].

There are 1548 images in the backgrounds dataset.

Foreground/Background segmentation: Once we have

collected images of the instances, we need to determine

the pixels that belong to the instance vs. the back-

ground. We automate this by training a model for fore-

ground/background classification. We train a FCN net-

work [28] (based on VGG-16 [44] pre-trained on PAS-

CAL VOC [8] image segmentation) to classify each image

pixel into foreground/background. The object masks from

the depth sensor are used as ground truth for training this

model. We train this model using images of instances which

are not present in our final detection evaluation. We use [2]

as a post-processing step to clean these results and obtain

an object mask. Figure 5 shows some of these results. In

practice, we found this combination to generalize to images

of unseen objects with modest backgrounds and give good

quality object masks from input images. It also generalizes

to transparent objects, e.g., coca cola bottle, where the

depth sensor does not work well.

5.2. Adding Objects to Images

After automatically extracting the object masks from in-

put images, we paste them on real background images.

Naı̈vely pasting objects on scenes results in artifacts which

the training algorithm focuses on, ignoring the object’s vi-

sual appearance. In this section, we present steps to gen-

erate data that forces the training algorithm to ignore these

artifacts and focus only on the object appearance. To eval-

uate these steps empirically, we train a detection model on

our synthesized images and evaluate it on a benchmark in-

stance detection dataset (real images).

Detection Model: We use the Faster R-CNN [39] method

and initialize the model from a VGG-16 [44] model pre-

trained on object detection on the MSCOCO [26] dataset.

Benchmarking Dataset: After training the detection

model on our synthetic images, we use the GMU Kitchen

dataset [13] for evaluation. There are 9 scenes in this

dataset. Three dataset splits with 6 scenes for training and

3 for testing have been provided in [13] to conduct experi-

ments on the GMU Kitchen dataset. We follow these splits

for train/test and report the average over them. No images

or statistics from this dataset are used for either dataset syn-

thesis or training the detector. We report Mean Average Pre-

cision (mAP) at IOU of 0.5 [8] in all our experiments.

5.2.1 Blending

Directly pasting objects on background images creates

boundary artifacts. Figure 6 shows some examples of such

1304



Figure 4: A few randomly chosen samples from our synthesized images. We describe the details of our approach in Section 5.

Table 1: We analyze the effect of various factors in synthesizing data by generating data with different settings and training

a detector [39]. We evaluate the trained model on the GMU Dataset [13]. As we describe in Section 5, these factors greatly

improve the quality of the synthesized data.

2D Rot. 3D Rot. Trunc. Occl. coca coffee honey hunt’s mahatma nature nature palmolive pop pringles red mAP

cola mate bunches sauce rice v1 v2 orange secret bbq bull

Blending (Sec 5.2.1)

No blending X X X X 65.7 91.1 83.2 59.8 57.7 92.1 84.4 61.4 59.0 38.7 31.9 65.9

Gaussian Blurring X X X X 65.3 88.1 80.8 67.5 63.7 90.8 79.4 57.9 58.9 65.7 40.2 68.9

Poisson [37] X X X X 62.9 82.9 63.9 59.4 20.7 84.6 67.9 60.9 73.5 41.0 25.1 58.4

All Blend X X X X 76.0 90.3 79.9 65.4 67.3 93.4 86.6 64.5 73.2 60.4 39.8 72.4

All Blend + same image X X X X 78.4 92.7 81.8 66.2 69.8 93.0 82.9 65.7 76.0 62.9 41.2 73.7

Data Aug. (Sec 5.2.2)

No 2D Rotation X X X 63.3 90.4 81.4 63.7 54.2 91.8 82.3 59.2 71.3 68.2 41.4 69.7

No 3D Rotation X X X 73.1 90.6 83.2 63.3 55.8 93.4 82.1 65.9 64.5 45.7 33.6 68.3

No Trunc. X X X 73.4 92.1 77.8 59.9 64.6 92.4 84.6 62.0 74.2 67.4 41.7 71.8

No Occlusion X X X 63.1 84.9 74.4 64.5 50.8 76.9 67.6 55.7 69.0 58.7 28.1 63.1

All X X X X 78.4 92.7 81.8 66.2 69.8 93.0 82.9 65.7 76.0 62.9 41.2 73.7

All + Distractor X X X X 81.0 93.3 85.6 55.6 73.8 94.9 87.1 68.7 79.5 77.1 42.0 76.2

Honey Bunches of Oats Mahatma Rice

Coca Cola Glass Bottle Palmolive Orange

Image
Depth 
Mask

Our 
Mask

Image
Depth 
Mask

Our 
Mask

Figure 5: Given an image of a new unseen object instance,

we use a ConvNet to predict foreground/background pix-

els. Using these predictions we automatically obtain an ob-

ject mask. This method generalizes to transparent surfaces

where traditional methods relying on depth sensors for seg-

mentation fail (second row).

artifacts. Although these artifacts seem subtle, when such

images are used to train detection algorithms, they give poor

performance as seen in Table 1. As current detection meth-

ods [39] strongly depend on local region-based features,

boundary artifacts substantially degrade their performance.

The blending step ‘smoothens’ out the boundary artifacts

between the pasted object and the background. Figure 6

shows some examples of blending. Each of these modes

add different image variations, e.g., Poisson blending [37]

smooths edges and adds lighting variations. Although these

blending methods do not yield visually ‘perfect’ results,

they improve performance of the trained detectors. Table 1

lists these blending methods and shows the improvement in

performance after training on blended images.

To make the training algorithm further ignore the effects

of blending, we synthesize the exact same scene with the

same object placement, and only vary the type of blend-

ing used. We denote this by ‘All Blend + same image’

in Table 1. Training on multiple such images where only

the blending factor changes makes the training algorithm

invariant to these blending factors and improves perfor-

mance by 8 AP points over not using any form of blending.

5.2.2 Data Augmentation

While pasting the objects on background, we also add the

following modes of data augmentation:

2D Rotation: The objects are rotated at uniformly sampled
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No Blending Gaussian Blurring Poisson Blending

Figure 6: Different blending modes used while generating

datasets. These modes help the model in ignoring artifacts

arising from pasting objects on background scenes. More

details in Section 5.2.1

random angles in between 30 to −30 degrees to account for

camera/object rotation changes. Table 1 shows a gain of 3

AP points by adding this augmentation.

3D Rotation: As we can control this step, we have many

images containing atypical 3D rotations of the instances

which is hard to find in real data. Table 1 shows a gain

of more than 4 AP points because of this augmentation. In

Section 6.2 and Figure 7, we show examples of how a model

trained on human collected data consistently fails to detect

instances from certain viewpoints because the training data

has poor viewpoint coverage and different biases from the

test set. This result shows the value of being able to synthe-

size data with diverse viewpoints.

Occlusion and Truncation: Occlusion and truncation nat-

urally appear in images. They refer to partially visible ob-

jects (such as those in Figure 2). We place objects at the

boundaries of the images to model truncation, ensuring at

least 0.25 of the object box is in the image. To add oc-

clusion, we paste the objects with partial overlap with each

other (max IOU of 0.75). Like other modes of augmenta-

tion, we can easily vary the amount of truncation/occlusion.

As Table 1 shows, adding truncation/occlusion improves the

result by as much as 10 AP points.

Distractor Objects: We add distractor objects in the

scenes. This models real-world scenarios with multiple dis-

tractor objects. We use additional objects from the Big-

BIRD dataset as distractors. Presence of synthetic distrac-

tors also encourages the learning algorithm to not only latch

on to boundary artifacts when detecting objects but also im-

proves performance by 3 AP points.

6. Experiments

We now compare the effectiveness of our synthesized

data against human annotated data on two benchmark

datasets. We first describe our common experimental setup.

Synthesized Data: We analyze our design choices in Sec-

tion 5 to pick the best performing ones. We use a total of

33 object instances from the BigBIRD Dataset [45] overlap-

Figure 7: Missed detections on the Active Vision

Dataset [1] for a model trained on the hand-annotated GMU

Dataset [13]. The model consistently fails to detect certain

viewpoints as the training data has poor viewpoint coverage

and has biases different from the test set. Each row shows a

single instance.

Ground Truth Images

Corresponding False Positives

Figure 8: Examples of false positives from the UNC dataset

by the detector trained on the hand-annotated bounding

boxes from the GMU dataset. Object detectors trained on

hand annotated scenes also need new negatives to be able to

perform well in newer scenes.

ping with the 11 instances from GMU Kitchen Dataset [13]

and the 33 instances from Active Vision Dataset [1]. We

use a foreground/background ConvNet (Section 5.1) to ex-

tract the foreground masks from the images. The fore-

ground/background ConvNet is not trained on instances we
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Table 2: We compute the performance of training a model on synthetic data and compare it against training on real data. We

evaluate on the test split of the GMU Kitchen Dataset [13].

Dataset coca coffee honey hunt’s mahatma nature nature palmolive pop pringles red mAP

cola mate bunches sauce rice v1 v2 orange secret bbq bull

Real Images from GMU 81.9 95.3 92.0 87.3 86.5 96.8 88.9 80.5 92.3 88.9 58.6 86.3

SP-BL-SS [12] 55.5 67.9 71.2 34.6 30.6 82.9 66.2 33.1 54.3 54.8 17.7 51.7

(Ours) Synthetic Images 81.0 93.3 85.6 55.6 73.8 94.9 87.1 68.7 79.5 77.1 42.0 76.2

SP-BL-SS + Real Images [12] 82.6 92.9 91.4 85.5 81.9 95.5 88.6 78.5 93.6 90.2 54.1 85.0

(Ours) Synthetic + Real Images 88.5 95.5 94.1 88.1 90.3 97.2 91.8 80.1 94.0 92.2 65.4 88.8

use to evaluate detection. As in Section 5, we use back-

grounds from the UW Scenes Dataset [24] We generate

a synthetic dataset with approximately 6000 images using

all modes of data augmentation from Section 5. We sam-

ple scale, rotation, position and the background randomly.

Each background appears roughly 4 times in the generated

dataset with different objects. To model occlusions we al-

low a maximum IOU of 0.75 between objects. For trun-

cations, we allow at least 25% of the object box to be in

the image. For each scene we have three versions pro-

duced with different blending modes as described in Sec-

tion 5.2.1. Figure 4 shows samples of generated images.

We use this synthetic data for all our experiments. The

code used for generating scenes is available at: https:

//goo.gl/imXRt7.

Model: We use a Faster R-CNN model [39] based on the

VGG-16 [44] pre-trained weights on the MSCOCO [26] de-

tection task. We initialize both the RPN trunk and the object

classifier trunk of the network in this way. We fine-tune

on different datasets (both real and synthetic) and evalu-

ate the model’s performance. We fine-tune all models for

25K iterations using SGD+momentum with a learning rate

of 0.001, momentum 0.9, and reduce the learning rate by a

factor of 10 after 15K iterations. We also use weight decay

of 0.0005 and dropout of 0.5 on the fully-connected lay-

ers. We set the value of all the loss weights (both RPN and

classification) as 1.0 in our experiments. We ensure that

the model hyperparameters and random seed do not change

across datasets/experiments for consistency.

Evaluation: We report Average Precision (AP) at IOU of

0.5 in all our experiments for the task of instance local-

ization. Following [1], we consider boxes of size at least

50× 30 pixels in the images for evaluation.

6.1. Training and Evaluation on the GMU Dataset

Similar to Section 5, we use the GMU Kitchen

Dataset[13] which contains 9 kitchen scenes with 6, 728 im-

ages. We evaluate on the 11 objects present in the dataset

overlapping with the BigBIRD [45] objects. We addition-

ally report results from [12]. Their method synthesizes im-

ages by accounting for global scene structure when placing

Table 3: Evaluation on the entire Active Vision dataset by

varying the amount of real data from the GMU Kitchen

Scenes train dataset

Dataset coca honey hunt’s mahatma nature red mAP

cola bunches sauce rice v2 bull

Real Images 57.7 34.4 48.0 39.9 24.6 46.6 41.9

Synthetic 63.0 29.3 34.2 20.5 49.0 23.0 36.5

Synthetic + Real Images 69.9 44.2 51.0 41.8 48.7 50.9 51.1

10% Real 15.3 19.1 31.6 11.2 6.1 11.7 15.8

10% Real + Syn 66.1 36.5 44.0 26.4 48.9 37.6 43.2

40% Real 55.8 31.6 47.3 27.4 24.8 41.9 38.2

40% Real + Syn 69.8 41.0 55.7 38.3 52.8 47.0 50.8

70% Real 55.3 30.6 47.9 36.4 25.0 41.2 39.4

70% Real + Syn 67.5 42.0 50.9 43.0 48.5 51.8 50.6

objects in scenes, e.g., ensure that cups lie on flat surfaces

like table tops. In contrast, our method does not use take

into account such global structure, but focuses on patch-

level realism. We note that their method [12] uses a differ-

ent background scenes dataset for their synthesis.

Table 2 shows the evaluation results. We see that train-

ing on the synthetic data is competitive with training on real

images (rows 1 vs 3) and also outperforms the synthetic

dataset from [12] (rows 2 vs 3). Combining synthetic data

with the real data shows a further improvement for all syn-

thetic image datasets (rows 4, 5). These results show that

the data generated by our approach is not only competitive

with both real data and existing synthetic data, but also pro-

vides complementary information. Figure 9 shows qualita-

tive examples illustrating this point.

6.2. Evaluation on the Active Vision Dataset

To test generalization across datasets, we now present

experiments where we train on either our synthetic data or

the GMU Dataset [13], and evaluate on the Active Vision

Dataset [1]. The Active Vision Dataset[1] has 9 scenes and

17,556 images. It has 33 objects in total and 6 objects in

overlap with the GMU Kitchen Scenes. We use these 6 ob-

jects for our analysis. We do not use this dataset for training.

We train a model trained on all the images from the

GMU Dataset (Section 6.1). This model serves as a base-
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Real Data Synthetic + Real Data Real Data Synthetic + Real DataSynthetic Data

(a)

(c)

(e)

(g)

Synthetic Data

(b)

(d)

(f)

(h)

Figure 9: We show qualitative detection results and mark true positives in green, false positives in red and arrows to high-
light regions. The top two rows are from the GMU Kitchen Scenes [13] and the bottom two rows from the Active Vision
Dataset [1]. (a), (b): Model trained on real data misses objects which are heavily occluded (a) or stops detecting objects as
viewpoint changes from a to b. (c), (d): Model trained on synthetic data detects occluded and truncated objects. (e): Com-
bining synthetic data removes false positives due to training only on real data. (g), (h): Combining real data removes false
positives due to training only on synthetic data. (f), (g): Viewpoint changes cause false negatives. (Best viewed electronically)

line for our model trained on synthetic data. As Table 3

shows, by collecting just 10% images and adding our syn-

thetically generated images, we are able to get more MAP

than using the real images in the dataset without the syn-

thetic images. This highlights how useful our approach of

dataset generation is in scenarios where there is a dearth of

labeled images. Also, the performance gap between these

datasets is smaller than in Section 6.1.

Failure modes of real data: Upon inspecting the er-

rors [20] made by the GMU model, we see that a common

error mode of the detector is its failure to recognize cer-

tain views in the test-set (see Figure 7). These viewpoints

were sparsely present in the human annotated training data.

In contrast, our synthetic training data has a diverse view-

point coverage. The model trained on the synthesized im-

ages drastically reduces these errors. Combining the syn-

thesized images with the real images from GMU gives a

further improvement of 10 AP points suggesting that syn-

thesized images do provide complementary information.

Varying Real Data: We investigate the effect of varying the

number of real images combined with the synthesized data.

We randomly sample different amounts of real images from

the GMU Dataset and combine them with the synthetic data

to train the detector. As a baseline we also train the model

on varying fractions of the real data. Table 3 shows that

by adding synthetic images to just 10% of the real images

we get a boost of 10 AP points over just using real images.

This performance is also tantalizingly close to the perfor-

mance of combining larger fractions of real data. This re-

sult reinforces the effectiveness and complementary nature

of our approach. In the supplementary material, we present

additional such results.

7. Discussion and Future Work

We presented a simple technique to synthesize annotated

training images for instance detection. Our key insights

were to leverage randomization for blending objects into

scenes and to ensure a diverse coverage of instance view-

points and scales. We showed that patch-based realism is

sufficient for training region-proposal based object detec-

tors. Our method performs favorably to existing hand cu-

rated datasets and captures complementary information. In

a realistic cross-domain setting we show that by combining

just 10% of the available real annotations with our synthe-

sized data, our model performs better than using all the real

annotations. From a practical standpoint our technique af-

fords the possibility of generating scenes with non-uniform

distributions over object viewpoints and scales without ad-

ditional data collection effort.

We believe our work can be combined with existing ap-

proaches [12] that focus on global consistency for placing

objects and [22] which model realism. Future work should

focus on a combination of such approaches.
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